Aristarchus of Samos - a Student of Straton

Total Page:16

File Type:pdf, Size:1020Kb

Aristarchus of Samos - a Student of Straton Aristarchus of Samos - a student of Straton “[Aristarchus’s] hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, and that the sphere of the fixed stars, situated about the same center as the Sun, is so great that the circle in which he supposes the Earth to revolve bears such a proportion to the distance of the fixed stars as the centre of the sphere bears to its surface.” -- Archimedes in The Sand Reckoner Aristarchus of Samos (310 BC -- 220 BC) “the mathematician” the last part makes no sense... Aristarchus of Samos “Only do not, my good fellow, enter an action against me for impiety in the style of Cleanthes, who thought it was the duty of the Greeks to indict Aristarchus of Samos on the charge of impiety for putting in motion the Hearth of the Universe, this being the effect of his attempt to save the phenomena by supposing the heaven to remain at rest and the Earth to revolve in an Aristarchus of Samos oblique circle, while it rotates, at the same time, (310 BC -- 220 BC) about its axis.” -- Plutarch “the mathematician” Aristarchus of Samos: measuring the Solar System Aristarchus of Samos (310 BC -- 220 BC) “the mathematician” 5 ingredients: (i) size of Earth’s shadow at the moon (ii) angle subtended by the sun (iii) angle subtended by the Earth (iv) angle between sun and moon when half full give: (i) distance to the moon (ii) distance to the sun (iii) size of the moon (iv) size of the sun Ptolemy Almagest = al majisti (arabic) = the megiste (greek) = the greatest Claudius Ptolemy (90 -- 168) In use until the 1600s The Almagest , Latin edition, 1515 Ptolemy Claudius Ptolemy (90 -- 168) Ptolemy [from an actual University course web site] Why was the Ptolemaic model unable to correctly explain retrograde motion? The Ptolemaic model placed a stationary Earth at the center of the universe. Since the Earth did not move in the model, it assumed that retrograde motion was real instead of an optical illusion created by Earth’s motion. This meant that the model’s planetary motions were wrong. The result was that the model could not accurately predict the location of the planets in the sky, because the planets’ motion was incorrectly described. Claudius Ptolemy (90 -- 168) bizarrely circular and nonsensical! Plato’s Academy A grove sacred to Akademos, an Athenian hero. Justinian was intent on restoring the ancient Roman Empire. He Shut by Justinian I in 529. thought it should be unified by one religion The Hagia Sophia and ruthlessly persecuted all non- Chalcedonian-christians. quiz The Greeks had the ability to The Academy was shut by Justinian measure the size of the sun because he * disliked the Greeks * true true * false * was attempting to unify the empire * was suppressing non-Catholic religions * was suppressing a rebellion (b) or (c) Greek philosophers had no political hylomorphism underpins troubles developing their theories * the immaculate conception * true false * transubstantiation * false * dyophysitetism transubstantiation * Nestorianism quiz Ptolemy’s book was called Aristotle’s influence * the System of the World * was minimal * the Principles of Philosophy * lasted for hundreds of years * the Almagest * lasted for thousands of years the Almagest * the Thinker thousands of years comets exist in decay exists in sublunar realm * the sublunar realm sublunar realm * the sublunar realm * the supralunar realm * the supralunar realm * the heavenly sphere * the heavenly sphere Review - Thales - Empedocles - philosophers tended to be wealthy - Democritus - Greek philosophy built on the Egyptians and - Eudoxus Babylonians - Plato - centers of philosophy (and science) follow - Aristotle economic powers - Aristarchus - Ptolemy Review - teleology - the four elements - atoms - the fifth element - the void - retrograde motion - hylozoism - cosmogony - Nous - matter and form (hylomorphism) - Love and Strife - Demiurge - equant - epicycle - deferent - Almagest.
Recommended publications
  • 1 Timeline 2 Geocentric Model
    Ancient Astronomy Many ancient cultures were interested in the night sky • Calenders • Prediction of seasons • Navigation 1 Timeline Astronomy timeline • ∼ 3000 B.C. Stonehenge • 2136 B.C. First record of solar eclipse by Chinese astronomers • 613 B.C. First record of Halley’s comet by Zuo Zhuan (China) • ∼ 270 B.C. Aristarchus proposes Earth goes around Sun (not a popular idea at the time) • ∼ 240 B.C. Eratosthenes estimates Earth’s circumference • ∼ 130 B.C. Hipparchus develops first accurate star map (one of the first to use R.A. and Dec) 2 Geocentric model The Geocentric Model • Greek philosopher Aristotle (384-322 B.C.) • Uniform circular motion • Earth at center of Universe Retrograde Motion • General motion of planets east- ward • Short periods of westward motion of planets • Then continuation eastward How did the early Greek philosophers make retrograde motion consistent with uniform circular motion? 3 Ptolemy Ptolemy’s Geocentric Model • Planet moves around a small circle called an epicycle • Center of epicycle moves along a larger cir- cle called a deferent • Center of deferent is at center of Earth (sort of) Ptolemy’s Geocentric Model • Ptolemy invented the device called the eccentric • The eccentric is the center of the deferent • Sometimes the eccentric was slightly off center from the center of the Earth Ptolemy’s Geocentric Model • Uniform circular motion could not account for speed of the planets thus Ptolemy used a device called the equant • The equant was placed the same distance from the eccentric as the Earth, but on the
    [Show full text]
  • Ptolemy's Almagest
    Ptolemy’s Almagest: Fact and Fiction Richard Fitzpatrick Department of Physics, UT Austin Euclid’s Elements and Ptolemy’s Almagest • Ancient Greece -> Two major scientific works: Euclid’s Elements and Ptolemy’s “Almagest”. • Elements -> Compendium of mathematical theorems concerning geometry, proportion, number theory. Still highly regarded. • Almagest -> Comprehensive treatise on ancient Greek astronomy. (Almost) universally disparaged. Popular Modern Criticisms of Ptolemy’s Almagest • Ptolemy’s approach shackled by Aristotelian philosophy -> Earth stationary; celestial bodies move uniformly around circular orbits. • Mental shackles lead directly to introduction of epicycle as kludge to explain retrograde motion without having to admit that Earth moves. • Ptolemy’s model inaccurate. Lead later astronomers to add more and more epicycles to obtain better agreement with observations. • Final model hopelessly unwieldy. Essentially collapsed under own weight, leaving field clear for Copernicus. Geocentric Orbit of Sun SS Sun VE − vernal equinox SPRING SS − summer solstice AE − autumn equinox WS − winter solstice SUMMER93.6 92.8 Earth AE VE AUTUMN89.9 88.9 WINTER WS Successive passages though VE every 365.24 days Geocentric Orbit of Mars Mars E retrograde station direct station W opposition retrograde motion Earth Period between successive oppositions: 780 (+29/−16) days Period between stations and opposition: 36 (+6/−6) days Angular extent of retrograde arc: 15.5 (+3/−5) degrees Immovability of Earth • By time of Aristotle, ancient Greeks knew that Earth is spherical. Also, had good estimate of its radius. • Ancient Greeks calculated that if Earth rotates once every 24 hours then person standing on equator moves west to east at about 1000 mph.
    [Show full text]
  • Meet the Philosophers of Ancient Greece
    Meet the Philosophers of Ancient Greece Everything You Always Wanted to Know About Ancient Greek Philosophy but didn’t Know Who to Ask Edited by Patricia F. O’Grady MEET THE PHILOSOPHERS OF ANCIENT GREECE Dedicated to the memory of Panagiotis, a humble man, who found pleasure when reading about the philosophers of Ancient Greece Meet the Philosophers of Ancient Greece Everything you always wanted to know about Ancient Greek philosophy but didn’t know who to ask Edited by PATRICIA F. O’GRADY Flinders University of South Australia © Patricia F. O’Grady 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. Patricia F. O’Grady has asserted her right under the Copyright, Designs and Patents Act, 1988, to be identi.ed as the editor of this work. Published by Ashgate Publishing Limited Ashgate Publishing Company Wey Court East Suite 420 Union Road 101 Cherry Street Farnham Burlington Surrey, GU9 7PT VT 05401-4405 England USA Ashgate website: http://www.ashgate.com British Library Cataloguing in Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask 1. Philosophy, Ancient 2. Philosophers – Greece 3. Greece – Intellectual life – To 146 B.C. I. O’Grady, Patricia F. 180 Library of Congress Cataloging-in-Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask / Patricia F.
    [Show full text]
  • The Equant in India Redux
    The equant in India redux Dennis W. Duke The Almagest equant plus epicycle model of planetary motion is arguably the crowning achieve- ment of ancient Greek astronomy. Our understanding of ancient Greek astronomy in the cen- turies preceding the Almagest is far from complete, but apparently the equant at some point in time replaced an eccentric plus epicycle model because it gives a better account of various observed phenomena.1 In the centuries following the Almagest the equant was tinkered with in technical ways, first by multiple Arabic astronomers, and later by Copernicus, in order to bring it closer to Aristotelian expectations, but it was not significantly improved upon until the discov- eries of Kepler in the early 17th century.2 This simple linear history is not, however, the whole story of the equant. Since 2005 it has been known that the standard ancient Hindu planetary models, generally thought for many de- cades to be based on the eccentric plus epicycle model, in fact instead approximate the Almagest equant model.3 This situation presents a dilemma of sorts because there is nothing else in an- cient Hindu astronomy that suggests any connection whatsoever with the Greek astronomy that we find in theAlmagest . In fact, the general feeling, at least among Western scholars, has always been that ancient Hindu astronomy was entirely (or nearly so, since there is also some clearly identifiable Babylonian influence) derived from pre-Almagest Greek astronomy, and therefore offers a view into that otherwise inaccessible time period.4 The goal in this paper is to analyze more thoroughly the relationship between the Almag- est equant and the Hindu planetary models.
    [Show full text]
  • Alexandria in Egypt, the Native Town of the Natural Sciences
    Alexandria in Egypt, the Native Town of the Natural Sciences Dieter LELGEMANN, Germany (dedicated to B.L. van der Waerden) Key words: Alexandrians, Aristarchos, Archimedes, Eratosthenes, Apollonios, Ptolemy, heliocentric hypothesis, epicycle and mobile eccentric, distance earth/sun, Equant and Keplerian motion SUMMARY Looking at Alexandria as the native town of natural sciences the most interesting question will be: What happened to the heliocentric idea of Aristarchos of Samos? Has the group of the famous Alexandrian scientists, Aristarchos of Samos, Archimedes of Syracuse, Eratosthenes of Kyrene and Apollonius of Perge, be able to develop this idea further to a complete methodology of celestial mechanics? Did they at least have had the mathematical tools at hand? Did some Greeks use the heliocentric concept? The paper will give a possible answer to those questions: It was not only possible for them, it is also likely that they did it and that this methodology was used by all “other astronomers” at the time of Hipparch. WSHS 1 – History of Technology 1/15 Dieter Lelgemann WSHS1.3 Alexandria in Egypt, the Native Town of the Natural Sciences From Pharaohs to Geoinformatics FIG Working Week 2005 and GSDI-8 Cairo, Egypt April 16-21, 2005 Alexandria in Egypt, the Native Town of the Natural Sciences Dieter LELGEMANN, Germany (dedicated to B.L. van der Waerden) 1. INTRODUCTION Natural sciences in the modern sense started in Alexandria in the third century b.c. with the foundation of the Museion by king Ptolemy I and probably by the first “experimental physicist” Straton of Lampsakos (330-270/68 b.c.), later elected as third leader (after Aristoteles and Theophrastus) of the Lyceum, the philosophical school founded by Aristoteles.
    [Show full text]
  • Mathematics and Cosmology in Plato's Timaeus
    apeiron 2021; aop Andrew Gregory* Mathematics and Cosmology in Plato’s Timaeus https://doi.org/10.1515/apeiron-2020-0034 Published online March 18, 2021 Abstract: Plato used mathematics extensively in his account of the cosmos in the Timaeus, but as he did not use equations, but did use geometry, harmony and according to some, numerology, it has not been clear how or to what effect he used mathematics. This paper argues that the relationship between mathematics and cosmology is not atemporally evident and that Plato’s use of mathematics was an open and rational possibility in his context, though that sort of use of mathematics has subsequently been superseded as science has progressed. I argue that there is a philosophically and historically meaningful space between ‘primitive’ or unre- flective uses of mathematics and the modern conception of how mathematics relates to cosmology. Plato’s use of mathematics in the Timaeus enabled the cosmos to be as good as it could be, allowed the demiurge a rational choice (of which planetary orbits and which atomic shapes to instantiate) and allowed Timaeus to give an account of the cosmos (where if the demiurge did not have such a rational choice he would not have been able to do so). I also argue that within this space it is both meaningful and important to differentiate between Pythagorean and Platonic uses of number and that we need to reject the idea of ‘Pythagorean/ Platonic number mysticism’. Plato’s use of number in the Timaeus was not mystical even though it does not match modern usage.
    [Show full text]
  • The Two Earths of Eratosthenes Author(S): Christián Carlos Carman and James Evans Source: Isis, Vol
    University of Puget Sound Sound Ideas All Faculty Scholarship Faculty Scholarship 3-2015 The woT Earths of Eratosthenes James Evans University of Puget Sound, [email protected] Christián Carlos Carman Buenos Aires, Argentina Follow this and additional works at: http://soundideas.pugetsound.edu/faculty_pubs Citation Christián C. Carman and James Evans, “The wT o Earths of Eratosthenes,” Isis 106 (2015), 1-16. This Article is brought to you for free and open access by the Faculty Scholarship at Sound Ideas. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of Sound Ideas. For more information, please contact [email protected]. The Two Earths of Eratosthenes Author(s): Christián Carlos Carman and James Evans Source: Isis, Vol. 106, No. 1 (March 2015), pp. 1-16 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/10.1086/681034 . Accessed: 08/12/2015 15:41 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis.
    [Show full text]
  • Comment on the Origin of the Equant Papers by Evans, Swerdlow, and Jones
    Comment on the Origin of the Equant papers by Evans, Swerdlow, and Jones Dennis W Duke, Florida State University A 1984 paper by Evans1, a 1979 paper by Swerdlow (published recently in revised form)2, and a forthcoming paper by Jones3 describe possible scenarios and motivations for the discovery of the equant. The papers differ in details, but the briefest outline of their arguments is that whoever discovered the equant 1. determined the apparent value of 2e, the distance between the Earth and the center of uniform motion around the zodiac, corresponding to the zodiacal anomaly. One can use a trio of oppositions, some other procedure based on oppositions (e.g. Evans4), or in principle, any synodic phenomenon, but in practice oppositions would be the clear observable of choice. 2. determined the apparent value of e´, the distance between the earth and the center of the planet’s deferent, by looking at some observable near both apogee and perigee: Evans and Swerdlow use the width of retrograde arcs, Jones uses the time interval between longitude passings at the longitude of the opposition. For both kinds of observables, the pattern of variation with zodiacal longitude is found to be grossly incompatible with the predictions of a simple eccentric model. Indeed, all three find that the eccentricity e´ is about half the value of 2e determined in the first step. 3. reconciled these different apparent eccentricities with the invention of the equant, which by construction places the center of uniform motion twice as far from Earth as the center of the planet’s deferent.
    [Show full text]
  • Aristarchus of Samos and Graeco-Babylonian Astronomy George Huxley
    Arfstarchus of Samos and Graeco-Babylonian Astronomy Huxley, George Greek, Roman and Byzantine Studies; Summer 1964; 5, 2; ProQuest pg. 123 Aristarchus of Samos and Graeco-Babylonian Astronomy George Huxley N THE HALF CENTURY following the death of Alexander the Great the I history of astronomy amongst the Greeks is dominated by Aris­ tarchus the Samian, who is best known for his theory of the earth's revolution about the sun. His life cannot be dated exactly, but it is clear that he was already of mature age by 280 B.C., for Ptolemy states that "the men around Aristarchus," that is to say his pupils, observed the summer solstice in that year, the 50th of the first Callippic period [Ptolemy, Almagest 3.1]. He was a pupil of Strato the Lampsacene, who succeeded Theophrastus as head of the Lyceum in ca. 288/7 B.C. [Apollodorus 244 F 40] and remained in that post for eighteen years till his death not later than 269 B.C. [Apollodorus 244 F 350]. The date of the publication of Aristarchus's heliocentric theory is not known, but the doctrine was attacked by Cleanthes the Stoic land so must have been well known by 232 B.C., when Cleanthes died; but the helio­ centric hypothesis may have been formulated much earlier than that. Vitruvius spoke highly of the versatility of Aristarchus in geometry, astronomy, and music [De Architectura 1.1.16], and ascribes to him the invention of two kinds of sundial-the hemispherical uKac/>T} and the disc in the plane [9.8.1].2 He perhaps made use of these improved instruments in his observations of the solstices.
    [Show full text]
  • Hellas in the East: Dr. Nikolaos Mavridis Moments and Portraits Phd, Massachusetts Institute of Technology
    Hellas in the East: Dr. Nikolaos Mavridis Moments and Portraits PhD, Massachusetts Institute of Technology Abstract Hellenism, throughout its millennia of historical existence, has mainly been associated with the West: Athens, Rome, and Jerusalem are often regarded as providing the main pillars of “Western Civilization”, whatever the semantics attributed to this term might be. However, in this paper it is argued that, not only geographically, but also culturally, Hellenism might well have very strongly reciprocally influenced cultures that are usually classified as more “Eastern” – starting from Persia to Arabia and to the Islamic civilization, and moving all the way, through the Indian subcontinent, to Central Asia and the Far East. In this paper, through a collection of 12 moments and portraits, a first sampling of the spatio- temporal axis of the convolution of Hellas and the East is provided, with a special emphasis to the main ingredients of this most interesting living synergy: not only Times and Places, but most importantly People and Ideas. Introduction The arrival of the Proto-Greeks [1] to the southern tip of the Balkans, is usually dated at the end of the 3rd millennium BC. Since then, Hellenism has passed through many historical phases: From the Cycladic and the Minoan, through the Mycenaean, to the Classical, Hellenistic, Roman, Byzantine, Ottoman, all the way to the modern Greek State. As witnessed by the three main names used when referring to the Greeks, there seem to always have been three different viewpoints towards them (“Greeks-Grece” when viewing Greece from the West, “Yunan-Yavan” [2] when viewed from the East, and “Hellenes-‘Ελληνες” when viewed from their own self).
    [Show full text]
  • Astronomy Through the Ages 1 Early History and Greek Astronomy
    Astronomy Through the Ages 1 Early History and Greek Astronomy ASTR 101 9/26/2018 1 Early History • Astronomy is often described as the oldest of the natural sciences. – Humans attempts to understand and make sense of the sky predates antiquity. – Religious, mythological and astrological beliefs and practices of pre-historical societies related to celestial objects and events can be seen from many artifacts that have survived to date. The Blanchard Bone, depicting a series of moon phases (France. 25,000 - 32,000 BCE) Stonehenge The Mayan observatory at Chichen Itza, seemed to have built to observe Venus and the Sun. The pyramid is aligned to solar equinox 2 Babylonian and ancient Egyptian astronomy (left) Mul Apin tablet(1100 BCE): Describing the appearance of different constellations and stars: Astronomical ceiling. 1470BCE Egyptian tomb (right) Babylonian clay tablets listing observation of Venus painting with constellations, planets, lunar th c. 7 century BCE. www.mesopotamia.co.uk/astronomer/explore/mulapin1.html cycle and stars depicted. • Astronomy and mathematics were in an advance state in the Babylonian civilization: • They kept records of position of the stars and planets and eclipses Many constellations visible from the northern hemisphere, and the zodiac are of Babylonian/Sumerian origin. • They used a number system with base 60 (sexadesimal), and a year of 360 days. • Circle 360 degrees, 60 minutes and 60 seconds descend from the Babylonian sexadesimal number system. • Egyptian astronomy mostly carried out by priest astronomers was largely concerned with time reckoning. Its main lasting contribution was the civil calendar of 365 days, with 12 months 3 • Unable to comprehend their underlying causes, early cultures resort to mysticism and religion for answers.
    [Show full text]
  • Aristarchus (1), of Samos, Greek Astronomer, Mathematician, 3Rd Century BCE | Oxford Classical Dictionary
    Aristarchus (1), of Samos, Greek astronomer, mathematician, 3rd century BCE Nathan Camillo Sidoli https://doi.org/10.1093/acrefore/9780199381135.013.737 Published online: 22 December 2015 This version: 28 June 2021 Subjects: Science, Technology, and Medicine Updated in this version Article rewritten to reflect current scholarship. Aristarchus, often called the “mathematician” in our sources, is dated through a summer solstice observation of 280 BCE attributed to him by Ptolemy (Alm. 3.1). He is said to have been a student of Straton of Lampsacus, who succeeded Theophrastus as the head of the Peripatetic school in 288/287 BCE (Stob. Ecl. 1.16.1); and he is most famous for having advanced the heliocentric hypothesis, although his only surviving work in mathematical astronomy assumes a geocentric cosmos. According to Archimedes, Aristarchus hypothesized that the fixed stars and sun are unmoved, while the earth is carried around the sun on a circle, and that the sphere of the fixed stars is so large that the ratio of the circle about which the earth moves to the distance of the stars is that which a centre has to the surface of a sphere (Sand Reckoner, 4–5). We do not know how Aristarchus understood or utilized this hypothesis, which Archimedes claims is strictly impossible, but Archimedes himself reinterprets it to mean that the ratio of the diameter of the earth to the diameter of the earth’s orbit is the same as that of the diameter of the earth’s orbit to the diameter of the cosmos. Furthermore, Plutarch says that Aristarchus supposed that the earth rotates about its own axis (De fac.
    [Show full text]