Open Whole HZ.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Whole HZ.Pdf The Pennsylvania State University The Graduate School Department of Civil and Environmental Engineering ANALYSIS OF MICROBIAL COMMUNITIES AND DESIGN OF BIOREACTORS USED FOR PERCHLORATE REMEDIATION AND BIOHYDROGEN PRODUCTION A Thesis in Environmental Engineering by Husen Zhang © 2005 Husen Zhang Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2005 The thesis of Husen Zhang has been reviewed and approved* by the following: Bruce E. Logan Kappe Professor of Environmental Engineering Thesis Advisor Chair of Committee Mary Ann Bruns Assistant Professor of Crop and Soil Sciences John M. Regan Assistant Professor of Environmental Engineering William D. Burgos Associate Professor of Environmental Engineering Andrew Scanlon Professor of Civil Engineering Head of the Department of Civil and Environmental Engineering *Signatures are on file in the Graduate School. ABSTRACT A chemolithoautotrophic bacterium (strain HZ) was isolated from biofilm samples in an unsaturated-flow, packed-bed reactor treating perchlorate-contaminated groundwater. Dilution- to-extinction method was used for isolation. Purity was initially examined microscopically, and confirmed by identical intergenic ribosomal RNA spacer sequences from multiple clones. Strain HZ is a Gram-negative, rod-shaped facultative anaerobe that can use oxygen, perchlorate, chlorate, or nitrate as an electron acceptor and hydrogen gas or acetate as an electron donor. Growth on hydrogen gas was coupled with complete perchlorate (10 mM) reduction to chloride with a maximum doubling time of 8.9 hours. Autotrophic growth with carbon dioxide as the sole carbon source was confirmed by demonstrating that biomass carbon (100.9%) was derived from 14 CO2. Phylogenetic analysis based upon the 16S rRNA sequence indicated that strain HZ belongs to the genus Dechloromonas within the β subgroup of the Proteobacteria. Biofilm samples from a pilot-scale, fixed-bed, perchlorate-reducing reactor were analyzed for microbial species from inoculated and indigenous populations. The bioreactor was inoculated with Dechlorosoma sp. strain KJ and fed groundwater containing indigenous microorganisms. The reactor was flushed weekly to remove accumulated biomass. Perchlorate was reduced to non-detectable levels (< 4 µg L-1) after 26 days of operation and remained so during proper reactor operation in a six-month long test. Plastic media in the reactor were collected from top, middle, and bottom locations. Genomic DNA was extracted from successive washes of thawed biofilm material for PCR-based community fingerprinting by 16S-23S ribosomal intergenic spacer analysis (RISA). No DNA sequences closely related to that of strain KJ were recovered. The most intense bands yielded DNA sequences with high similarities (> 98%) to Dechloromonas spp. Other sequences from RISA fingerprints indicated presence of the iii low G+C Gram-positive bacteria and the Cytophaga-Flavobacterium-Bacteroides (CFB) group. Fluorescence in situ hybridization (FISH) was also used to examine biofilms using genus- specific 16S ribosomal RNA probes. Numbers of bacteria hybridizing to the Dechloromonas probe were most abundant at the biofilm surface (23% of all cells), and decreased as biofilm depth increased. The bacteria hybridizing to Dechlorosoma probes constituted less than 1 % of all cells in the biofilms examined, except in the deepest portions where they represented 3-5%. Biological hydrogen production was investigated using a laboratory-scale, trickle-bed biofilm reactor. The reactor was inoculated with Clostridium acetobutylicum and fed mineral medium with glucose as the sole carbon and energy source. The flowrate was 1.6 mL/min (0.096 L/h), producing a hydraulic retention time of 2.1 min. Continuous hydrogen production rates were 14, 20, 25, and 27 mL/h at influent glucose concentrations of 1.0, 3.3, 4.5, and 10.5 g/L, respectively. Gas-phase hydrogen concentrations of 70-79% were obtained at influent glucose concentrations of 1.0, 3.3, 4.5, and 10.5 g/L. The major fermentation byproducts were acetate and butyrate. The measured hydrogen yields indicated an overall conversion efficiency of 15-26% based on a theoretical stoichiometry of 4 moles hydrogen from 1 mole of glucose. -1 -1 The normalized hydrogen production rate was 676 to 1265 (mL-H2)(g-glucose) (L-reactor) , which is within the range of values reported using continuously stirred tank reactors. Another H2-producing bioreactor was operated at four hydraulic retention times (HRT) (10, 5, 2.5 and 1 h) and four glucose concentrations (10, 7.5, 5, and 2.5 g/L). Biomass suspensions were analyzed by Ribosomal Intergenic Spacer Analysis (RISA) to obtain qualitative information on bacterial populations at each condition. Results showed that microbial species composition responded more to influent glucose concentration than to HRT. Populations detected at 2.5 g/L glucose concentration were taxonomically more diverse than at 5, 7.5, and 10 iv g/L glucose concentrations. The most intense band in RISA profiles at 10, 7.5, and 5 g/L glucose yielded sequences with high similarity (> 97%) to Clostridium acidisoli. At 2.5 g/L glucose, a Selenomonadaceae spp. was identified as being present in the reactor. v Table of Contents Page List of Tables……………………………………………………………………….......... viii List of Figures……………………………………………………………………… …… ix Acknowledgments………………………………………………………………………. x Chapter 1 Introduction……………………………………………………………………. 1 1.1 Problem Statements………………………………………………………………. 1 1.1.1 Perchlorate bioremediation………………………………………………… 1 1.1.2 Biological hydrogen generation ……………………………………………. 2 1.2 Organization of Dissertation……………………………………………………….. 3 1.3 References ……………………………………………………………………. 5 Chapter 2 Perchlorate reduction by a novel chemolithoautotrophic,hydrogen-oxidizing bacterium……………………………………………………………………………………10 2.1 Introduction………………………………………………………………………… 11 2.2 Results……………………………………………………………………………… 13 2.2.1 Enrichment and isolation…………………………………………………….. 13 2.2.2 Phenotypic characteristics…………………………………………………… 13 2.2.3 Autotrophic CO2 fixation by strain HZ……………………………………… 14 2.2.4 Phylogenetic analysis………………………………………………………… 14 2.3 Discussion………………………………………………………………………… 15 2.4 Experimental Procedures…………………………………………………………. 17 2.4.1 Medium and cultivation……………………………………………………… 17 2.4.2 Enrichment and isolation…………………………………………………….. 18 2.4.3 Electron microscopy……………………………………………..…………. 18 14 2.4.4 Determination of CO2 incorporation……………………………………… 19 2.4.5 Analytical techniques……………………………………………………….. 20 2.4.6 Phylogenetic analysis………………………………………………………… 20 2.5 References………………………………………………………………………… 22 Chapter 3 Molecular assessment of inoculated and indigenous bacteria in biofilms from a pilot- scale perchlorate-reducing bioreactor……………………………………………………… 30 3.1 Introduction………………………………………………………………………. 31 3.2 Materials and Methods……………………………………………………………. 34 3.3 Results…………………………………………………………………………….. 40 3.4 Discussion ……………………………………………………………………... 43 3.5 References………………………………………………………………………… 52 Chapter 4 Biological hydrogen production in a trickle-bed bioreactor……………………. 63 4.1 Introduction……………………………………………………………………….. 64 4.2 Materials and Methods…………………………………………………………… 65 4.2.1 Medium and culture conditions……………………………………… …….. 65 4.2.2 Reactor design and operation………………………………………… …… 66 4.2.3 Calculation…………………………………………………… …….……… 67 4.2.4 Determination of the reactor’s hydraulic retention time……....……………. 68 vi 4.2.5 Analytical procedures………………………………………………………. 68 4.3 Results and Discussion…………………………………………………………… 69 4.4 References………………………………………………………………………… 78 Chapter 5 Microbial community shifting as a function of hydraulic retention time (HRT) and substrate concentration in a chemostat H2-producing reactor……………………………... 81 5.1 Introduction……………………………………………………………………….. 81 5.2 Materials and Methods……………………………………………………………. 82 5.3 Results and Discussion…………………………………………………………… 84 5.4 References ………………………………………………………………………89 Appendix Data used to generate figures in chapter 2 to chapter 4………………………… 92 vii List of Tables Table Page Table 3.1 FISH probe sequences, target sites, formamide concentrations in the hybridization buffer and sodium chloride concentrations in the washing buffer……………………….. 51 Table 3.2 Phylogenetic summary of perchlorate-reducing community from cloning and sequencing results………………………………………………………………………… 52 Table 4.1 Summary of H2 production rates and conversion efficiency……………… 71 Table 4.2 Summary of volatile fatty acids production………………………………. 72 Table 4.3 Comparison of hydrogen production rates in the trickle-bed reactor with those reported using a CSTR……………………………………………………………………. 73 Table 5.1 Phylogenetic summary of hydrogen-producing community from cloning and sequencing results…………………………………………………………………………. 87 viii List of Figures Figure Page Figure 2.1 Perchlorate reduction by the chemolithoautotrophic hydrogen-oxidizing enrichment culture…………………………………………………………………………. 27 Figure 2.2 Scanning electron micrograph of anaerobically grown cells of strain HZ… 27 Figure 2.3 Growth of strain HZ with hydrogen as the electron donor and perchlorate (10 mM) as the electron acceptor with carbon dioxide as the only carbon source………… 28 Figure 2.4 Neighbor-joining phylogenetic tree of 16S rDNA sequences of strain HZ and others…………………………………………………………………………………... 29 Figure 3.1 Perchlorate concentration profile in the reactor with two flow rates……… 58 Figure 3.2 Chemical profiles in the reactor of acetate, oxygen, nitrate, and perchlorate at 0.34 L
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Core Bacterial Taxon from Municipal Wastewater Treatment Plants
    ENVIRONMENTAL MICROBIOLOGY crossm Casimicrobium huifangae gen. nov., sp. nov., a Ubiquitous “Most-Wanted” Core Bacterial Taxon from Municipal Wastewater Treatment Plants Yang Song,a,b,c,d,g Cheng-Ying Jiang,a,b,c,d Zong-Lin Liang,a,b,c,g Bao-Jun Wang,a Yong Jiang,e Ye Yin,f Hai-Zhen Zhu,a,b,c,g Ya-Ling Qin,a,b,c,g Rui-Xue Cheng,a Zhi-Pei Liu,a,b,c,d Yao Liu,e Tao Jin,f Philippe F.-X. Corvini,h Korneel Rabaey,i Downloaded from Ai-Jie Wang,a,d,g Shuang-Jiang Liua,b,c,d,g aKey Laboratory of Environmental Biotechnology at Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China bState Key Laboratory of Microbial Resources at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China cEnvironmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China dRCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China eBeijing Drainage Group Co., Ltd., Beijing, China f BGI-Qingdao, Qingdao, China http://aem.asm.org/ gUniversity of Chinese Academy of Sciences, Beijing, China hUniversity of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland iCenter for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium Yang Song and Cheng-Ying Jiang contributed equally to this work. Author order was determined by drawing straws. ABSTRACT Microorganisms in wastewater treatment plants (WWTPs) play a key role in the removal of pollutants from municipal and industrial wastewaters. A recent study estimated that activated sludge from global municipal WWTPs har- on June 19, 2020 by guest bors 1 ϫ 109 to 2 ϫ 109 microbial species, the majority of which have not yet been cultivated, and 28 core taxa were identified as “most-wanted” ones (L.
    [Show full text]
  • Bacteria Coated Cathodes As an In-Situ Hydrogen Evolving Platform for Microbial Electrosynthesis
    www.nature.com/scientificreports OPEN Bacteria coated cathodes as an in‑situ hydrogen evolving platform for microbial electrosynthesis Elisabet Perona‑Vico1, Laura Feliu‑Paradeda1, Sebasti Puig2 & Lluis Bañeras1* Hydrogen is a key intermediate element in microbial electrosynthesis as a mediator of the reduction of carbon dioxide (CO2) into added value compounds. In the present work we aimed at studying the biological production of hydrogen in biocathodes operated at − 1.0 V vs. Ag/AgCl, using a highly comparable technology and CO2 as carbon feedstock. Ten bacterial strains were chosen from genera Rhodobacter, Rhodopseudomonas, Rhodocyclus, Desulfovibrio and Sporomusa, all described as hydrogen producing candidates. Monospecifc bioflms were formed on carbon cloth cathodes and hydrogen evolution was constantly monitored using a microsensor. Eight over ten bacteria strains showed electroactivity and H2 production rates increased signifcantly (two to eightfold) compared to abiotic conditions for two of them (Desulfovibrio paquesii and Desulfovibrio desulfuricans). D. paquesii DSM 16681 exhibited the highest production rate (45.6 ± 18.8 µM min−1) compared to abiotic conditions (5.5 ± 0.6 µM min−1), although specifc production rates (per 16S rRNA copy) were similar to those obtained for other strains. This study demonstrated that many microorganisms are suspected to participate in net hydrogen production but inherent diferences among strains do occur, which are relevant for future developments of resilient bioflm coated cathodes as a stable hydrogen production platform in microbial electrosynthesis. Microbial electrosynthesis (MES) is engineered to use electric power and carbon dioxide (CO2) as the only energy and carbon sources in reductive bioelectrochemical processes for biosynthesis 1.
    [Show full text]
  • Physiology and Biochemistry of Aromatic Hydrocarbon-Degrading Bacteria That Use Chlorate And/Or Nitrate As Electron Acceptor
    Invitation for the public defense of my thesis Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic and biochemistry Physiology bacteria that use chlorate and/or nitrate as electron acceptor as electron nitrate and/or use chlorate that bacteria Physiology and biochemistry Physiology and biochemistry of aromatic hydrocarbon-degrading of aromatic hydrocarbon- degrading bacteria that bacteria that use chlorate and/or nitrate as electron acceptor use chlorate and/or nitrate as electron acceptor The public defense of my thesis will take place in the Aula of Wageningen University (Generall Faulkesweg 1, Wageningen) on December 18 2013 at 4:00 pm. This defense is followed by a reception in Café Carré (Vijzelstraat 2, Wageningen). Margreet J. Oosterkamp J. Margreet Paranimphs Ton van Gelder ([email protected]) Aura Widjaja Margreet J. Oosterkamp ([email protected]) Marjet Oosterkamp (911 W Springfield Ave Apt 19, Urbana, IL 61801, USA; [email protected]) Omslag met flap_MJOosterkamp.indd 1 25-11-2013 5:58:31 Physiology and biochemistry of aromatic hydrocarbon-degrading bacteria that use chlorate and/or nitrate as electron acceptor Margreet J. Oosterkamp Thesis-MJOosterkamp.indd 1 25-11-2013 6:42:09 Thesis committee Thesis supervisor Prof. dr. ir. A. J. M. Stams Personal Chair at the Laboratory of Microbiology Wageningen University Thesis co-supervisors Dr. C. M. Plugge Assistant Professor at the Laboratory of Microbiology Wageningen University Dr. P. J. Schaap Assistant Professor at the Laboratory of Systems and Synthetic Biology Wageningen University Other members Prof. dr. L. Dijkhuizen, University of Groningen Prof. dr. H. J. Laanbroek, University of Utrecht Prof.
    [Show full text]
  • Investigation of a Sulfur-Utilizing Perchlorate-Reducing Bacterial Consortium" (2011)
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-13-2011 Investigation of a Sulfur-Utilizing Perchlorate- Reducing Bacterial Consortium Teresa Anne Conneely University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Bacteriology Commons Recommended Citation Conneely, Teresa Anne, "Investigation of a Sulfur-Utilizing Perchlorate-Reducing Bacterial Consortium" (2011). Open Access Dissertations. 372. https://scholarworks.umass.edu/open_access_dissertations/372 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. INVESTIGATION OF A SULFUR-UTILIZING PERCHLORATE-REDUCING BACTERIAL CONSORTIUM A Dissertation Presented by TERESA ANNE CONNEELY Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2011 Department of Microbiology © Copyright by Teresa Anne Conneely 2011 All Rights Reserved INVESTIGATION OF A SULFUR-UTILIZING PERCHLORATE-REDUCING BACTERIAL CONSORTIUM A Dissertation Presented by TERESA ANNE CONNEELY Approved as to style and content by: ____________________________________ Klaus Nüsslein, Chair ____________________________________ Jeffery Blanchard, Member ____________________________________ James F. Holden, Member ____________________________________ Sarina Ergas, Member __________________________________________ John Lopes, Department Head Department of Microbiology DEDICATION Lé grá dó mo chlann ACKNOWLEDGMENTS I would like to thank my advisor Klaus Nüsslein for inviting me to join his lab, introducing me to microbial ecology and guiding me on my research path and goal of providing clean water through microbiology. Thank you to all my committee members throughout my Ph.D.
    [Show full text]
  • Metabolic Capacities of Anammox Bacterium: Kuenenia Stuttgartiensis
    Metabolic capacities of anammox bacterium: Kuenenia stuttgartiensis Mariana Itzel Velasco Alvarez December 2014 Master’s dissertation submitted in partial fulfilment of the requirements for the joint degree of International Master of Science in Environmental Technology and Engineering an Erasmus Mundus Master Course jointly organized by UGent (Belgium), ICTP (Prague) and UNESCO‐IHE (the Netherlands) Academic year 2014 – 2015 Metabolic capacities of anammox bacterium: Kuenenia stuttgartiensis Host University: Radboud University, Nijmegen UNESCO-IHE Institute for Water Education Mariana Itzel Velasco Alvarez Promotor: Prof. dr. ir. Mike Jetten Co-promoter: Prof. dr. ir. Piet Lens This thesis was elaborated at Radboud University and defended at UNESCO-IHE Delft within the framework of the European Erasmus Mundus Programme “Erasmus Mundus International Master of Science in Environmental Technology and Engineering " (Course N° 2011-0172) © 2014 Nijmegen, Mariana Velasco, Ghent University, all rights reserved. CONFIDENTIALITY NOTICE – IMPORTANT – PLEASE READ FIRST This document may contain confidential information proprietary to the Radboud University. It is strictly forbidden to publish, cite or make public in any way this document or any part thereof without the express written permission by the Radboud Universit. Under no circumstance this document may be communicated to or put at the disposal of third parties; photocopying or duplicating it in any other way is strictly prohibited. Disregarding the confidential nature of this document may cause irremediable damage to the Radboud University. CONFIDENTIAL DO NOT COPY, DISTRIBUTE OR MAKE PUBLIC IN ANY WAY PLEASE CONTACT RADBOUD UNIVERSITY IF YOU RECEIVED THIS DOCUMENT IN ERROR. Acknowledgments Every success is never achieved alone; is part of a whole, where directly or indirectly is the input of people and situations.
    [Show full text]
  • Environmental Microbiology, Second Edition Edited by Ralph Mitchell and Ji-Dong Gu Copyright © 2010 Wiley-Blackwell
    ENVIRONMENTAL MICROBIOLOGY SECOND EDITION Edited by Ralph Mitchell and Ji-Dong Gu A JOHN WILEY & SONS, INC., PUBLICATION ENVIRONMENTAL MICROBIOLOGY ENVIRONMENTAL MICROBIOLOGY SECOND EDITION Edited by Ralph Mitchell and Ji-Dong Gu A JOHN WILEY & SONS, INC., PUBLICATION Copyright © 2010 by Wiley-Blackwell. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada. Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical, and Medical business with Blackwell Publishing. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Photosynthesis Is Widely Distributed Among Proteobacteria As Demonstrated by the Phylogeny of Puflm Reaction Center Proteins
    fmicb-08-02679 January 20, 2018 Time: 16:46 # 1 ORIGINAL RESEARCH published: 23 January 2018 doi: 10.3389/fmicb.2017.02679 Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins Johannes F. Imhoff1*, Tanja Rahn1, Sven Künzel2 and Sven C. Neulinger3 1 Research Unit Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 Max Planck Institute for Evolutionary Biology, Plön, Germany, 3 omics2view.consulting GbR, Kiel, Germany Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Edited by: Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the Marina G. Kalyuzhanaya, phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria San Diego State University, United States employing this photosystem in nature. Almost complete pufLM gene sequences and Reviewed by: the derived protein sequences from 152 type strains and 45 additional strains of Nikolai Ravin, phototrophic Proteobacteria employing photosystem II were compared. The results Research Center for Biotechnology (RAS), Russia give interesting and comprehensive insights into the phylogeny of the photosynthetic Ivan A. Berg, apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as Universität Münster, Germany major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from *Correspondence: Caulobacterales (Brevundimonas subvibrioides).
    [Show full text]
  • Comparative Genomics Provides Insights Into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera
    G C A T T A C G G C A T genes Article Comparative Genomics Provides Insights into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera Roberto Tadeu Raittz 1,*,† , Camilla Reginatto De Pierri 2,† , Marta Maluk 3 , Marcelo Bueno Batista 4, Manuel Carmona 5 , Madan Junghare 6, Helisson Faoro 7, Leonardo M. Cruz 2 , Federico Battistoni 8, Emanuel de Souza 2,Fábio de Oliveira Pedrosa 2, Wen-Ming Chen 9, Philip S. Poole 10, Ray A. Dixon 4,* and Euan K. James 3,* 1 Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector—SEPT, UFPR, Curitiba, PR 81520-260, Brazil 2 Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR 81531-980, Brazil; [email protected] (C.R.D.P.); [email protected] (L.M.C.); [email protected] (E.d.S.); [email protected] (F.d.O.P.) 3 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; [email protected] 4 John Innes Centre, Department of Molecular Microbiology, Norwich NR4 7UH, UK; [email protected] 5 Centro de Investigaciones Biológicas Margarita Salas-CSIC, Department of Biotechnology of Microbes and Plants, Ramiro de Maeztu 9, 28040 Madrid, Spain; [email protected] 6 Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, 1430 Ås, Norway; [email protected] 7 Laboratory for Science and Technology Applied in Health, Carlos Chagas Institute, Fiocruz, Curitiba, PR 81310-020, Brazil; helisson.faoro@fiocruz.br 8 Department of Microbial Biochemistry and Genomics, IIBCE, Montevideo 11600, Uruguay; [email protected] Citation: Raittz, R.T.; Reginatto De 9 Laboratory of Microbiology, Department of Seafood Science, NKMU, Kaohsiung City 811, Taiwan; Pierri, C.; Maluk, M.; Bueno Batista, [email protected] M.; Carmona, M.; Junghare, M.; Faoro, 10 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; H.; Cruz, L.M.; Battistoni, F.; Souza, [email protected] E.d.; et al.
    [Show full text]
  • Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School August 2020 Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site Madison Mikes Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Civil and Environmental Engineering Commons, and the Microbiology Commons Recommended Citation Mikes, Madison, "Isolation and Characterization of Bacteria in a Toluene-Producing Enrichment Culture Derived from Contaminated Groundwater at a Louisiana Superfund Site" (2020). LSU Master's Theses. 5206. https://digitalcommons.lsu.edu/gradschool_theses/5206 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. ISOLATION AND CHARACTERIZATION OF BACTERIA IN A TOLUENE- PRODUCING ENRICHMENT CULTURE DERIVED FROM CONTAMINATED GROUNDWATER AT A LOUISIANA SUPERFUND SITE A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agriculture and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Civil and Environmental Engineering by Madison Colleen Mikes B.S., Louisiana State University, 2018 December 2020 1 ACKNOWLEDGEMENTS I would like to take the time to thank all of those who have supported and assisted me during my graduate program. First and foremost, I would like to thank Dr. Bill Moe for all of the time he has spent teaching me and mentoring me through my thesis work.
    [Show full text]
  • Innovative Biological Destruction of Hazardous Chlorinated and Brominated Volatile Disinfection By-Products Using Bio Trickling Filters
    Innovative Biological Destruction of Hazardous Chlorinated and Brominated Volatile Disinfection By-Products Using Biotrickling Filters A Dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Chemical and Environmental Engineering of College of Engineering and Applied Sciences 2017 By Bineyam Hadgu Mezgebe MCP, University of Cincinnati, 2009 Post Graduate Diploma, Berlin University of Applied Sciences, Berlin, Germany 1999 Committee Dr. George A. Sorial (chair) Dr. Margaret J. Kupferle Dr. David Wendell Dr. Endalkachew Sahle-Demessie Dr. Ashraf Aly Hassan I | P a g e Abstract Disinfection by products (DBPs) resulted from the reactions between the chlorine and natural organic substances which increased the formation of trihalomethanes (THMs). DBPs are carcinogens or have been known to cause health risks. Chloroform (CF) is the most abundant of all THMs with a maximum contaminant level (MCL) of 0.070 mg/L. In addition, CF and other THMs could also originate from sources other than by-products of water disinfection. Several physical and chemical removal methods are used to treat chloroform, which are expensive and could generate secondary pollutants. Biofiltration is one of the most proven technologies for volatile organic compound (VOC) control as it is environment–friendly, cost effective and releases fewer byproducts. In this study, an integrated technology was proposed. The integrated technology consists of nitrogen or air stripping followed by anaerobic or aerobic bio-trickling Filter (BTF). This study evaluated first CF only and secondly mixtures of THMs (CF and dichlorobromomethane (DCBM)).
    [Show full text]
  • Anaerobic Degradation of Steroid Hormones by Novel Denitrifying Bacteria
    Anaerobic degradation of steroid hormones by novel denitrifying bacteria Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch- Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Michael Fahrbach aus Bad Mergentheim (Baden-Württemberg) Berichter: Professor Dr. Juliane Hollender Professor Dr. Andreas Schäffer Tag der mündlichen Prüfung: 12. Dezember 2006 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Table of Contents 1 Introduction.....................................................................................................................1 1.1 General information on steroids ...............................................................................1 1.2 Steroid hormones in the environment.......................................................................2 1.2.1 Natural and anthropogenic sources and deposits ............................................2 1.2.2 Potential impact on the environment ................................................................3 1.2.3 Fate of steroid hormones..................................................................................4 1.3 Microbial degradation of steroid hormones and sterols............................................5 1.3.1 Aerobic degradation..........................................................................................5 1.3.2 Anaerobic degradation......................................................................................7
    [Show full text]