Luminescence Dating in Archaeology: from Origins to Optical

Total Page:16

File Type:pdf, Size:1020Kb

Luminescence Dating in Archaeology: from Origins to Optical Radiation Measurements Vol. 27, No. 5/6, pp. 819±892, 1997 # 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S1350-4487(97)00221-7 1350-4487/98 $19.00 + 0.00 LUMINESCENCE DATING IN ARCHAEOLOGY: FROM ORIGINS TO OPTICAL RICHARD G. ROBERTS School of Earth Sciences, La Trobe University, Melbourne, Victoria 3083, Australia AbstractÐLuminescence dating has a proud history of association with archaeology, beginning almost half a century ago. The subsequent decades of research have seen a range of archaeometric applications of luminescence dating: from ®red pottery and burnt ¯ints to sediments incorporated into occupation deposits and earthen constructions. Important contributions have been made to topics as diverse as modern human origins, continental colonisations and the dating of prehistoric rock art. This paper pro- vides an overview of these applications, with a particular focus on recent ®ndings such as those from Tabun Cave in Israel, Diring Yuriakh in Siberia, and Jinmium in Australia. # 1998 Elsevier Science Ltd. All rights reserved 1. INTRODUCTION the key papers published over the past few decades. While some of the more recent and controversial contributions are discussed at length, mention is also made of the less publicised luminescence stu- That they were repositories of the dead, has been obvious to all: but on what particular occasion constructed, was matter dies that have laid many of the technical foun- of doubt. (Thomas Jeerson, 1787, Query XI ``Aborigines'') dations for the dating method. Attention is drawn also to studies that have tackled a long-standing archaeological problem using a novel luminescence More than two centuries have elapsed since technique, or that have reported a technical devel- Thomas Jeerson contemplated the antiquity of opment with implications beyond the speci®c prehistoric burial mounds in North America and archaeological application. Some contributions of became ``the ®rst scienti®c digger'' in the history of luminescence dating to archaeologically-relevant archaeology (Wheeler, 1956, p. 58) when he dug a issues (e.g. environmental change, faunal extinc- trench through a mound in Virginia and examined tions) are discussed brie¯y, as are a variety of po- its internal strata (Jeerson, 1787). Such anthropo- tential avenues for pro®table future archaeometric genic structures have only recently been investigated research. using luminescence methods (Feathers, 1997a,b; The paper is organised into sections based loosely Saunders et al., 1997), whose pedigree in archaeolo- on archaeological ``themes'' or periods, rather than gical research extends back to the pioneering work on luminescence dating methods (TL or OSL) or of Daniels et al. (1953). This team recognised the procedures (palaeodose or dose rate determi- potential for dating heated artefacts using thermolu- nations). I have attempted to make the technical minescence (TL), an archaeometric tradition sub- discussion in each section as self-contained as poss- sequently continued by Ugumori and Ikeya (1980) ible, but the details of speci®c luminescence dating in the ®rst application of optically stimulated lumi- techniques are given elsewhere in this special nescence (OSL) to archaeologically-relevant ma- volume (Prescott and Robertson, 1997; Wintle, terial (CaCO3). Following these novel insights, TL 1997) and in more than 20 reviews, several written and OSL techniques have been developed and speci®cally for archaeologists, published over the tested extensively on a vast array of archaeological past two decades (Aitken, 1977, 1985, 1989, 1990, materials and across a wide range of archaeological 1994, 1998; Berger, 1988, 1995; Duller, 1996; issues; from human origins to human constructions, Feathers, 1997a; Fleming, 1979; Forman, 1989; from rock shelters to rock art. Huntley and Lian, 1997; Lamothe et al., 1984; The aim of this paper is to present a broad over- Mejdahl, 1986; Mejdahl and Wintle, 1984; Roberts view of these archaeometric applications of lumines- and Jones, 1994; Seeley, 1975; Singhvi and Mejdahl, cence dating, from its origins in pottery dating to 1985; Singhvi and Wagner, 1986; Wagner et al., the application of optical dating to archaeological 1983; Wintle, 1980, 1987, 1993; Wintle and sediments. The huge volume of literature on the Huntley, 1982). subject precludes a truly comprehensive review, but A variety of archaeological themes are pursued in I have attempted to illustrate the diversity of the this paper. The choice is idiosyncratic and biased archaeological applications by reference to many of towards those in which luminescence dating has 819 820 R. G. ROBERTS thrown the greatest light on a major problem or body of the pot, thereby zeroing the luminescence period in archaeology. The theme of Australian ``clock'' which, for dating purposes, is based on colonisation is given particular prominence, not electron traps in the temperature range 300±4508C only because of my familiarity with the subject but (e.g. the 3758C peak in quartz). At the outset, pot- also because TL and optical dating of archaeologi- tery of ``known'' antiquity (established on the basis cal sediments in Australia provides a striking coun- of pottery style, site stratigraphy, and uncalibrated terpoint to TL dating of pottery and burnt ¯int, radiocarbon (14C) ages) was tested to verify the age which has dominated luminescence studies in determinations made using the infant TL methods Europe and the Middle East. I have attempted to (Fig. 1). Pot sherds up to 8000 years old from the make this overview appealing to graduate students Middle East (Iran, Turkey and the Levant), Britain and professional practitioners in both archaeology (particularly from the Roman period), Italy, and Quaternary geochronology, but I apologise to Denmark, Peru and Thailand were tried initially those whose work has been overlooked, misrepre- (Aitken et al., 1963, 1964, 1968; Mazess and sented, or cited in an improper context. Zimmerman, 1966; Mejdahl, 1969; Ralph and Han, 1966; Ralph and Han, 1969; Zimmerman and Huxtable, 1969). The bleaching of TL signals by 2. MODERN TO MESOLITHIC sunlight was explicitly reported for both CaCO3 and sediment in the ®rst of these trials (Aitken et 2.1. Pots and potentates al., 1963), but Soviet scientists are generally credited Artefacts provide crucial evidence of human ac- with being the ®rst to recognise the potential to tivity, and the abundant remains of ancient pots date solar-reset sediments using TL (Morozov, and ceramic vessels are among the most valuable to 1968; Shelkoplyas, 1971; Shelkoplyas and Morozov, archaeologists. Luminescence dating made its ear- 1965). Not until the 1980s was optical dating of cal- liest forays into archaeology through the appli- cite and sediment attempted (Huntley et al., 1985; cation of TL methods to heated pottery and Ugumori and Ikeya, 1980). ceramics from ancient Kingdoms, Empires, TL dating continued to develop during the 1960s Dynasties and civilisations. Firing of pottery (to and 1970s, largely through the eorts of the above 5008C) evicts the electrons trapped over geo- research team led by M. Aitken at Oxford logical time in the minerals which make up the University, and the technique became increasingly 150 100 50 SPECIFIC GLOW (Arbitrary Units) 1000 1000 2000 3000 4000 5000 6000 A.D. B.C. ARCHAEOLOGICAL AGE Fig. 1. An early attempt to compare the TL from 18 heated pot sherds with their known archaeological ages. The ``speci®c glow'' is de®ned as the natural TL (in the 350±4508C temperature region of the glow curve) divided by the product of the dose-regenerated TL and the sherd radioactivity. The speci®c glow is approximately proportional to age (after Aitken et al., 1963). LUMINESCENCE DATING IN ARCHAEOLOGY 821 recognised as an independent method for authenti- tary deposits (Wintle, 1978; Wintle and Huntley, cating the age of ®red pottery, ceramics and the 1979). The latter techniques were ®rst applied in clay cores of bronze casts (e.g. Zimmerman et al., archaeological contexts by Debenham (1983) and 1974). Progress was not made without the oc- Readhead (1982), both workers independently casional stumble, such as the notorious ``Glozel'' devising a combined additive/regenerative TL controversy which threw the validity of TL dating method that is now generally called the ``Australian into some doubt (see Aitken, 1985 for an historical slide'' method (Prescott et al., 1993). An earlier ver- account). But the re®nement of quartz inclusion sion of this approach had been proposed for lava- (Fleming, 1970) and ®ne-grain (Zimmerman, 1971) baked quartz pebbles by Valladas and Gillot (1978), TL techniques, and the development of feldspar in- and extended to burnt ¯ints by Valladas (1978). clusion (Mejdahl, 1972), pre-dose (Fleming, 1973a) The second signi®cant feature of the Zimmerman and zircon (Sutton and Zimmerman, 1976; and Huxtable (1971) paper is the comparison made Zimmerman et al., 1974) dating methods, culmi- between TL and 14C ages for a soil layer deposited nated in a successful series of forgery identi®cations, more than 30,000 years ago, from which animal and including the ``Hacilar'' ceramic wares from Turkey human ®gurines had been recovered. They showed (Aitken et al., 1971), and the supposedly T'ang that uncalibrated 14C ages underestimated TL ages Dynasty ceramics (Fleming, 1973b) and Hui Hsien (corrected for supralinearity) by 04000 years at style pottery (Fleming and Sampson, 1972) from 033,000 calendar years before present. Samples of China; additional
Recommended publications
  • A Reassessment on the Lithic Artefacts from the Earliest Human Occupations at Puente Rock Shelter, Ayacucho Valley, Peru
    Archaeological Discovery, 2021, 9, 91-112 https://www.scirp.org/journal/ad ISSN Online: 2331-1967 ISSN Print: 2331-1959 A Reassessment on the Lithic Artefacts from the Earliest Human Occupations at Puente Rock Shelter, Ayacucho Valley, Peru Juan Yataco Capcha1, Hugo G. Nami2, Wilmer Huiza1 1Archaeological and Anthropological of San Marcos University Museum, Lima, Perú 2Department of Geological Sciences, Laboratory of Geophysics “Daniel A. Valencio”, CONICET-IGEBA, FCEN, UBA, Buenos Aires, Argentina How to cite this paper: Capcha, J. Y., Abstract Nami, H. G., & Huiza, W. (2021). A Reas- sessment on the Lithic Artefacts from the Richard “Scotty” MacNeish, between 1969 and 1972, led an international Earliest Human Occupations at Puente Rock team of archaeologists on the Ayacucho Archaeological-Botanical—Project in Shelter, Ayacucho Valley, Peru. Archaeo- the south-central highlands of Peru. Among several important archaeological logical Discovery, 9, 91-112. https://doi.org/10.4236/ad.2021.92005 sites identified there, MacNeish and his team excavated the Puente rock shel- ter. As a part of an ongoing research program aimed to reassess the lithic re- Received: February 14, 2021 mains from this endeavor, we re-studied a sample by making diverse kinds of Accepted: March 22, 2021 morpho-technological analysis. The remains studied come from the lower Published: March 25, 2021 strata at Puente, where a radiocarbon assay from layer XIIA yielded a cali- Copyright © 2021 by author(s) and brated date of 10,190 to 9555 years BP that the present study identifies, vari- Scientific Research Publishing Inc. ous activities were carried out at the site, mainly related to manufacturing and This work is licensed under the Creative repairing unifacial and bifacial tools.
    [Show full text]
  • Download Full Article in PDF Format
    Hafting and raw materials from animals. Guide to the identification of hafting traces on stone tools Veerle ROTS Prehistoric Archaeology Unit Katholieke Universiteit Leuven Geo-Institute Celestijnenlaan 200E (Pb: 02409), B-3001 Leuven, Heverlee (Belgique) [email protected] Rots V. 2008. – Hafting and raw materials from animals. Guide to the identification of hafting traces on stone tools. [DVD-ROM]1 . Anthropozoologica 43 (1): 43-66. ABSTRACT Stone tool hafting has been a widely discussed topic, but its identifica- tion on a prehistoric level has long been hampered. Given the organic nature of hafting arrangements, few remains are generally preserved. An overview is presented of animal materials that can be used for haft- ing stone tools, and examples are provided of preserved hafting arrangements made out of animal raw material. Based on the same principles as those determining the formation of use-wear traces on stone tools, it is argued that hafting traces are formed and can be iden- tified. The variables influencing the formation of hafting traces are KEY WORDS discussed. Specific wear patterns and trace attributes are provided for Stone tools, use-wear, different hafting arrangements that use animal raw material. It is hafting, concluded that the provided referential data allow for the identifi- wear pattern, experiments, cation of hafted stone tools on prehistoric sites and the identification animal raw material. of the hafting arrangement used. RÉSUMÉ Emmanchements et matières premières animales. Un guide pour l’identification des traces d’emmanchement sur des outils de pierre. Le sujet des emmanchements des outils de pierre a été largement discuté, mais leurs identifications à un niveau préhistorique ont longtemps été difficiles.
    [Show full text]
  • Bibliography
    Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza­ Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P.
    [Show full text]
  • The Late Pleistocene Cultures of South America
    206 Evolutionary Anthropology ARTICLES The Late Pleistocene Cultures of South America TOM D. DILLEHAY Important to an understanding of the first peopling of any continent is an Between 11,000 and 10,000 years understanding of human dispersion and adaptation and their archeological signa- ago, South America also witnessed tures. Until recently, the earliest archeological record of South America was viewed many of the changes seen as being uncritically as a uniform and unilinear development involving the intrusion of North typical of the Pleistocene period in American people who brought a founding cultural heritage, the fluted Clovis stone other parts of the world.5,9–11 These tool technology, and a big-game hunting tradition to the southern hemisphere changes include the use of coastal between 11,000 and 10,000 years ago.1–3 Biases in the history of research and the resources and related developments in agendas pursued in the archeology of the first Americans have played a major part marine technology, demographic con- in forming this perspective.4–6 centration in major river basins, and Despite enthusiastic acceptance of the Clovis model by a vast majority of the practice of modifying plant and 6–11 archeologists, several South American specialists have rejected it. They contend animal distributions. Others occur that the presence of archeological sites in Tierra del Fuego and other regions by at later, between 10,000 and 9,000 years least 11,000 to 10,500 years ago was simply insufficient time for even the fastest ago, and include most of the changes migration of North Americans to reach within only a few hundred years.
    [Show full text]
  • First Footprints
    First Footprints © ATOM 2013 A STUDY GUIDE BY CHERYL JAKAB http://www.metromagazine.com.au ISBN: 978-1-74295-327-4 http://www.theeducationshop.com.au CONTENTS 2 Series overview 3 The series at a glance 3 Credits 3 Series curriculum and education suitability 5 Before viewing VIEWING QUESTIONS AND DISCUSSION STARTERS: 6 Ep 1: ‘Super Nomads’ This is a landmark series that every Australian must see. 7 Ep 2: ‘The Great Drought’ The evidence for the very ancient roots of people in 8 Ep 3: ‘The Great Flood’ Australia is presented in a compelling narrative by the , voice of Ernie Dingo. Over 50,000 years of Australia s 9 Ep 4: ‘The Biggest Estate’ ancient past is brought to life in this four-part series , through the world s oldest oral stories, new archaeological 10 Activities discoveries, stunning art, cinematic CGI and never-before- 13 Resources seen archival film. 15 Worksheets and information Suitability: This guide is designed Australia is home to the oldest living specifically for Year 7. This series cultures in the world. Over fifty thou- is destined to become the key sand years ago, well before modern regular monsoon across the north led resource for National Curriculum people reached America or domi- to cultural explosions and astound- Year 7 History Unit 1. nated Europe, people journeyed to the ing art. The flooding of coastal plains Also suitable for: Primary: Years 3, planet’s harshest habitable continent created conflict over land and even 4 & 6, History & Science; Junior and thrived. That’s a continuous culture pitched battles.
    [Show full text]
  • Archaeological Tree-Ring Dating at the Millennium
    P1: IAS Journal of Archaeological Research [jar] pp469-jare-369967 June 17, 2002 12:45 Style file version June 4th, 2002 Journal of Archaeological Research, Vol. 10, No. 3, September 2002 (C 2002) Archaeological Tree-Ring Dating at the Millennium Stephen E. Nash1 Tree-ring analysis provides chronological, environmental, and behavioral data to a wide variety of disciplines related to archaeology including architectural analysis, climatology, ecology, history, hydrology, resource economics, volcanology, and others. The pace of worldwide archaeological tree-ring research has accelerated in the last two decades, and significant contributions have recently been made in archaeological chronology and chronometry, paleoenvironmental reconstruction, and the study of human behavior in both the Old and New Worlds. This paper reviews a sample of recent contributions to tree-ring method, theory, and data, and makes some suggestions for future lines of research. KEY WORDS: dendrochronology; dendroclimatology; crossdating; tree-ring dating. INTRODUCTION Archaeology is a multidisciplinary social science that routinely adopts an- alytical techniques from disparate fields of inquiry to answer questions about human behavior and material culture in the prehistoric, historic, and recent past. Dendrochronology, literally “the study of tree time,” is a multidisciplinary sci- ence that provides chronological and environmental data to an astonishing vari- ety of archaeologically relevant fields of inquiry, including architectural analysis, biology, climatology, economics,
    [Show full text]
  • Scientific Dating of Pleistocene Sites: Guidelines for Best Practice Contents
    Consultation Draft Scientific Dating of Pleistocene Sites: Guidelines for Best Practice Contents Foreword............................................................................................................................. 3 PART 1 - OVERVIEW .............................................................................................................. 3 1. Introduction .............................................................................................................. 3 The Quaternary stratigraphical framework ........................................................................ 4 Palaeogeography ........................................................................................................... 6 Fitting the archaeological record into this dynamic landscape .............................................. 6 Shorter-timescale division of the Late Pleistocene .............................................................. 7 2. Scientific Dating methods for the Pleistocene ................................................................. 8 Radiometric methods ..................................................................................................... 8 Trapped Charge Methods................................................................................................ 9 Other scientific dating methods ......................................................................................10 Relative dating methods ................................................................................................10
    [Show full text]
  • SIG08 Davidson
    CLOTTES J. (dir.) 2012. — L’art pléistocène dans le monde / Pleistocene art of the world / Arte pleistoceno en el mundo Actes du Congrès IFRAO, Tarascon-sur-Ariège, septembre 2010 – Symposium « Signes, symboles, mythes et idéologie… » Symbolism and becoming a hunter-gatherer Iain DAVIDSON* I dedicate this paper to the memory of Andrée Rosenfeld. From the time when, as an undergraduate, I read her book with Peter Ucko (Ucko & Rosenfeld 1967) that corrected the excesses of the structuralist approach to French cave “art” to the occasion of a visit to her home only months before she passed away, I found Andrée a model of good sense about all matters to do with all forms of rock “art”. She gave me and many others nothing but sound advice and managed to navigate between theory and data with more clear sight of her destination than most others. And she was, simply, one of the nicest people who ever became an archaeologist. She will be sorely missed. Pleistocene paintings and engravings are not art From time to time, we all worry about the use of the word “art” in connection with what we study (see review in Bradley 2009, Ch. 1). The images on rock and other surfaces that concern us here have some visual similarity with some of what is called art in other contexts, particularly when they are of great beauty (e.g. Chauvet et al. 1995; Clottes 2001). Yet the associations of art –paintings, sculptures and other works– over the last six hundred years (see e.g. Gombrich 1995) (or perhaps only three hundred according to Shiner 2001), mean that it is highly unlikely that any paintings or engraved images on rocks or in caves relate to social, economic, and cultural circumstances similar in any way to those of art in the twenty-first century.
    [Show full text]
  • Luminescence Dating
    1. Introduction and Application 3. Field Supplies and Sampling Luminescence dating is utilized in a number of geologic and archaeologic studies to obtain a depositional (burial) age on alluvium, colluvium, eolian, glacial, marine, paleontological, biological and anthropogenic sediment or rock. Exposure to sufficient sunlight (290-3200nm) or heat (>500°C) will reset any previous luminescence signal to zero. After removal from the stimulation source, ionizing energy from radioactive decay in surrounding sediment/rock (15-30cm) and within the mineral grain will excite atomic orbital electrons- some will get trapped in mineral lattice defects. This trapping and storing effectively acts as a clock and accumulation of electrons will continue until the trap becomes saturated, or a stimulating source aids in their escape back to their original orbit. Upon trap departure, some electrons will Figure 1. Required gear used for tube-sample collection method produce a photon of light when the stored energy is released. in luminescence dating. (A) Measuring tape for burial depth, In the lab, this light energy (luminescence) is then calibrated to important for cosmic DR. (B) For DE sample, OSL sampling tube radiation doses for deriving a geologic radiation dose (metal or other opaque material) sharpened at one end and pre- equivalent, known as Equivalent Dose (DE) in grays (Gy) of loaded with a styrofoam plug on the sharpened end to limit radiation. The natural decay of radioelements in the sediment shaking during pounding. (C) Rubber end caps for tube sedimentary environment and from cosmogenic fall out (up to (tinfoil and duct tape can be substituted if not available).
    [Show full text]
  • Geological Society of America Special Papers
    Downloaded from specialpapers.gsapubs.org on October 1, 2010 Geological Society of America Special Papers Mining and Metallurgy in Ancient Perú Georg Petersen G. and William E. Brooks Geological Society of America Special Papers 2010;467;xvii-90 doi: 10.1130/2010.2467 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Special Papers Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2010 Geological Society of America Downloaded from specialpapers.gsapubs.org on October 1, 2010 Mining and Metallurgy in Ancient Perú by Georg Petersen G.
    [Show full text]
  • List of North American Luminescence Labs
    North American Laboratories for Luminescence Dating UNITED STATES California Sachiko Sakai Dept. of Anthropology, California State University, Long Beach 1250 Bellflower Blvd. Long Beach, CA 90840 Email: [email protected] - Specializes in archaeological applications. Colorado Shannon Mahan and Harrison Gray U.S.G.S Geosciences and Environmental Change Science Center, Denver, CO Email: [email protected]; [email protected] https://www.usgs.gov/centers/gecsc/labs/luminescence-dating-laboratory?qt- science_support_page_related_con=4#qt-science_support_page_related_con - Luminescence Dating Laboratory, specializes in geologic and archaeologic applications, and luminescence community leader. Illinois Sébastien Huot Geochronology Laboratory, Illinois State Geological Survey, Champaign, IL Email: [email protected] http://www.isgs.illinois.edu/research/geochemistry/labs/osl - Specializes in feldspar IRSL and quartz OSL dating applications. Indiana Jose Luis Antinao Luminescence Geochronology Laboratory, Indiana Geological and Water Survey Email: [email protected] - Specializes in OSL applications in geomorphology. Updated 03-16-2021 North American Laboratories for Luminescence Dating Kansas Joel Spencer Kansas State University, Manhattan, Kansas Email: [email protected] - Specialized in geological and archaeological applications. Nebraska Paul Hanson and Richard Kettler University of Nebraska, Lincoln, NE Email: [email protected] - Specializes in Nebraska sands, soils and loess and other Mid-West features or geological dating projects linked to
    [Show full text]
  • Lesson Plan Assessment AFL, Activities, Exit Card Cross-Curricular
    Relative vs. Absolute Dating Grade 12 – Recording Earth’s Geological History Lesson Plan Assessment AFL, Activities, Exit Card Cross-curricular Big Ideas Specific Expectations • Earth is very old, and its atmosphere, D3. demonstrate an understanding of how changes hydrosphere, and lithosphere have to Earth’s surface have been recorded and undergone many changes over time. preserved throughout geological time and how they contribute to our knowledge of Earth’s history Learning Goals: D3.4 compare and contrast relative and absolute • I understand that geologists rely on two dating principles and techniques as they apply to main types of dating: relative and natural systems (e.g., the law of superposition; the absolute. law of cross-cutting relationships; varve counts; carbon-14 or uranium-lead dating) • I know the 6 Relative Dating Principles. • I can describe how layers of sedimentary rock demonstrate the Principle of Superposition, the Principle of Horizontality, and can demonstrate the Principle of Inclusion. Description In this lesson students will understand that geologists rely on two main types of dating: relative and absolute using some hands on models. This lesson is intended for the university level. Materials Edible Rocks: ½ a Bite Sized Snickers Bar Relative Dating Visuals Definitions Handout Jigsaw Answers and Rubric Relative Dating Lab and Edible Rocks Activity Relative Dating Lab: Sand (different sizes if Discussion Questions Answers available), Gravel (different sizes if available), Safety Notes Shell fragments, Wide-mouth jar with a screw Edible Rocks activity contains nuts. cap Sciencenorth.ca/schools Science North is an agency of the Government of Ontario 1 Introduction Jigsaw Activity – Relative Dating Visuals (See Link) Make groups of 3-5, selecting an expert for the group.
    [Show full text]