Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Breast Cancer HUGL and the Role of Polarity in Breast Cancer Item Type text; Electronic Dissertation Authors Russ, Atlantis Dawn Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 10:34:17 Link to Item http://hdl.handle.net/10150/293491 HUGL AND THE ROLE OF POLARITY IN BREAST CANCER By Atlantis Dawn Russ ________________________________________________________________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN GENETICS In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2013 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Atlantis Dawn Russ entitled HUGL AND THE ROLE OF POLARITY IN BREAST CANCER and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy Dr. Joyce Schroeder ____________________________________ Date: 03/22/2013 Dr. Daniela Zarnescu ___________________________________ Date: 03/22/2013 Dr. Tom Doetschman ___________________________________ Date: 03/22/2013 Dr. Kimberly McDermott ________________________________ Date: 03/22/2013 Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. ________________________________________________ Date: _____________ Dissertation Director: Dr. Joyce Schroeder ________________________________________________ Date: _____________ Dissertation Director: Dr. Daniela Zarnescu 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department of the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: Atlantis Dawn Russ 4 TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ 7 LIST OF TABLES .............................................................................................................. 9 ABSTRACT ...................................................................................................................... 10 I. INTRODUCTION ........................................................................................................ 12 Lethal Giant Larvae ....................................................................................................... 13 Discovery of Lgl.................................................................................................... 13 Major polarity protein complexes ......................................................................... 15 Lgl orthologs in fly, mouse, and human ............................................................... 18 Drosophila (lgl) ................................................................................................. 18 Mouse (Mgl1 and Mgl2) ................................................................................... 18 Human (HUGL1 and HUGL2) .......................................................................... 19 Phenotypes of Lgl loss indicate varied roles ................................................................. 20 Role in apicobasal polarity .................................................................................... 20 Role in front rear polarity and migration .............................................................. 22 Role in planar cell polarity .................................................................................... 23 Role in asymmetric cell division ........................................................................... 24 Role in Hippo pathway .......................................................................................... 26 Role in miRNA pathway ...................................................................................... 29 Lgl and cancer ............................................................................................................... 32 Polarity proteins and mammalian cancer .............................................................. 32 Loss of HUGL1 and HUGL2 in human cancers ................................................... 33 HUGL1 and HUGL2 in breast cancer ........................................................................... 35 Structure of the mammary gland ........................................................................... 35 Hallmarks of cancer .............................................................................................. 36 Cancer of the breast ............................................................................................... 37 Epithelial to Mesenchymal Transition .................................................................. 38 Stem cell hypothesis .............................................................................................. 40 3-D cell culture to model polarity ......................................................................... 43 Statement of the Problem .............................................................................................. 45 II. MATERIALS AND METHODS ................................................................................ 47 Human tissue immunofluorescence .............................................................................. 48 Cell culture .................................................................................................................... 48 Plasmid transfections..................................................................................................... 49 Viral shRNA transductions ........................................................................................... 49 MTT Assays .................................................................................................................. 50 5 TABLE OF CONTENTS – CONTINUED Acinar culture and slide preparation ............................................................................. 50 Light, fluorescent, and confocal microscopy ................................................................ 51 Western blots ................................................................................................................. 52 Antibodies ..................................................................................................................... 53 Image quantification ...................................................................................................... 54 Drosophila genetics ....................................................................................................... 54 Adult wing and eye sample preparations ...................................................................... 55 Brain dissection and imaging ........................................................................................ 56 RNA extraction, microarrays, and RT-PCR validation................................................. 56 Real-Time PCR Array ................................................................................................... 58 Microarray analysis, miRNA target matching and GO-term analysis .......................... 59 Animal husbandry ......................................................................................................... 60 Mouse genotyping ......................................................................................................... 60 Whole mounts ............................................................................................................... 61 III. HUGL1 AND HUGL2 IN MAMMARY EPITHELIAL CELLS: POLARITY, PROLIFERATION, AND DIFFERENTIATION. ........................................................... 62 Abstract ......................................................................................................................... 63 Introduction ................................................................................................................... 65 Results ........................................................................................................................... 69 HUGL1 AND HUGL2 have restricted expression in breast epithelium and loss induces a mesenchymal phenotype ....................................................................... 69 HUGL1 AND HUGL2 control acinar formation in Matrigel ............................... 74 HUGL1 AND HUGL2 inhibit proliferation in normal and transformed cells ..... 79 HUGL1
Recommended publications
  • Network Assessment of Demethylation Treatment in Melanoma: Differential Transcriptome-Methylome and Antigen Profile Signatures
    RESEARCH ARTICLE Network assessment of demethylation treatment in melanoma: Differential transcriptome-methylome and antigen profile signatures Zhijie Jiang1☯, Caterina Cinti2☯, Monia Taranta2, Elisabetta Mattioli3,4, Elisa Schena3,5, Sakshi Singh2, Rimpi Khurana1, Giovanna Lattanzi3,4, Nicholas F. Tsinoremas1,6, 1 Enrico CapobiancoID * a1111111111 1 Center for Computational Science, University of Miami, Miami, FL, United States of America, 2 Institute of Clinical Physiology, CNR, Siena, Italy, 3 CNR Institute of Molecular Genetics, Bologna, Italy, 4 IRCCS Rizzoli a1111111111 Orthopedic Institute, Bologna, Italy, 5 Endocrinology Unit, Department of Medical & Surgical Sciences, Alma a1111111111 Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, Bologna, Italy, 6 Department of a1111111111 Medicine, University of Miami, Miami, FL, United States of America a1111111111 ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Jiang Z, Cinti C, Taranta M, Mattioli E, Schena E, Singh S, et al. (2018) Network assessment of demethylation treatment in Background melanoma: Differential transcriptome-methylome and antigen profile signatures. PLoS ONE 13(11): In melanoma, like in other cancers, both genetic alterations and epigenetic underlie the met- e0206686. https://doi.org/10.1371/journal. astatic process. These effects are usually measured by changes in both methylome and pone.0206686 transcriptome profiles, whose cross-correlation remains uncertain. We aimed to assess at Editor: Roger Chammas, Universidade de Sao systems scale the significance of epigenetic treatment in melanoma cells with different met- Paulo, BRAZIL astatic potential. Received: June 20, 2018 Accepted: October 17, 2018 Methods and findings Published: November 28, 2018 Treatment by DAC demethylation with 5-Aza-2'-deoxycytidine of two melanoma cell lines Copyright: © 2018 Jiang et al.
    [Show full text]
  • Ingenuity Pathway Analysis of Differentially Expressed Genes Involved in Signaling Pathways and Molecular Networks in Rhoe Gene‑Edited Cardiomyocytes
    INTERNATIONAL JOURNAL OF MOleCular meDICine 46: 1225-1238, 2020 Ingenuity pathway analysis of differentially expressed genes involved in signaling pathways and molecular networks in RhoE gene‑edited cardiomyocytes ZHONGMING SHAO1*, KEKE WANG1*, SHUYA ZHANG2, JIANLING YUAN1, XIAOMING LIAO1, CAIXIA WU1, YUAN ZOU1, YANPING HA1, ZHIHUA SHEN1, JUNLI GUO2 and WEI JIE1,2 1Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023; 2Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, P.R. China Received January 7, 2020; Accepted May 20, 2020 DOI: 10.3892/ijmm.2020.4661 Abstract. RhoE/Rnd3 is an atypical member of the Rho super- injury and abnormalities, cell‑to‑cell signaling and interaction, family of proteins, However, the global biological function and molecular transport. In addition, 885 upstream regulators profile of this protein remains unsolved. In the present study, a were enriched, including 59 molecules that were predicated RhoE‑knockout H9C2 cardiomyocyte cell line was established to be strongly activated (Z‑score >2) and 60 molecules that using CRISPR/Cas9 technology, following which differentially were predicated to be significantly inhibited (Z‑scores <‑2). In expressed genes (DEGs) between the knockout and wild‑type particular, 33 regulatory effects and 25 networks were revealed cell lines were screened using whole genome expression gene to be associated with the DEGs. Among them, the most signifi- chips. A total of 829 DEGs, including 417 upregulated and cant regulatory effects were ‘adhesion of endothelial cells’ and 412 downregulated, were identified using the threshold of ‘recruitment of myeloid cells’ and the top network was ‘neuro- fold changes ≥1.2 and P<0.05.
    [Show full text]
  • Towards a Molecular Understanding of Microrna-Mediated Gene Silencing
    REVIEWS NON-CODING RNA Towards a molecular understanding of microRNA-mediated gene silencing Stefanie Jonas and Elisa Izaurralde Abstract | MicroRNAs (miRNAs)­ are a conserved class of small non-coding RNAs that assemble with Argonaute proteins into miRNA-induced silencing complexes (miRISCs) to direct post-transcriptional silencing of complementary mRNA targets. Silencing is accomplished through a combination of translational repression and mRNA destabilization, with the latter contributing to most of the steady-state repression in animal cell cultures. Degradation of the mRNA target is initiated by deadenylation, which is followed by decapping and 5ʹ‑to‑3ʹ exonucleolytic decay. Recent work has enhanced our understanding of the mechanisms of silencing, making it possible to describe in molecular terms a continuum of direct interactions from miRNA target recognition to mRNA deadenylation, decapping and 5ʹ‑to‑3ʹ degradation. Furthermore, an intricate interplay between translational repression and mRNA degradation is emerging. Deadenylation MicroRNAs (mi­RNAs) are conserved post-transcriptional recruit additional protein partners to mediate silenc- 5,6 Shortening of mRNA poly(A) regulators of gene expression that are integral to ing . Silencing occurs through a combination of tails. In eukaryotes, this almost all known biological processes, including translational repression, deadenylation, decapping and process is catalysed by the cell growth, proliferation and differentiation, as well 5ʹ‑to‑3ʹ mRNA degradation5,6 (FIG. 1). The GW182 pro- consecutive but partially as organismal metabolism and development1. The teins play a central part in this process and are among redundant action of two 5,6 cytoplasmic deadenylase number of mi­RNAs encoded within the genomes of the most extensively studied AGO partners .
    [Show full text]
  • CRB3 Antibody (Center) Blocking Peptide Synthetic Peptide Catalog # Bp17560c
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 CRB3 Antibody (Center) Blocking Peptide Synthetic peptide Catalog # BP17560c Specification CRB3 Antibody (Center) Blocking Peptide - CRB3 Antibody (Center) Blocking Peptide - Background Product Information This gene encodes a member of the Crumbs Primary Accession Q9BUF7 family ofproteins. This protein may play a role in epithelial cell polarityand is associated with tight junctions at the apical surface ofepithelial CRB3 Antibody (Center) Blocking Peptide - Additional Information cells. Alternate transcriptional splice variants,encoding different isoforms, have been characterized. [provided byRefSeq]. Gene ID 92359 CRB3 Antibody (Center) Blocking Peptide - Other Names References Protein crumbs homolog 3, CRB3 Pardossi-Piquard, R., et al. Biochemistry Format 46(48):13704-13710(2007)Fan, S., et al. J. Cell Peptides are lyophilized in a solid powder Biol. 178(3):387-398(2007)Fogg, V.C., et al. J. format. Peptides can be reconstituted in solution using the appropriate buffer as Cell. Sci. 118 (PT 13), 2859-2869 (2005) needed. :Lemmers, C., et al. Mol. Biol. Cell 15(3):1324-1333(2004)Roh, M.H., et al. J. Cell. Storage Sci. 116 (PT 14), 2895-2906 (2003) : Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C. Precautions This product is for research use only. Not for use in diagnostic or therapeutic procedures. CRB3 Antibody (Center) Blocking Peptide - Protein Information Name CRB3 (HGNC:20237) Function Involved in the establishment of cell polarity in mammalian epithelial cells (PubMed:<a href="http://www.uniprot.org/c itations/12771187" target="_blank">12771187</a>, PubMed:<a href="http://www.uniprot.org/ci tations/14718572" target="_blank">14718572</a>).
    [Show full text]
  • CRB3 Polyclonal Antibody Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP55396
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 CRB3 Polyclonal Antibody Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP55396 Specification CRB3 Polyclonal Antibody - Product Information Application WB, IHC-P, IHC-F, IF, ICC Primary Accession Q9BUF7 Host Rabbit Clonality Polyclonal Calculated MW 12854 CRB3 Polyclonal Antibody - Additional Information Gene ID 92359 Other Names Protein crumbs homolog 3, CRB3 (<a href= "http://www.genenames.org/cgi-bin/gene_sy mbol_report?hgnc_id=20237" target="_blank">HGNC:20237</a>) Format 0.01M TBS(pH7.4) with 1% BSA, 0.09% (W/V) sodium azide and 50% Glyce Storage Store at -20 ℃ for one year. Avoid repeated freeze/thaw cycles. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 ℃. CRB3 Polyclonal Antibody - Protein Information Name CRB3 (HGNC:20237) Function Involved in the establishment of cell polarity in mammalian epithelial cells (PubMed:<a href="http://www.uniprot.org/c itations/12771187" target="_blank">12771187</a>, PubMed:<a href="http://www.uniprot.org/ci tations/14718572" target="_blank">14718572</a>). Regulates the morphogenesis of tight Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 junctions (PubMed:<a href="http://www.uni prot.org/citations/12771187" target="_blank">12771187</a>, PubMed:<a href="http://www.uniprot.org/ci tations/14718572" target="_blank">14718572</a>). Involved in promoting phosphorylation and cytoplasmic retention of transcriptional coactivators YAP1 and WWTR1/TAZ which leads to suppression of TGFB1-dependent transcription of target genes such as CCN2/CTGF, SERPINE1/PAI1, SNAI1/SNAIL1 and SMAD7 (By similarity).
    [Show full text]
  • Crystal Structure of a Variant PAM2 Motif of LARP4B Bound to the MLLE Domain of PABPC1
    biomolecules Article Crystal Structure of a Variant PAM2 Motif of LARP4B Bound to the MLLE Domain of PABPC1 Clemens Grimm *, Jann-Patrick Pelz, Cornelius Schneider, Katrin Schäffler and Utz Fischer Department of Biochemistry, Theodor Boveri Institute, Biocenter of the University of Würzburg, 97070 Würzburg, Germany; [email protected] (J.-P.P.); [email protected] (C.S.); katrin.schaeffl[email protected] (K.S.); utz.fi[email protected] (U.F.) * Correspondence: [email protected] Received: 3 April 2020; Accepted: 4 June 2020; Published: 6 June 2020 Abstract: Eukaryotic cells determine the protein output of their genetic program by regulating mRNA transcription, localization, translation and turnover rates. This regulation is accomplished by an ensemble of RNA-binding proteins (RBPs) that bind to any given mRNA, thus forming mRNPs. Poly(A) binding proteins (PABPs) are prominent members of virtually all mRNPs that possess poly(A) tails. They serve as multifunctional scaffolds, allowing the recruitment of diverse factors containing a poly(A)-interacting motif (PAM) into mRNPs. We present the crystal structure of the variant PAM motif (termed PAM2w) in the N-terminal part of the positive translation factor LARP4B, which binds to the MLLE domain of the poly(A) binding protein C1 cytoplasmic 1 (PABPC1). The structural analysis, along with mutational studies in vitro and in vivo, uncovered a new mode of interaction between PAM2 motifs and MLLE domains. Keywords: PAM2w; PAM2; PABC1; MLLE domain; PABP; Poly(A) binding protein 1. Introduction In higher eukaryotes, posttranscriptional mechanisms contribute significantly to gene expression. The mRNA, which is translated into proteins by the ribosomes, has first to undergo several maturation steps, from the primary pre-mRNA transcript to the mature mRNA.
    [Show full text]
  • Positive Biofeedback of Crb3 Protein Favouring Notch Mediated Tumour
    International Journal of Applied Research 2016; 2(2): 370-381 ISSN Print: 2394-7500 ISSN Online: 2394-5869 Positive biofeedback of Crb3 protein favouring notch Impact Factor: 5.2 IJAR 2016; 2(2): 370-381 mediated tumour suppression in human body: A www.allresearchjournal.com Received: 16-12-2015 glimpse for better understanding of cancer biology Accepted: 18-01-2016 and to identify potential therapeutic targets Partha Majumder Biomedical Scientist, Former Head, Department of Partha Majumder, Anjana Mazumdar Applied Biotechnology & Bioinformatics, Sikkim Manipal University, CC: 1637, Abstract Kolkata, India. Our study is a comprehensive approach of a biofeedback paying regards to homeostasis of human body. A biofeedback system involves a sensory organ and an appropriate stimulus. The stimulus is mediated Anjana Mazumdar through organs derived from specific biosensors. Homeostasis is the set of processes by which constant Professor, or static conditions are maintained within the internal environment of a subject and therefore a Department of Oral Pathology, homeostat is a controller involved in maintaining homeostasis. Paying regards to extensive study on Dr. R. Ahmed Govt. Dental Cytology, we found that, Cell polarity is essential in many biological processes and required for College, Kolkata, India. development as well as maintenance of tissue integrity. Loss of polarity is considered both a hallmark and precondition for human cancer. According to our knowledge, three conserved polarity protein complexes regulate different modes of polarity that are conserved throughout numerous cell types and species. These complexes are the Crumbs, Par and Scribble complex. Defects in apical-basal polarity regulation are associated with tissue overgrowth and tumorigenesis.
    [Show full text]
  • Drosophila and Human Transcriptomic Data Mining Provides Evidence for Therapeutic
    Drosophila and human transcriptomic data mining provides evidence for therapeutic mechanism of pentylenetetrazole in Down syndrome Author Abhay Sharma Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research Delhi University Campus, Mall Road Delhi 110007, India Tel: +91-11-27666156, Fax: +91-11-27662407 Email: [email protected] Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 Running head: Pentylenetetrazole mechanism in Down syndrome 1 Abstract Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ’s therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ’s downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.
    [Show full text]
  • Cystatin-B Negatively Regulates the Malignant Characteristics of Oral Squamous Cell Carcinoma Possibly Via the Epithelium Proliferation/ Differentiation Program
    ORIGINAL RESEARCH published: 24 August 2021 doi: 10.3389/fonc.2021.707066 Cystatin-B Negatively Regulates the Malignant Characteristics of Oral Squamous Cell Carcinoma Possibly Via the Epithelium Proliferation/ Differentiation Program Tian-Tian Xu 1, Xiao-Wen Zeng 1, Xin-Hong Wang 2, Lu-Xi Yang 1, Gang Luo 1* and Ting Yu 1* 1 Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China, 2 Department of Oral Pathology and Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China Disturbance in the proteolytic process is one of the malignant signs of tumors. Proteolysis Edited by: Eva Csosz, is highly orchestrated by cysteine cathepsin and its inhibitors. Cystatin-B (CSTB) is a University of Debrecen, Hungary general cysteine cathepsin inhibitor that prevents cysteine cathepsin from leaking from Reviewed by: lysosomes and causing inappropriate proteolysis. Our study found that CSTB was Csongor Kiss, downregulated in both oral squamous cell carcinoma (OSCC) tissues and cells University of Debrecen, Hungary Gergely Nagy, compared with normal controls. Immunohistochemical analysis showed that CSTB was University of Debrecen, Hungary mainly distributed in the epithelial structure of OSCC tissues, and its expression intensity *Correspondence: was related to the grade classification. A correlation analysis between CSTB and clinical Gang Luo [email protected] prognosis was performed using gene expression data and clinical information acquired Ting Yu from The Cancer Genome Atlas (TCGA) database. Patients with lower expression levels of [email protected] CSTB had shorter disease-free survival times and poorer clinicopathological features Specialty section: (e.g., lymph node metastases, perineural invasion, low degree of differentiation, and This article was submitted to advanced tumor stage).
    [Show full text]
  • Supplemental Table 1
    Supplemental Data Supplemental Table 1. Genes differentially regulated by Ad-KLF2 vs. Ad-GFP infected EC. Three independent genome-wide transcriptional profiling experiments were performed, and significantly regulated genes were identified. Color-coding scheme: Up, p < 1e-15 Up, 1e-15 < p < 5e-10 Up, 5e-10 < p < 5e-5 Up, 5e-5 < p <.05 Down, p < 1e-15 As determined by Zpool Down, 1e-15 < p < 5e-10 Down, 5e-10 < p < 5e-5 Down, 5e-5 < p <.05 p<.05 as determined by Iterative Standard Deviation Algorithm as described in Supplemental Methods Ratio RefSeq Number Gene Name 1,058.52 KRT13 - keratin 13 565.72 NM_007117.1 TRH - thyrotropin-releasing hormone 244.04 NM_001878.2 CRABP2 - cellular retinoic acid binding protein 2 118.90 NM_013279.1 C11orf9 - chromosome 11 open reading frame 9 109.68 NM_000517.3 HBA2;HBA1 - hemoglobin, alpha 2;hemoglobin, alpha 1 102.04 NM_001823.3 CKB - creatine kinase, brain 96.23 LYNX1 95.53 NM_002514.2 NOV - nephroblastoma overexpressed gene 75.82 CeleraFN113625 FLJ45224;PTGDS - FLJ45224 protein;prostaglandin D2 synthase 21kDa 74.73 NM_000954.5 (brain) 68.53 NM_205545.1 UNQ430 - RGTR430 66.89 NM_005980.2 S100P - S100 calcium binding protein P 64.39 NM_153370.1 PI16 - protease inhibitor 16 58.24 NM_031918.1 KLF16 - Kruppel-like factor 16 46.45 NM_024409.1 NPPC - natriuretic peptide precursor C 45.48 NM_032470.2 TNXB - tenascin XB 34.92 NM_001264.2 CDSN - corneodesmosin 33.86 NM_017671.3 C20orf42 - chromosome 20 open reading frame 42 33.76 NM_024829.3 FLJ22662 - hypothetical protein FLJ22662 32.10 NM_003283.3 TNNT1 - troponin T1, skeletal, slow LOC388888 (LOC388888), mRNA according to UniGene - potential 31.45 AK095686.1 CONFLICT - LOC388888 (na) according to LocusLink.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]