Expression Profiling of WD40 Family Genes Including DDB1- and CUL4
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Identification of the Binding Partners for Hspb2 and Cryab Reveals
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity. -
DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress
Published OnlineFirst March 10, 2009; DOI: 10.1158/0008-5472.CAN-08-3382 Research Article DDB1 Targets Chk1 to the Cul4 E3 Ligase Complex in Normal Cycling Cells and in Cells Experiencing Replication Stress Van Leung-Pineda,1 Jiwon Huh,1 and Helen Piwnica-Worms1,2,3 Departments of 1Cell Biology and Physiology and 2Internal Medicine and 3Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri Abstract protein FANCE (8, 10–12). Chk1 carries out its functions both in the The Chk1 protein kinase preserves genome integrity in normal nucleus and at the centrosome (13). Drugs that block Chk1 kinase proliferating cells and in cells experiencing replicative and activity or enhance its proteolysis by interfering with binding to genotoxic stress. Chk1 is currently being targeted in antican- heat shock protein 90 (HSP90) are currently being tested as cer regimens. Here, we identify damaged DNA-binding protein anticancer agents (14–17). 1 (DDB1) as a novel Chk1-interacting protein. DDB1 is part of Chk1 is regulated by reversible phosphorylation and by an E3 ligase complex that includes the cullin proteins Cul4A ubiquitin-mediated proteolysis. Under periods of replicative stress, and Cul4B. We report that Cul4A/DDB1 negatively regulates the ATRIP/ATR module binds to single-stranded DNA and, Chk1 stability in vivo. Chk1 associates with Cul4A/DDB1 together with Rad17 and the 9-1-1 complex, activates Chk1 in a Claspin-dependent manner (18–22). ATR directly phosphorylates during an unperturbed cell division cycle and both Chk1 317 345 phosphorylation and replication stress enhanced these inter- Chk1 on two COOH-terminal residues: Ser (S317) and Ser actions. -
FBXW8 (NM 153348) Human Recombinant Protein Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP761689 FBXW8 (NM_153348) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Purified recombinant protein of Human F-box and WD repeat domain containing 8 (FBXW8), transcript variant 1, full length, with N-terminal HIS tag, expressed in E. coli, 50ug Species: Human Expression Host: E. coli Tag: N-His Predicted MW: 67.2 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 50mM Tris, pH8.0,8M Urea. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_699179 Locus ID: 26259 UniProt ID: Q8N3Y1 RefSeq Size: 4871 Cytogenetics: 12q24.22 RefSeq ORF: 1794 Synonyms: FBW6; FBW8; FBX29; FBXO29; FBXW6 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 FBXW8 (NM_153348) Human Recombinant Protein – TP761689 Summary: This gene encodes a member of the F-box protein family, members of which are characterized by an approximately 40 amino acid motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (SKP1- cullin-F-box), which function in phosphorylation-dependent ubiquitination. -
Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment. -
Role of FBXW5-Loss in Centrosome Abnormalities and Cell Physiology
Role of FBXW5-loss in Centrosome Abnormalities and Cell Physiology Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Tim Scholta aus Spremberg Tübingen 2021 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 12.07.2021 Dekan: Prof. Dr. Thilo Stehle 1. Berichterstatter: Prof. Dr. Nisar Malek 2. Berichterstatter: Prof. Dr. Alfred Nordheim Content 1 Abbreviations ................................................................................................................................ 6 2 Abstract ......................................................................................................................................... 8 3 Zusammenfassung ....................................................................................................................... 9 4 Introduction ................................................................................................................................. 10 4.1 The importance of centrosomes in maintaining genomic stability ....................................... 10 4.2 Centrosome amplification – Cause or consequences of tumor formation? ......................... 12 4.3 Centrosome and Centrosome cycle ..................................................................................... 14 4.3.1 Disengagement/licensing of the centrosome -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
A Gene Expression Resource Generated by Genome-Wide Lacz
© 2015. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2015) 8, 1467-1478 doi:10.1242/dmm.021238 RESOURCE ARTICLE A gene expression resource generated by genome-wide lacZ profiling in the mouse Elizabeth Tuck1,**, Jeanne Estabel1,*,**, Anika Oellrich1, Anna Karin Maguire1, Hibret A. Adissu2, Luke Souter1, Emma Siragher1, Charlotte Lillistone1, Angela L. Green1, Hannah Wardle-Jones1, Damian M. Carragher1,‡, Natasha A. Karp1, Damian Smedley1, Niels C. Adams1,§, Sanger Institute Mouse Genetics Project1,‡‡, James N. Bussell1, David J. Adams1, Ramiro Ramırez-Soliś 1, Karen P. Steel1,¶, Antonella Galli1 and Jacqueline K. White1,§§ ABSTRACT composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Knowledge of the expression profile of a gene is a critical piece of Furthermore, there were 1207 observations of expression of a information required to build an understanding of the normal and particular gene in an anatomical structure where Bgee had no essential functions of that gene and any role it may play in the data, indicating a large amount of novelty in our data set. development or progression of disease. High-throughput, large- Examples of expression data corroborating and extending scale efforts are on-going internationally to characterise reporter- genotype-phenotype associations and supporting disease gene tagged knockout mouse lines. As part of that effort, we report an candidacy are presented to demonstrate the potential of this open access adult mouse expression resource, in which the powerful resource. expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter KEY WORDS: Gene expression, lacZ reporter, Mouse, Resource gene. -
The Differential Expression of Core Genes in Nucleotide Excision Repair Pathway Indicates Colorectal Carcinogenesis and Prognosis
Hindawi BioMed Research International Volume 2018, Article ID 9651320, 10 pages https://doi.org/10.1155/2018/9651320 Research Article The Differential Expression of Core Genes in Nucleotide Excision Repair Pathway Indicates Colorectal Carcinogenesis and Prognosis Jingwei Liu, Hao Li, Liping Sun, Xue Feng, Zhenning Wang , Yuan Yuan , and Chengzhong Xing Tumor Etiology and Screening Department, Cancer Institute and General Surgery, Te First Hospital of China Medical University and Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China Correspondence should be addressed to Yuan Yuan; [email protected] and Chengzhong Xing; [email protected] Received 19 October 2017; Revised 12 December 2017; Accepted 14 December 2017; Published 15 January 2018 Academic Editor: Paul W. Doetsch Copyright © 2018 Jingwei Liu et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Nucleotide excision repair (NER) plays a critical role in maintaining genome integrity. Tis study aimed to investigate theexpressionofNERgenesandtheirassociationswithcolorectalcancer(CRC)development.Method. Expressions of NER genes in CRC and normal tissues were analysed by ONCOMINE. Te Cancer Genome Atlas (TCGA) data were downloaded to explore relationship of NER expression with clinicopathological parameters and survival of CRC. Results. ERCC1, ERCC2, ERCC5, and DDB2 were upregulated while ERCC4 was downregulated in CRC. For colon cancer, high ERCC3 expression was related to better T stage; ERCC5 expression indicated deeper T stage and distant metastasis; DDB2 expression suggested earlier TNM stage. For rectal cancer, ERCC2 expression correlated with favourable T stage; XPA expression predicted worse TNM stage. -
Genomic Approaches to Reproductive Disorders
Genomic Approaches to Reproductive Disorders Aleksandar Rajkovic Dept Obstetrics Gynecology and Reproductive Sciences University of Pittsburgh Magee Womens Research Institute Pittsburgh, PA Preconceptional Care Scope • Half of Pregnancies are Unintended • Medical Conditions • Mental Conditions • Immunization History • Nutritional Issues • Family History/Genetic Risk • Occupational/Environmental Exposures • Tobacco/Drug Abuse • Social Issues Preconceptional genetic screening Ethnic: Sickle cell disease Tay–Sachs disease Pan-ethnic: cystic fibrosis fragile X syndrome Spinal muscular atrophy Mendelian Inheritance • 5593 phenotypes for which molecular basis known • 3452 genes with phenotype causing mutation • Over 15,000 mutations to date known Preconceptional Pan Ethnic Testing • Screens for known mutations in more than 100 genes, easy on genetic counsellors • The screen is pan-ethnic • Useful also for couples undergoing IVF and potentially PGD • 1:5 will be carriers of a Mendelian disorder. • $600 (529 Euros) for the couple Genetic Counselling • Objective of the test • Test Methodology • Type of sample required (parents, siblings) • Possible outcomes (abnormal results, result of unknown clinical significance) ClinVar Stars and their interpretation Number of golden stars No submitter provided an interpretation with assertion criteria (no assertion criteria provided), none or no interpretation was provided (no assertion provided) At least one submitter provided an interpretation with assertion criteria (criteria provided, single submitter) -
1 UST College of Science Department of Biological Sciences
UST College of Science Department of Biological Sciences 1 Pharmacogenomics of Myofascial Pain Syndrome An Undergraduate Thesis Submitted to the Department of Biological Sciences College of Science University of Santo Tomas In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Biology Jose Marie V. Lazaga Marc Llandro C. Fernandez May 2021 UST College of Science Department of Biological Sciences 2 PANEL APPROVAL SHEET This undergraduate research manuscript entitled: Pharmacogenomics of Myofascial Pain Syndrome prepared and submitted by Jose Marie V. Lazaga and Marc Llandro C. Fernandez, was checked and has complied with the revisions and suggestions requested by panel members after thorough evaluation. This final version of the manuscript is hereby approved and accepted for submission in partial fulfillment of the requirements for the degree of Bachelor of Science in Biology. Noted by: Asst. Prof. Marilyn G. Rimando, PhD Research adviser, Bio/MicroSem 602-603 Approved by: Bio/MicroSem 603 panel member Bio/MicroSem 603 panel member Date: Date: UST College of Science Department of Biological Sciences 3 DECLARATION OF ORIGINALITY We hereby affirm that this submission is our own work and that, to the best of our knowledge and belief, it contains no material previously published or written by another person nor material to which a substantial extent has been accepted for award of any other degree or diploma of a university or other institute of higher learning, except where due acknowledgement is made in the text. We also declare that the intellectual content of this undergraduate research is the product of our work, even though we may have received assistance from others on style, presentation, and language expression. -
1 Supporting Information for a Microrna Network Regulates
Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia. -
Characterizing G-Quadruplex Mediated Regulation of the Amyloid Precursor Protein Expression by Ezekiel Matthew David Crenshaw Oc
I Characterizing G-Quadruplex Mediated Regulation of the Amyloid Precursor Protein Expression By Ezekiel Matthew David Crenshaw October, 2016 A Dissertation Presented to the Faculty of Drexel University Department of Biology In partial fulfillment of the Requirements for the Degree of Ph.D. Daniel Marenda, Ph.D. (Chair) Elias Spiliotis, Ph.D. Associate Professor, Associate Professor, Director, Graduate Student Program Director, Cell Imaging Center Co-Director, Cell Imaging Center Dept. Biology Dept. Biology Drexel University Drexel University Tali Gidalevitz, Ph.D. Aleister Saunders, Ph.D. (Advisor) Assistant Professor, Dept. Biology Associate Professor, Drexel University Director of the RNAi Resource Center, Dept. Biology Jeff Twiss, Ph.D. Senior Vice Provost for Research, Drexel University Professor, SmartState Chair, Childhood Neurotherapeutics Michael Akins, Ph.D.(Co-Advisor) Dept. Biology University of South Carolina Assistant Professor, Dept. Biology Drexel University II Acknowledgements Proverbs 3:5-6, “Trust in the Lord with all thine heart and lean not unto thine own understanding. In all thine ways acknowledge Him and He shall direct thy paths” I want to start off my acknowledging my LORD, who is known by many names. He is El Elyon, The Most High God; He is YAHWEH Shammah, for He has been there for me; He is YAHWEH Yireh, for He has provided for all of my needs; He is YAHWEH Shalom, for He is my peace. He is Yeshua Ha Mashiach, for He is my Savior. Coming from humble beginnings, my faith in the LORD has been the source of strength and encouragement to overcome the many obstacles I faced growing up, as well as in my pursuit for my Ph.D.