Non-Proprietary Web Mapping Solutions for Use in Corporations: a WSP Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Non-Proprietary Web Mapping Solutions for Use in Corporations: a WSP Case Study DEPARTMENT OF TECHNOLOGY AND BUILT ENVIRONMENT Non-proprietary Web Mapping Solutions for Use in Corporations: a WSP Case Study Tian (Scarlett) Jiang August 2010 Bachelor Thesis in Geomatics Bachelor Programme in Geomatics Examiner: Dr. Julia Åhlen Supervisor: Christian Lundberg & Prof. Bin Jiang This page is intentionally left blank 2 Abstract The development of web mapping industry is so fast that hundreds of web mapping software products are being created each year. These products are usually parts of three solution categories: a) proprietary solutions, b) Open source solutions, or c) Web 2.0 mashup solutions. Due to the solutions’ maturity, rich functionalities and great external support, most enterprises use proprietary products to build their web mapping applications. Seldom are the latter two, named as non- proprietary solutions in this study, ever used in corporations. This study explores the suitability of non-proprietary web mapping solutions for WSP Sweden. Two prototype applications are developed using one Open source web mapping solution and one Web 2.0 mashup solution. Both applications attempt to accomplish similar tasks as an existing application, Stockholmshem tree inventory project, to demonstrate the functional potential of each solution. The implementation process will help to further access both prototype solutions on the basis of: a) how well they satisfy WSP’s list of demands; b) their implementation difficulty; and c) their response performances. The results indicate that both categories of non-proprietary solutions can satisfy the most important demands of WSP’s basic web mapping application. While Open source solutions are more suitable for meeting advanced demands, mashup solutions can help to quickly establish a simple application. The combinational use of both solutions is a promising alternative to the predominant ArcIMS-based proprietary solution used at WSP. 3 Contents Abstract .................................................................................................................................................. 3 Contents ................................................................................................................................................. 4 Acknowledgements ................................................................................................................................ 6 List of acronyms ..................................................................................................................................... 7 1. Introduction ........................................................................................................................................ 8 1.1 Background – WSP overview ..................................................................................................... 8 1.2 Aims of study .............................................................................................................................. 9 1.3 Structure of the thesis .................................................................................................................. 9 2. Web mapping technology ................................................................................................................ 10 2.1 Proprietary web mapping solution ............................................................................................ 11 2.2 Non-proprietary web mapping solution .................................................................................... 11 2.2.1 Open Source web mapping solution ............................................................................... 11 2.2.2 Mashup solution .............................................................................................................. 12 3. Choice of web mapping solutions in corporations – a WSP case study .......................................... 14 3.1 Current proprietary web mapping solutions .............................................................................. 14 3.2 Background on non-proprietary prototype solutions ................................................................ 14 3.2.1 Open Source prototype solution ...................................................................................... 14 3.2.2 Web 2.0 mashup prototype solution ................................................................................ 15 4. Method - evaluating non-proprietary web mapping solutions ......................................................... 16 4.1 Implementation .......................................................................................................................... 16 4.1.1 Open Source prototype .................................................................................................... 17 4.1.2 Web 2.0 mashup prototype ............................................................................................. 20 4.2 Prototype solution evaluation .................................................................................................... 21 4.2.1 List of requirements ........................................................................................................ 21 4.2.2 Implementation difficulty ................................................................................................ 21 4.2.3 Performance evaluation ................................................................................................... 22 4 5. Result - evaluating non-proprietary web mapping solutions ........................................................... 24 5.1 Implementation result ................................................................................................................ 24 5.1.1 Open Source prototype .................................................................................................... 24 5.1.2 Web 2.0 mashup prototype ............................................................................................. 26 5.2 Prototype solution evaluation .................................................................................................... 27 5.2.1 List of requirements ........................................................................................................ 27 5.2.2 Implementation difficulty ................................................................................................ 29 5.2.3 Performance evaluation ................................................................................................... 30 6. Discussion ........................................................................................................................................ 31 6.1 Interpretation of implementation results ................................................................................... 31 6.2 Interpretation of evaluation results ............................................................................................ 31 6.3 Limitation .................................................................................................................................. 32 7. Conclusion and Future prospects ..................................................................................................... 34 References ............................................................................................................................................ 35 Appendix I – PHP code to query database ........................................................................................... 40 Appendix II – Ajax code ...................................................................................................................... 40 Appendix III – PHP to output XML .................................................................................................... 42 Appendix IV – List of requirements .................................................................................................... 38 5 Acknowledgements The research presented in this thesis was carried out during February 22nd to May 21st in 2010 at Geographic Information department, WSP Stockholm. I am profusely grateful for having had the opportunity to work at such an inspiring, productive, and friendly environment. Thanks are due to all those who have made the accomplishment of this thesis possible: To my supervisor at WSP Stockholm, Christian Lundberg, for continuous technical and social support; To my supervisor at University of Gävle, Professior Bin Jiang, for constructive advice on the writing of this thesis; To WSP professional, Johan Sundin, for sharing his knowledge on various web mapping software components; To my “reading group”, Finn Hedefalk and Alexey Tereshenkov, for invaluable comments on the writing of the thesis; To all other staff at WSP, who have commented, or made suggestions on the study during various stages in the process; To my friends and family, who remained great supporters throughout this journey. Stockholm, May 15th 2010 Tian (Scarlett) Jiang 6 List of acronyms AJAX Asynchronous JavaScript and XML API Application Programming Interface CSV Comma-Separated Values DEG Display Element Generator ESRI Environmental Systems Research Institute GI Geographic Information GIS Geographic Information System GML Geography Markup Language HTML HyperText Markup Language HTTP HyperText Transfer Protocol KML Keyhole Markup Language MS4W MapServer For Windows OGC Open GIS Consortium PGIS Participatory GIS PHP Hypertext Preprocessor RDBMS Relational Database Management Systems SL Storstockholms Localtrafik AB WFS Web Feature
Recommended publications
  • The Uch Enmek Example(Altai Republic,Siberia)
    Faculty of Environmental Sciences Institute for Cartography Master Thesis Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Mussab Mohamed Abuelhassan Abdalla Born on: 7th December 1983 in Khartoum Matriculation number: 4118733 Matriculation year: 2014 to achieve the academic degree Master of Science (M.Sc.) Supervisors Dr.Nikolas Prechtel Dr.Sander Münster Submitted on: 18th September 2017 Faculty of Environmental Sciences Institute for Cartography Task for the preparation of a Master Thesis Name: Mussab Mohamed Abuelhassan Abdalla Matriculation number: 4118733 Matriculation year: 2014 Title: Concept and Implementation of a Contextualized Navigable 3D Landscape Model: The Uch Enmek Example(Altai Republic,Siberia). Objectives of work Scope/Previous Results:Virtual Globes can attract and inform websites visitors on natural and cultural objects and sceneries.Geo-centered information transfer is suitable for majority of sites and artifacts. Virtual Globes have been tested with an involvement of TUD institutes: e.g. the GEPAM project (Weller,2013), and an archaeological excavation site in the Altai Mountains ("Uch enmek", c.f. Schmid 2012, Schubert 2014).Virtual Globes technology should be flexible in terms of the desired geo-data configuration. Research data should be controlled by the authors. Modes of linking geo-objects to different types of meta-information seems evenly important for a successful deployment. Motivation: For an archaeological conservation site ("Uch Enmek") effort has already been directed into data collection, model development and an initial web-based presentation.The present "Open Web Globe" technology is not developed any further, what calls for a migra- tion into a different web environment.
    [Show full text]
  • Development of a Web Mapping Application Using Open Source
    Centre National de l’énergie des sciences et techniques nucléaires (CNESTEN-Morocco) Implementation of information system to respond to a nuclear emergency affecting agriculture and food products - Case of Morocco Anis Zouagui1, A. Laissaoui1, M. Benmansour1, H. Hajji2, M. Zaryah1, H. Ghazlane1, F.Z. Cherkaoui3, M. Bounsir3, M.H. Lamarani3, T. El Khoukhi1, N. Amechmachi1, A. Benkdad1 1 Centre National de l’Énergie, des Sciences et des Techniques Nucléaires (CNESTEN), Morocco ; [email protected], 2 Institut Agronomique et Vétérinaire Hassan II (IAV), Morocco, 3 Office Régional de la Mise en Valeur Agricole du Gharb (ORMVAG), Morocco. INTERNATIONAL EXPERTS’ MEETING ON ASSESSMENT AND PROGNOSIS IN RESPONSE TO A NUCLEAR OR RADIOLOGICAL EMERGENCY (CN-256) IAEA Headquarters Vienna, Austria 20–24 April 2015 Context In nuclear disaster affecting agriculture, there is a need for rapid, reliable and practical tools and techniques to assess any release of radioactivity The research of hazards illustrates how geographic information is being integrated into solutions and the important role the Web now plays in communication and disseminating information to the public for mitigation, management, and recovery from a disaster. 2 Context Basically GIS is used to provide user with spatial information. In the case of the traditional GIS, these types of information are within the system or group of systems. Hence, this disadvantage of traditional GIS led to develop a solution of integrating GIS and Internet, which is called Web-GIS. 3 Project Goal CRP1.50.15: “ Response to Nuclear Emergency affecting Food and Agriculture” The specific objective of our contribution is to design a prototype of web based mapping application that should be able to: 1.
    [Show full text]
  • Assessmentof Open Source GIS Software for Water Resources
    Assessment of Open Source GIS Software for Water Resources Management in Developing Countries Daoyi Chen, Department of Engineering, University of Liverpool César Carmona-Moreno, EU Joint Research Centre Andrea Leone, Department of Engineering, University of Liverpool Shahriar Shams, Department of Engineering, University of Liverpool EUR 23705 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Cesar Carmona-Moreno Address: via fermi, T440, I-21027 ISPRA (VA) ITALY E-mail: [email protected] Tel.: +39 0332 78 9654 Fax: +39 0332 78 9073 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC [49291] EUR 23705 EN ISBN 978-92-79-11229-4 ISSN 1018-5593 DOI 10.2788/71249 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of Content Introduction............................................................................................................................4 1.
    [Show full text]
  • Praxishandbuch Webgis Mit Freier Software UMN Mapserver
    Praxishandbuch WebGIS mit Freier Software Praxishandbuch WebGIS mit Freier Software UMN MapServer PostgreSQL/PostGIS AveiN! Mapbender Ein Gemeinschaftsprojekt von CCGIS und terrestris CCGIS GbR terrestris GbR www.ccgis.de www.terrestris.de Nutzungsbedingungen Dieser Text ist urheberrechtlich geschützt und wird hier unter der GNU Free Documentation License (http://www.gnu.org/licenses/fdl.html) freigegeben, d.h. die Texte dürfen kopiert und weiterverteilt werden. D.h. auch, dass u.a. auf die Free Documentation Licence hingewiesen werden muss. Änderungsvorschläge, Kritik und Reaktionen sind willkommen. Kontakt: [email protected] CCGIS terrestris www.ccgis.de www.terrestris.de [email protected] [email protected] 1 Praxishandbuch WebGIS mit Freier Software Inhaltsverzeichnis VORWORT...................................................................................................... 9 EINLEITUNG................................................................................................. 10 1. Begrifflichkeiten....................................................................................... 10 1.1. Open Source.......................................................................................................... 11 1.2. Freie Software....................................................................................................... 11 1.3. Open Source / Freie Software.............................................................................. 12 2. Übernahme von OS/FS Konzepten duch die Nutzer.............................12
    [Show full text]
  • Mapbender Workshop FOSS4G 2010 Barcelona
    Mapbender 3 - where are we going? Astrid Emde FOSS4G Denver 2011 Astrid Emde Mapbender Developer Team since 2004 PSC (Project Steering Commitee) Works at WhereGroup, Bonn Project management and a bit of development Trainings for MapServer, PostgreSQL/PostGIS, Mapbender, GeoServer Works with the OSGeo stack for many years Active member in FOSSGIS e.V. and OSGeo Mapbender 3 – where are we going? – FOSS4G 2011 Denver Astrid Emde 2 / 49 WhereGroup Major Mapbender sponsor Company in Bonn, Germany Founded in january 2007 as merger of CCGIS, KARTA.GO GmbH and Geo-Consortium 17 employees Mapbender 3 – where are we going? – FOSS4G 2011 Denver Astrid Emde 3 / 49 WhereGroup Service provider with experience in all field of spatial data management with free software: WebGIS, SDI, database , relevant standards, trainings, conferences Founding member of the FOSS Academy Open Source projects: Mapbender, PostNAS Mapbender 3 – where are we going? – FOSS4G 2011 Denver Astrid Emde 4 / 49 Mapbender ± where are we going? The concept of Mapbender Evaluation for Mapbender3 What we chose The components Getting started Demo Mapbender 3 – where are we going? – FOSS4G 2011 Denver Astrid Emde 5 / 49 What does Mapbender do? Create geospatial web applications without writing a single line of code Create and maintain an OWS repository (focus on WMS, WFS) Distribute configured services among applications Grant users and groups access to applications and services → This is what Mapbender 2.x (2.7.2 actual version) stands for Mapbender 3 – where are we going? – FOSS4G
    [Show full text]
  • The State of Open Source GIS
    The State of Open Source GIS Prepared By: Paul Ramsey, Director Refractions Research Inc. Suite 300 – 1207 Douglas Street Victoria, BC, V8W-2E7 [email protected] Phone: (250) 383-3022 Fax: (250) 383-2140 Last Revised: September 15, 2007 TABLE OF CONTENTS 1 SUMMARY ...................................................................................................4 1.1 OPEN SOURCE ........................................................................................... 4 1.2 OPEN SOURCE GIS.................................................................................... 6 2 IMPLEMENTATION LANGUAGES ........................................................7 2.1 SURVEY OF ‘C’ PROJECTS ......................................................................... 8 2.1.1 Shared Libraries ............................................................................... 9 2.1.1.1 GDAL/OGR ...................................................................................9 2.1.1.2 Proj4 .............................................................................................11 2.1.1.3 GEOS ...........................................................................................13 2.1.1.4 Mapnik .........................................................................................14 2.1.1.5 FDO..............................................................................................15 2.1.2 Applications .................................................................................... 16 2.1.2.1 MapGuide Open Source...............................................................16
    [Show full text]
  • Web Map Tile Services Tiny Tile Server Bachelor Thesis
    Web Map Tile Services Tiny Tile Server Bachelor Thesis Department of Computer Science University of Applied Science Rapperswil Spring Term 2013 Author: Carmen Campos Bordons Advisor: Prof. Stefan Keller, HSR Project Partner: Klokan Technologies, Baar External Co-Examiner: Claude Eisenhut, Burgdorf Internal Co-Examiner: Prof. Dr. Andreas Rinkel, HSR Abstract Tiny Tile Server is a Python server that permits the user to display local MBTiles maps on the internet. It extracts the data from the SQLite database where the map information is stored in tables containing all the tiles, UTFGrid and metadata. The tiles are the map images, smaller than the screen for better performance. The UTFGrid is some extra information related with points in the map that appears in an infobox when the user interact with these points. The metadata is the information about the map: name, description, bounds, legend, center, minzoom, maxzoom. Tiny Tile Server shows the tiles composing the map on a website and the UTFGrid data on top of the tiles. It can also be used to show the getCapabilities information from Web Map Tile Service in XML format extracted by the metadata table. Tiny Tile Server supports two protocols to access the tiles: direct access with XYZ tile request to tiles in a directory or to MBTiles database; or Web Map Tile Service from a MBTiles database. The server is a part in a website whose purpose is to show how it works and provide templates for the user who wants to employ it, so he will not need to have programming knowledge in order to use Tiny Tile Server, just to follow a simple installation tutorial.
    [Show full text]
  • L6-Geospatial Technologies and Web Applications-Mr.Arulraj NRSC
    GeoSpatial Technologies and Web Applications M. Arulraj Sci/Engr – SF Manager, Bhuvan Web Services Development [email protected] GIS Activities in Problem Solving Environment Empowering Human Take to Activities Action Plan Complex Data Modeling Analyze Interactive Mapping Integration Measure Observe Visualization Modeling . Application of this science is multi-disciplinary Major Components of GIS and Role of open source s/w Data Creations Vector, Raster & attribute Data organizations & Management Complete GIS Data query, processing, Solutions analysis and modeling Data presentations and visualizations OpenLayers Data sharing and disseminations Tools and technologies • Quantum GIS • Open Jump • SAGA, MapWindow GIS • OpenLayer API Desktop GIS • Mapfish, • Geoeditor, • GRASS Geoweb Remote • Geexplorer • OSIM 2.0 Sensing • SAGA • Geonetwork Catalogue Statistical Server • R Geo-spatial DomainGn Geo- GPS • Gpsbabel RDBMS • POSTGIS+ POSTGRESQL • Gpsdrive • TerrLib GIS s/w GIS Servers developme nt • GDAL/OGR • Osgeo MapServer • Geotool • Geoserver • OpenLayer API What is open source? Open source software is software where the source code is made available under a license that allows the modification, and re-distribution of the software at will. The distribution terms of open-source software must comply with the following criteria: Free redistribution; Source code; Derived works; Integrity of the author's source code; No discrimination against persons or groups; No discrimination against fields of endeavor; Distribution of license; License must not be specific to a product; License must not restrict other software; License must be technology-neutral. What is open source? 1. Free Redistribution The license shall not restrict any party from selling or giving away the software as a component of an aggregate software distribution containing programs from several different sources.
    [Show full text]
  • Geographical Information System in Web Applica- Tion
    Zhipeng Jiang GEOGRAPHICAL INFORMATION SYSTEM IN WEB APPLICA- TION Developing Web Application to Serve Spatial Data to Users Thesis CENTRIA UNIVERSITY OF APPLIED SCIENCES Information Technology January 2020 ABSTRACT Centria University Date Author of Applied Sciences January 2020 Zhipeng Jiang Degree programme Information Technology Name of thesis GEOGRAPHICAL INFORMATION SYSTEM IN WEB APPLICATION. Developing Web Applica- tion to serve spatial data to users Instructor Pages Jari Isohanni 29 + 7 Supervisor Jari Isohanni This study is aimed to give a basic understanding of web GIS from a technological point of view. Also, how the approach is useable for other technologies. The technologies including JavaScript API for Google Maps and ArcGIS were tested with demonstration. Additionally, the open-sourced solu- tions are discussed with the self-hosted server, PostgreSQL database. And with Openlayers as the front-end JavaScript library to present the geospatial data. During the study, in the Google Maps API demonstration, the GeoJson data is made by geojson.io and attitude data of the spatial data is called with the API method, to create popup windows for each city area. Another layer that represents specific location for the school, park, and hospital at Kokkola area is marked out with Google Maps API marker and it is overlaid, on top of that city area layer. The same spatial data and its related attribute data are implemented once more with ArcGIS JavaScript API to find out what is the difference between these two technologies. The result is that the Google Maps JavaScript API does not need to have a popup template to have the popup functionality working, instead of popup template, in the Google Maps JavaScript API, the click event listener is created to handle the popup event.
    [Show full text]
  • Comparison of Tile Server Design Approaches for 3-D Geo-Visualization
    COMPARISON OF TILE SERVER DESIGN APPROACHES FOR 3-D GEO-VISUALIZATION Tao Wanga, Jianhua Gongb aState Key Laboratory of Remote Sensing Science ,Institute of remote sensing applications chinese academy of sciences - [email protected] bState Key Laboratory of Remote Sensing Science ,Institute of remote sensing applications chinese academy of sciences - [email protected] Commission VI, WG VI/4 KEY WORDS: Tile server, Wms, Visualization ABSTRACT: In order to display large-scale maps on the Internet, it is necessary to divide the huge spatial data into small tiles. And servers are needed to support the display across network. There are two kinds of tile server. One is tile server, which organizes the pre-rendered tiles on the server. Another one is MapServer, which generates the display tile. In this article, different servers are compared in efficiency. The open source software world wind is used to analyze the capacity of the two kinds of servers, and experiment results show that tile server spent more time than Mapserver, and it is suggested the Mapserver may have been optimized. 1. INTRODUCTION After researching Google Earth Enterprise, which includes Google Earth Fusion, and MapCruncher for Virtual Earth, we’re When displaying large-scale maps on personal and mobile finding out that the ability to serve tiles on demand that are computers, it is necessary to divide the huge spatial data into rendered at the time of the request, and overlay these tiles on a small tiles. There are many important characteristics of the Virtual Earth or Google Maps base map is unique. Google Earth tileset file format.
    [Show full text]
  • Analyzing and Acquisition, Administration and Storage Of
    FLISSY – AN AREA INFORMATION SYSTEM BASED ON OPEN SOURCE/ FREE GIS SOFTWARE K. Behncke, C. Plass Institute for Geoinformatics and Remote Sensing (IGF), University of Osnabrueck, Seminarstr. 19 a/b, 49069 Osnabrueck, Germany (kbehncke, [email protected]) KEY WORDS: Internet/Web, Management, Visualization, WebGIS, UMN MapServer, Mapbender ABSTRACT: Originally "FlIsSy" (what stands for the German expression "Flächeninformationssystem mit Freier Software") was an information system for laminar geoobjects. A version of FlIsSy is in use in the administrative department of Osnabrueck. Target group for the use of the system are mainly instances of public administration. Not only because of that in FlIsSy only Open Source Software is integrated (UMN MapServer, Apache Webserver, PostgreSQL/PostGIS). Within the system user can administrate (insert, change, delete) the attributes of areas in a password-secured content management system (cms) based on PHP. Objects, that have a direct relation to the areas (for example communes, costs, kind of use etc.) can be administrated as well. Through a hyperlink there is a direct relation to a WebGIS, which is mainly responsible for the visualization of the geoobjects. Here the user can, for example, navigate, search geoobjects and have a look to the basic attributes of the objects. The areas are coloured subjected to the values that are inserted in the cms. Again through a hyperlink user can switch from the WebGIS to the content management system, so there is a close handling of visualization and administration. Meanwhile in the system the client "Mapbender" is used. The structure of that client is based on PHP, Javascript and the database PostgreSQL/PostGIS.
    [Show full text]
  • GB: Using Open Source Geospatial Tools to Create OSM Web Services for Great Britain Amir Pourabdollah University of Nottingham, United Kingdom
    Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings Volume 13 Nottingham, UK Article 7 2013 OSM - GB: Using Open Source Geospatial Tools to Create OSM Web Services for Great Britain Amir Pourabdollah University of Nottingham, United Kingdom Follow this and additional works at: https://scholarworks.umass.edu/foss4g Part of the Geography Commons Recommended Citation Pourabdollah, Amir (2013) "OSM - GB: Using Open Source Geospatial Tools to Create OSM Web Services for Great Britain," Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: Vol. 13 , Article 7. DOI: https://doi.org/10.7275/R5GX48RW Available at: https://scholarworks.umass.edu/foss4g/vol13/iss1/7 This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. OSM–GB OSM–GB Using Open Source Geospatial Tools to Create from data handling and data analysis to cartogra- OSM Web Services for Great Britain phy and presentation. There are a number of core open-source tools that are used by the OSM devel- by Amir Pourabdollah opers, e.g. Mapnik (Pavlenko 2011) for rendering, while some other open-source tools have been devel- University of Nottingham, United Kingdom. oped for users and contributors e. g. JOSM (JOSM [email protected] 2012) and the OSM plug-in for Quantum GIS (Quan- tumGIS n.d.). Abstract Although those open-source tools generally fit the purposes of core OSM users and contributors, A use case of integrating a variety of open-source they may not necessarily fit for the purposes of pro- geospatial tools is presented in this paper to process fessional map consumers, authoritative users and and openly redeliver open data in open standards.
    [Show full text]