S41467-019-10215-Y.Pdf
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
RGS12 Is a Novel Tumor-Suppressor Gene in African American Prostate
Published OnlineFirst June 13, 2017; DOI: 10.1158/0008-5472.CAN-17-0669 Cancer Molecular and Cellular Pathobiology Research RGS12 Is a Novel Tumor-Suppressor Gene in African American Prostate Cancer That Represses AKT and MNX1 Expression Yongquan Wang1,2, Jianghua Wang2, Li Zhang2,3, Omer Faruk Karatas2, Longjiang Shao2, Yiqun Zhang4, Patricia Castro2, Chad J. Creighton4,5,and Michael Ittmann2 Abstract African American (AA) men exhibit a relatively high incidence epithelial cells. Notably, RGS12 exhibited potent tumor-suppres- and mortality due to prostate cancer even after adjustment for sor activity in prostate cancer and prostate epithelial cell lines in socioeconomic factors, but the biological basis for this disparity is vitro and in vivo. We found that RGS12 expression correlated unclear. Here, we identify a novel region on chromosome 4p16.3 negatively with the oncogene MNX1 and regulated its expression that is lost selectively in AA prostate cancer. The negative regulator in vitro and in vivo. Further, MNX1 was regulated by AKT activity, of G-protein signaling RGS12 was defined as the target of 4p16.3 and RGS12 expression decreased total and activated AKT levels. deletions, although it has not been implicated previously as a Our findings identify RGS12 as a candidate tumor-suppressor tumor-suppressor gene. RGS12 transcript levels were relatively gene in AA prostate cancer, which acts by decreasing expression of reduced in AA prostate cancer, and prostate cancer cell lines AKT and MNX1, establishing a novel oncogenic axis in this showed decreased RGS12 expression relative to benign prostate disparate disease setting. Cancer Res; 77(16); 1–11. -
Defining Functional Interactions During Biogenesis of Epithelial Junctions
ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. -
Characterization of Genomic Copy Number Variation in Mus Musculus Associated with the Germline of Inbred and Wild Mouse Populations, Normal Development, and Cancer
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-18-2019 2:00 PM Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer Maja Milojevic The University of Western Ontario Supervisor Hill, Kathleen A. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Maja Milojevic 2019 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Genetics and Genomics Commons Recommended Citation Milojevic, Maja, "Characterization of genomic copy number variation in Mus musculus associated with the germline of inbred and wild mouse populations, normal development, and cancer" (2019). Electronic Thesis and Dissertation Repository. 6146. https://ir.lib.uwo.ca/etd/6146 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Mus musculus is a human commensal species and an important model of human development and disease with a need for approaches to determine the contribution of copy number variants (CNVs) to genetic variation in laboratory and wild mice, and arising with normal mouse development and disease. Here, the Mouse Diversity Genotyping array (MDGA)-approach to CNV detection is developed to characterize CNV differences between laboratory and wild mice, between multiple normal tissues of the same mouse, and between primary mammary gland tumours and metastatic lung tissue. -
The Landscape of Somatic Mutations in Epigenetic Regulators Across 1,000 Paediatric Cancer Genomes
ARTICLE Received 24 Sep 2013 | Accepted 12 Mar 2014 | Published 8 Apr 2014 DOI: 10.1038/ncomms4630 The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes Robert Huether1,*, Li Dong2,*, Xiang Chen1, Gang Wu1, Matthew Parker1, Lei Wei1, Jing Ma2, Michael N. Edmonson1, Erin K. Hedlund1, Michael C. Rusch1, Sheila A. Shurtleff2, Heather L. Mulder3, Kristy Boggs3, Bhavin Vadordaria3, Jinjun Cheng2, Donald Yergeau3, Guangchun Song2, Jared Becksfort1, Gordon Lemmon1, Catherine Weber2, Zhongling Cai2, Jinjun Dang2, Michael Walsh4, Amanda L. Gedman2, Zachary Faber2, John Easton3, Tanja Gruber2,4, Richard W. Kriwacki5, Janet F. Partridge6, Li Ding7,8,9, Richard K. Wilson7,8,9, Elaine R. Mardis7,8,9, Charles G. Mullighan2, Richard J. Gilbertson10, Suzanne J. Baker10, Gerard Zambetti6, David W. Ellison2, Jinghui Zhang1 & James R. Downing2 Studies of paediatric cancers have shown a high frequency of mutation across epigenetic regulators. Here we sequence 633 genes, encoding the majority of known epigenetic regulatory proteins, in over 1,000 paediatric tumours to define the landscape of somatic mutations in epigenetic regulators in paediatric cancer. Our results demonstrate a marked variation in the frequency of gene mutations across 21 different paediatric cancer subtypes, with the highest frequency of mutations detected in high-grade gliomas, T-lineage acute lymphoblastic leukaemia and medulloblastoma, and a paucity of mutations in low-grade glioma and retinoblastoma. The most frequently mutated genes are H3F3A, PHF6, ATRX, KDM6A, SMARCA4, ASXL2, CREBBP, EZH2, MLL2, USP7, ASXL1, NSD2, SETD2, SMC1A and ZMYM3. We identify novel loss-of-function mutations in the ubiquitin-specific processing protease 7 (USP7) in paediatric leukaemia, which result in decreased deubiquitination activity. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Cyclin K Interacts with Β-Catenin to Induce Cyclin D1 Expression And
Theranostics 2020, Vol. 10, Issue 24 11144 Ivyspring International Publisher Theranostics 2020; 10(24): 11144-11158. doi: 10.7150/thno.42578 Research Paper Cyclin K interacts with β-catenin to induce Cyclin D1 expression and facilitates tumorigenesis and radioresistance in lung cancer Guojun Yao*, Jing Tang*, Xijie Yang, Ye Zhao, Rui Zhou, Rui Meng, Sheng Zhang, Xiaorong Dong, Tao Zhang, Kunyu Yang, Gang Wu and Shuangbing Xu Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. *These authors contributed equally to this work. Corresponding author: Shuangbing Xu or Gang Wu, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. E-mail: [email protected] or [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.11.29; Accepted: 2020.08.24; Published: 2020.09.11 Abstract Rationale: Radioresistance remains the major cause of local relapse and distant metastasis in lung cancer. However, the underlying molecular mechanisms remain poorly defined. This study aimed to investigate the role and regulatory mechanism of Cyclin K in lung cancer radioresistance. Methods: Expression levels of Cyclin K were measured by immunohistochemistry in human lung cancer tissues and adjacent normal lung tissues. Cell growth and proliferation, neutral comet and foci formation assays, G2/M checkpoint and a xenograft mouse model were used for functional analyses. Gene expression was examined by RNA sequencing and quantitative real-time PCR. -
M2139: Molecular Analysis for Gliomas
Molecular Analysis for Gliomas Policy Number: AHS – M2139 – Molecular Analysis Prior Policy Name and Number, as applicable: for Gliomas • AHS – M2139 – Analysis of MGMT Promoter Methylation for Malignant Gliomas Initial Presentation Date: 06/16/2021 Revision Date: N/A I. Policy Description Glioma refers to tumors resulting from metaplastic transformation of glial tissue of the nervous system. Tumors have historically been classified by the retained histologic features of the three types of glial cells: astrocytes, oligodendrocytes, and ependymal cells. Tumors of each type can vary widely in aggressiveness, response to treatment, and prognosis (Louis, Schiff, & Batchelor, 2020). Molecular genetic features were added to histopathologic appearance in the current WHO classification to yield more biologically homogeneous and narrowly defined diagnostic entities for greater diagnostic accuracy, improved patient management, more accurate determinations of prognosis, and better treatment response (Louis et al., 2016). II. Related Policies Policy Number Policy Title AHS-M2109 Molecular Panel Testing of Cancers for Diagnosis, Prognosis, and Identification of Targeted Therapy III. Indications and/or Limitations of Coverage Application of coverage criteria is dependent upon an individual’s benefit coverage at the time of the request 1. MGMT promoter methylation testing IS MEDICALLY NECESSARY for prognosis of malignant gliomas. 2. IDH1 and IDH2 testing IS MEDICALLY NECESSARY for prognosis of malignant gliomas. M2139 Molecular Analysis for Gliomas Page 1 of 15 3. Testing for the co-deletion of 1p and 19q by either fluorescence in situ hybridization (FISH) or polymerase chain reaction (PCR) for the characterization of gliomas and/or to guide treatment decisions IS MEDICALLY NECESSARY. 4. ATRX mutation testing via EITHER immunohistochemistry OR gene sequencing IS MEDICALLY NECESSARY for the prognosis of malignant gliomas. -
Spectrin Binding Motifs Control Scribble Cortical Dynamics And
1 2 3 Spectrin binding motifs control Scribble cortical 4 dynamics and polarity function 5 6 Batiste Boëda and Sandrine Etienne Manneville 7 8 Institut Pasteur (CNRS URA 3691-INSERM), France 9 Correspondance to Sandrine Etienne-Manneville. Cell Polarity, Migration and Cancer Unit, 10 Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France; Phone: +33 1 4438 9591; 11 FAX: +33 1 4568 8548. 12 e-mail: [email protected] 13 14 Competing interests statement: 15 The authors declare that no competing interests exist. 16 17 1 18 Abstract 19 The tumor suppressor protein Scribble (SCRIB) plays an evolutionary conserved role in 20 cell polarity. Despite being central for its function, the molecular basis of SCRIB 21 recruitment and stabilization at the cell cortex is poorly understood. Here we show that 22 SCRIB binds directly to the CH1 domain of spectrins, a molecular scaffold that 23 contributes to the cortical actin cytoskeleton and connects it to the plasma membrane. 24 We have identified a short evolutionary conserved peptide motif named SADH motif 25 (SCRIB ABLIMs DMTN Homology) which is necessary and sufficient to mediate protein 26 interaction with spectrins. The SADH domains contribute to SCRIB dynamics at the 27 cell cortex and SCRIB polarity function. Furthermore, mutations in SCRIB SADH 28 domains associated with spina bifida and cancer impact the stability of SCRIB at the 29 plasma membrane, suggesting that SADH domain alterations may participate in human 30 pathology. 31 32 33 34 35 36 37 2 38 Introduction 39 The protein SCRIB has been implicated in a staggering array of cellular processes 40 including polarity, migration, proliferation, differentiation, apoptosis, stemcell 41 maintenance, and vesicle trafficking [1]. -
COX4I2 Antibody (Aa31-80) Rabbit Polyclonal Antibody Catalog # ALS15898
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 COX4I2 Antibody (aa31-80) Rabbit Polyclonal Antibody Catalog # ALS15898 Specification COX4I2 Antibody (aa31-80) - Product Information Application IHC, IF, WB Primary Accession Q96KJ9 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Calculated MW 20kDa KDa COX4I2 Antibody (aa31-80) - Additional Information Gene ID 84701 Anti-COX4I2 antibody IHC staining of human kidney. Other Names Cytochrome c oxidase subunit 4 isoform 2, mitochondrial, Cytochrome c oxidase subunit IV isoform 2, COX IV-2, COX4I2, COX4L2 Target/Specificity COX42 Antibody detects endogenous levels Immunofluorescence of COS7 cells, using of total COX42 protein. COX42 Antibody. Reconstitution & Storage Store at -20°C for up to one year. Precautions COX4I2 Antibody (aa31-80) is for research use only and not for use in diagnostic or therapeutic procedures. COX4I2 Antibody (aa31-80) - Protein Information Western blot of extracts from K562 cells, Name COX4I2 treated with insulin 0.01U/ml 15', using COX42 Antibody. Synonyms COX4L2 Function COX4I2 Antibody (aa31-80) - Background Component of the cytochrome c oxidase, the last enzyme in the mitochondrial This protein is one of the nuclear-coded electron transport chain which drives polypeptide chains of cytochrome c oxidase, oxidative phosphorylation. The respiratory the terminal oxidase in mitochondrial electron chain contains 3 multisubunit complexes transport. Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 succinate dehydrogenase (complex II, CII), COX4I2 Antibody (aa31-80) - References ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) Huettemann M.,et al.Gene and cytochrome c oxidase (complex IV, 267:111-123(2001). -
Mutation in the COX4I1 Gene Is Associated with Short Stature, Poor Weight Gain and Increased Chromosomal Breaks, Simulating Fanconi Anemia
European Journal of Human Genetics (2017) 25, 1142–1146 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg ARTICLE Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia Bassam Abu-Libdeh*,1,4, Liza Douiev2,3,4, Sarah Amro1, Maher Shahrour1, Asaf Ta-Shma2, Chaya Miller2,3, Orly Elpeleg2 and Ann Saada*,2,3 We describe a novel autosomal recessive form of mitochondrial disease in a child with short stature, poor weight gain, and mild dysmorphic features with highly suspected Fanconi anemia due to a mutation in COX4I1 gene. Whole Exome Sequencing was performed then followed by Sanger confirmation, identified a K101N mutation in COX4I1, segregating with the disease. This nuclear gene encodes the common isoform of cytochrome c oxidase (COX) subunit 4 (COX 4-1), an integral regulatory part of COX (respiratory chain complex IV) the terminal electron acceptor of the mitochondrial respiratory chain. The patient’s fibroblasts disclosed decreased COX activity, impaired ATP production, elevated ROS production, decreased expression of COX4I1 mRNA and undetectable (COX4) protein. COX activity and ATP production were restored by lentiviral transfection with the wild-type gene. Our results demonstrate the first human mutation in the COX4I1 gene linked to diseases and confirm its role in the pathogenesis. Thus COX4I1 mutations should be considered in any patient with features suggestive of this diagnosis. European Journal of Human Genetics (2017) 25, 1142–1146; doi:10.1038/ejhg.2017.112; published online 2 August 2017 INTRODUCTION normal vaginal delivery with birth weight of 2.8 kg after an uneventful Mitochondrial cytochrome c oxidase (COX, complex IV) is the terminal pregnancy. -
Autophagy Processes Are Dependent on EGF Receptor Signaling
www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 54), pp: 30289-30303 Research Paper Autophagy processes are dependent on EGF receptor signaling Vincenzo De Iuliis1, Antonio Marino1, Marika Caruso1, Sabrina Capodifoglio1, Vincenzo Flati2, Anna Marynuk3, Valeria Marricareda3, Sebastiano Ursi1, Paola Lanuti4, Claudio Talora5, Pio Conti6, Stefano Martinotti1,7 and Elena Toniato7 1Unit of Predictive Medicine, SS Annunziata University Hospital of Chieti, Chieti, Italy 2Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy 3Odessa National Medical University, Odesa, Odessa Oblsat, Ucraina 4Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti, Chieti, Italy 5Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy 6Postgraduate Medical School, University of Chieti, Chieti, Italy 7Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti, Chieti, Italy Correspondence to: Elena Toniato, email: [email protected] Keywords: apoptosis; autophagy; Beclin 1; EGF receptor; MAPK pathway Received: May 03, 2018 Accepted: June 13, 2018 Published: July 13, 2018 Copyright: De Iuliis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Autophagy is a not well-understood conserved mechanism activated during nutritional deprivation in order to maintain cellular homeostasis. In the present study, we investigated the correlations between autophagy, apoptosis and the MAPK pathways in melanoma cell lines. We demonstrated that during starvation the EGF receptor mediated signaling activates many proteins involved in the MAPK pathway. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase