Titel Constitutive Activity of the Human Histamine H4 Receptor: Molecular Modelling, Binding and Functional Studies on Wild-Type and Mutant H4R Orthologs

Total Page:16

File Type:pdf, Size:1020Kb

Titel Constitutive Activity of the Human Histamine H4 Receptor: Molecular Modelling, Binding and Functional Studies on Wild-Type and Mutant H4R Orthologs Titel Constitutive activity of the human histamine H4 receptor: Molecular modelling, binding and functional studies on wild-type and mutant H4R orthologs Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) an der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von David Wifling aus Bad Griesbach 2015 Die vorliegende Arbeit entstand in der Zeit von Mai 2011 bis Dezember 2014 unter der Anleitung von Herrn Prof. Dr. A. Buschauer und Herrn Prof. Dr. S. Dove am Institut für Pharmazie der Fakultät für Chemie und Pharmazie der Universität Regensburg. Das Promotionsgesuch wurde eingereicht im Februar 2015 Tag der mündlichen Prüfung: 13. März 2015 Prüfungsausschuss: Prof. Dr. A. Slenczka (Vorsitzender) Prof. Dr. A. Buschauer (Erstgutachter) Prof. Dr. S. Dove (Zweitgutachter) Prof. Dr. S. Elz (Drittprüfer) Widmung Für meine liebste Maria „Phantasie ist wichtiger als Wissen, denn Wissen ist begrenzt.“ Albert Einstein, 1879-1955 Danksagungen An dieser Stelle möchte ich mich bedanken bei: Herrn Prof. Dr. A. Buschauer, dass ich an einem so interessanten Thema arbeiten durfte, sowie dass ich meine in silico erzeugten Hypothesen experimentell mittels Herstellung von Rezeptormutanten überprüfen durfte. Ganz herzlichen Dank auch dafür, dass ich sehr frei war in der Projektplanung, für die sehr guten Diskussionen sowie die konstruktive Kritik bei der Durchsicht dieser Arbeit und der Publikationen. Herrn Prof. Dr. S. Dove für seine konstruktive Kritik zu diversen Modelling-Themen, bei der Interpretation der Ergebnisse sowie bei der Durchsicht dieser Arbeit und der Publikationen. Herrn Prof. Dr. R. Seifert (Institut für Pharmakologie, Medizinische Hochschule Hannover) für seine zielführenden Beiträge unter anderem zu Western Blots und diversen Assays, sowie bei der Durchsicht der im Br. J. Pharmacol. veröffentlichten Publikation. Herrn Prof. Dr. G. Bernhardt insbesondere für die Unterstützung bei der Bestimmung der Rezeptor- und G-Proteinexpressionslevel verschiedener Rezeptor-Konstrukte, sowie für die Durchsicht der Publikationen. Frau PD Dr. A. Strasser und Herrn Prof. Dr. S. Dove für die Bereitstellung des auf der Kristallstruktur des inaktiven hH1R (PDB ID: 3RZE) basierenden hH4R Homologiemodells. Herrn Prof. Dr. S. Elz für die Ermöglichung, ein Tutorium für die Studentinnen und Studenten im ersten Semester Pharmazie zu halten, sowie für die Bereitschaft als Drittprüfer an der mündlichen Prüfung teilzunehmen. Herrn Prof. Dr. A. Slenczka für die Bereitschaft, dem Prüfungsausschuss vorzustehen. Frau K. Löffel für die gute Zusammenarbeit sowie die zahlreichen fachlichen Diskussionen während der Anfertigung ihrer Diplomarbeit. Insbesondere danke ich für die Bereitstellung der in [3H]Histamin Sättigungs-, Bindungs- und [35S]GTPγS-Experimenten ermittelten Daten zu den von ihr generierten hH4R-F169V und mH4R-V171F Mutanten. Herrn Dr. U. Nordemann für die Testung zweier Rezeptormutanten in der [3H]Histamin Sättigung sowie die Durchführung von [3H]Histamin Kompetitions-Bindungs Experimenten mit dem hH4R Wildtyp und fünf hH4R Mutanten. Ferner vielen Dank für die fachlichen Diskussionen. Frau Dr. I. Brunskole und Frau K. Ladova für die Bereitstellung der Baculoviren für die hH4R-R341S und hH4R-R341E Mutanten. Herrn Dr. P. Baumeister für die Bereitstellung von Daten zum hH4R bezüglich eines [3H]Histamin Sättigungsexperimentes sowie mehrerer [3H]Histamin Kompetitions-Bindungs Experimente mit Histamin, JNJ7777120 und VUF8430 als Kompetitor. Herrn Dr. T. Holzammer für die Einführung in das Molecular Modelling sowie für die vielen Gespräche zu den Themen Molecular Modelling, Mutagenese und zu pharmakologischen Fragestellungen. Herrn Dr. M. Keller für die vielen Diskussionen unter anderem zu pharmakologischen Parametern und deren Auswertung bzw. Interpretation. meinen derzeitigen und ehemaligen Bürokollegen Herrn Dr. P. Baumeister, Frau Dr. M. Ertel, Herrn Dr. T. Holzammer, Frau Dr. A. Kaczor und Herrn Dr. M. Keller für die angenehme Atmosphäre und die vielen fachlichen Diskussionen. Herrn Dr. P. Igel für die Bereitstellung der H4R Agonisten UR-PI294 und UR-PI376, Frau Dr. S. Gobleder für die Bereitstellung des H4R Agonisten Isoloxapin sowie Herrn Dr. P. Baumeister für die Bestellung von [35S]GTPγS und [3H]Histamin. Frau M. Beer-Krön sowie Frau G. Wilberg für die Kultivierung der Sf9 Zellen sowie Frau M. Beer-Krön und Frau D. Fritsch für die Durchführung einiger Assays. Herrn P. Richthammer für die tatkräftige Unterstützung bei technischen Problemen. Frau U. Hasselmann, Frau S. Heinrich und Frau K. Reindl für ihre freundliche Hilfe bei vielen organisatorischen Fragen. dem Graduiertenkolleg GRK 760 der DFG für die finanzielle Unterstützung sowie die wissenschaftliche Ausbildung. allen Kollegen und studentischen Hilfskräften für die Vorbereitung und Durchführung zahlreicher Praktika. Besonders danke ich meinen Eltern Ingrid und Walter, meinen Geschwistern Judith, Raphael und Manuel für ihre Unterstützung jeglicher Art, für ihr stets offenes Ohr sowie die schöne Zeit zu Hause. Mein besonderer Dank gilt meiner lieben Freundin Maria für die Unterstützung während der Promotion, für die schönen Unternehmungen, und besonders für die Liebe, die sie mir geschenkt hat. I Contents 1 Introduction ......................................................................... 1 1.1 G-protein coupled receptors ................................................................... 1 1.1.1 GPCR classes ..................................................................................................... 2 1.1.2 Structure of G-protein coupled receptors ............................................................. 3 1.1.3 Function of G-protein coupled receptors.............................................................. 4 1.1.4 Models of ligand binding and G-protein coupling ................................................. 5 1.1.4.1 Classical model ................................................................................................................... 5 1.1.4.2 Operational model ............................................................................................................... 5 1.1.4.3 Ternary complex models ..................................................................................................... 6 1.1.5 Constitutive activity of GPCRs ............................................................................. 7 1.1.6 Signal transduction .............................................................................................. 8 1.1.6.1 Structure of G-proteins and G-protein cycle ....................................................................... 8 1.1.6.2 Functions of different G-protein subtypes ......................................................................... 10 1.1.6.3 β-arrestin-mediated GPCR internalization and signalling ................................................. 11 1.2 Histamine and histamine receptors ..................................................... 13 1.2.1 Historical perspective of histamine .....................................................................13 1.2.2 Histamine: occurrence and metabolism ..............................................................14 1.2.3 Histamine receptor subtypes and ligands ...........................................................15 1.2.3.1 Homologies between the four histamine receptor subtypes ............................................. 15 1.2.3.2 Key amino acids of the four histamine receptor subtypes ................................................ 16 1.2.3.3 Selectivity profile of histamine receptor ligands ................................................................ 17 1.2.3.4 H1 receptor ........................................................................................................................ 18 1.2.3.5 H2 receptor ........................................................................................................................ 20 1.2.3.6 H3 receptor ........................................................................................................................ 21 1.2.3.7 H4 receptor ........................................................................................................................ 22 1.3 Species differences ............................................................................... 26 1.3.1 Homologies between H4R species variants ........................................................26 1.3.2 Key amino acids of the H4R species orthologs ...................................................26 1.3.3 Pharmacological characteristics of H4R species orthologs .................................28 1.4 References ............................................................................................. 31 2 Scope and Objectives .......................................................... 47 2.1 References ............................................................................................. 49 3 Computational Chemistry .................................................... 51 3.1 Summary ................................................................................................ 51 3.2 Introduction ............................................................................................ 52 3.3 Methods .................................................................................................. 53 3.3.1 Available GPCR crystal structures ......................................................................53 3.3.2 H3R/H4R homology models
Recommended publications
  • Biased Allosteric Regulation of the Prostaglandin F2α Receptor: From
    Biased Allosteric Regulation of the Prostaglandin F2 Receptor: From Small Molecules to Large Receptor Complexes By Eugénie Goupil Department of Pharmacology and Therapeutics McGill University, Montréal, Canada November, 2012 A thesis submitted to McGill in partial fulfillment of the requirements of the degree of Doctor of philosophy Copyright ©Eugénie Goupil, 2012 ''In theory, there is no difference between theory and practice. In practice, there is.'' -Lawrence Peter ''Yogi'' Berra ii Abstract G protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors, and thus some of the most important targets for drug discovery. By binding to the orthosteric site where endogenous ligands bind, agonists and antagonists differentially modulate signals sent downstream from these receptors. New evidence suggests that GPCRs possess topographically distinct or allosteric binding sites, which may differentially modulate agonist- and antagonist-mediated responses to selectively affect distinct signalling pathways coupled to the same receptor. These sites may either positively or negatively regulate receptor activity, depending on the pathway in question, and thus can act as biased ligands, leading to functional selectivity (or ligand-directed signalling). Another way of allosterically regulating GPCR signalling is through receptor oligomerization, which has recently emerged as a common mechanism for regulating receptor function. The GPCR for prostaglandin F2 FP, is implicated in many important physiological responses, such as parturition, smooth muscle cell contraction and blood pressure regulation. Therefore, evaluating the potential use of allosteric modulators of FP to fine-tune PGF2-mediated signals, as well as generating a better understanding of its putative oligomerization partners would be of significant pharmacological and clinical interest.
    [Show full text]
  • The Role of Yoga in the Complementary Treatment of Cancer
    MOJ Yoga & Physical Therapy Mini Review Open Access The role of Yoga in the complementary treatment of cancer Abstract Volume 2 Issue 3 - 2017 The life of a cancer patient is complicated by a litany of physical, psychological, social 1 2 and spiritual factors leading to anxiety, fatigue, depression and several other unpleasant Neil K Agarwal, Shashi K Agarwal 1 emotional issues. Nausea and vomiting, insomnia and pain also contribute greatly to Hahnemann University Hospital, USA 2 the overall discomfort. These symptoms often result in a significant reduction in the Center for Contemporary and Complementary Cardiology, USA quality of life. A host of non-pharmacological therapeutic interventions have been tried to alleviate this associated physical and emotional issues in cancer patients, with Correspondence: Neil K Agarwal, Hahnemann University limited success. Yoga therapy has increasingly demonstrated evidence based benefits Hospital, USA, Email [email protected] in alleviating many of these cancer-related symptoms and in greatly improving the quality of life of these patients. Received: May 10, 2017 | Published: September 18, 2017 Keywords: yoga, cancer, anxiety, depression, fatigue, nausea and vomiting, cancer pain, quality of life Introduction Results Yoga evolved over thousands of years in India. The ancient sages Search under ‘yoga and cancer’ revealed 339 citations dating developed this practice as an integrative physical, psychological and back to 1975 on PubMed. PMC revealed 2,736 full length articles. spiritual regimen
    [Show full text]
  • BARWON HEALTH RESEARCH REPORT 2018 Foreword
    Research Report 20 18 Contents 4 Foreword 36 Endocrinology 108 Opthamology 40 Epidemiology (EPI-Centre 109 Oral Health Services Section 1 for Healthy Ageing) 6 112 Palliative Care Overview 45 Infectious Diseases 114 Pharmacy 8 Academic Strategic Plan 48 Nursing 117 Physiotherapy 10 The Barwon Health Foundation 54 Nutritional Psychiatry (Food 118 Social Work and Future Fund And Mood Centre) 120 Speech Pathology 12 St Mary’s Library and 59 Orthopaedic Surgery Research Centre 122 Urology 63 Paediatrics (The Child Health 13 Grants Received Research Unit (CHRU) Section 5 14 Career Spotlight - Professor 65 Psychiatry (Impact SRC) 124 Mark Kotowicz Clinical Trials 78 Surgery 126 Clinical Trials Advisory 84 Career Spotlight - 16 Section 2 Committee Summary Dr Paul Talman Research Directorate And (CTAC) 2018 Barwon Health Human 128 Cardiology Research Ethics Committee 86 Section 4 130 Endocrinology/Infectious (HREC) Barwon Health Research Diseases And Pediatrics 18 Barwon Health Research Roundups 132 IMPACT Directorate 88 Aged Care 134 Intensive Care 22 Barwon Health Human 89 Anaesthesia Research Ethics 138 Oncology And Haematology Committee (HREC) 91 Barwon Medical Imaging (BMI) 25 Research Week 2017 Summary 93 Cancer Services Section 6 142 And Outcomes 96 Cardiology A Snapshot Of Australian 26 Career Spotlight - 98 Community Health Conferences Dr Greg Weeks 99 Healthlinks And 160 A Snapshot Of International Personalised Care Conferences 28 Section 3 101 Hospital Admission Risk Barwon Health/Deakin Program (HARP) 164 Section 7 University Collaborative Publications Research Groups 102 Nephrology 30 Emerging Infectious 105 Occupational Therapy Diseases (GCEID) 3 BARWON HEALTH RESEARCH REPORT 2018 Foreword Welcome to the 2018 Research Report, Barwon Health’s fourth annual edition.
    [Show full text]
  • Phencyclidine: an Update
    Phencyclidine: An Update U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse and Mental Health Administration Phencyclidine: An Update Editor: Doris H. Clouet, Ph.D. Division of Preclinical Research National Institute on Drug Abuse and New York State Division of Substance Abuse Services NIDA Research Monograph 64 1986 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administratlon National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20657 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 NIDA Research Monographs are prepared by the research divisions of the National lnstitute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY COHEN, M.D. Temple University School of Medicine Los Angeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic lnstitute National Federation of Parents for Troy, New York Drug Free Youth RICHARD E. BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTEMAN Langley Porter Neuropsychiatric lnstitute Alcohol and Drug Problems Association San Francisco, California of North America Washington, D.C. DENISE KANDEL, Ph.D GILBERT J. BOTV N, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V.
    [Show full text]
  • Lysergic Acid Diethylamide (LSD) Promotes Social Behavior Through Mtorc1 in the Excitatory Neurotransmission
    Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission Danilo De Gregorioa,b,1, Jelena Popicb,2,3, Justine P. Ennsa,3, Antonio Inserraa,3, Agnieszka Skaleckab, Athanasios Markopoulosa, Luca Posaa, Martha Lopez-Canula, He Qianzia, Christopher K. Laffertyc, Jonathan P. Brittc, Stefano Comaia,d, Argel Aguilar-Vallese, Nahum Sonenbergb,1,4, and Gabriella Gobbia,f,1,4 aNeurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1; bDepartment of Biochemistry, McGill University, Montreal, QC, Canada, H3A 1A3; cDepartment of Psychology, McGill University, Montreal, QC, Canada, H3A 1B1; dDivision of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy; eDepartment of Neuroscience, Carleton University, Ottawa, ON, Canada, K1S 5B6; and fMcGill University Health Center, Montreal, QC, Canada, H3A 1A1 Contributed by Nahum Sonenberg, November 10, 2020 (sent for review October 5, 2020; reviewed by Marc G. Caron and Mark Geyer) Clinical studies have reported that the psychedelic lysergic acid receptor (6), but also displays affinity for the 5-HT1A receptor diethylamide (LSD) enhances empathy and social behavior (SB) in (7–9). Several studies have demonstrated that LSD modulates humans, but its mechanism of action remains elusive. Using a glutamatergic neurotransmission and, indirectly, the α-amino- multidisciplinary approach including in vivo electrophysiology, 3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. optogenetics, behavioral paradigms, and molecular biology, the Indeed, in vitro studies have shown that LSD increased the ex- effects of LSD on SB and glutamatergic neurotransmission in the citatory response of interneurons in the piriform cortex following medial prefrontal cortex (mPFC) were studied in male mice.
    [Show full text]
  • 050125Understanding Nausea and Vomiting in Advanced Cancer
    CLINICAL knowledge Understanding nausea and vomiting in advanced cancer Author Colin Perdue, Bn, Rgn, dipn, is clinical nurse Definitions specialist in palliative medicine, Morriston Hospital, Nausea and vomiting are often regarded as a single Swansea. entity, but they are separate physiological conditions AbstrAct Perdue, C. (2005) Understanding nausea (Eckert, 2001). Nausea is an unpleasant feeling of the and vomiting in advanced cancer. Nursing Times; 101, need to vomit. It is often accompanied by autonomic 4, 32–35. symptoms such as pallor, cold sweat, salivation and tachy- Nausea and vomiting are commonly experienced by cardia (Yarbro et al, 1999). Retching is a strong involuntary people with advanced cancer. Nausea and vomiting can effort to vomit. It occurs in the presence of nausea and RefeRences have an adverse effect on a patient’s physical, psycho- often culminates in vomiting (Twycross and Back, 1998). logical and social well-being. Knowledge of the physiol- Vomiting (emesis) is the forceful expulsion of gastric con- Allan, S.G. (1999) Nausea and vomiting. ogy of nausea and vomiting will promote a rational tents through the mouth (Twycross and Back, 1998). In: Doyle, D. et al (eds) Oxford Textbook choice of treatment. Nurses also need to be aware of After an episode of vomiting, there may be a post- of Palliative Medicine. Oxford: Oxford non-pharmacological measures that can reduce these ejection phase characterised by weakness, lethargy and University Press. distressing symptoms. shivering (Allan, 1999). Vomiting may ease the sensation Baines, M. (1997) Nausea, vomiting and of nausea. It may serve a protective function by expelling intestinal obstruction.
    [Show full text]
  • Roles for the Uptake 2 Transporter OCT3 in Regulation Of
    Marquette University e-Publications@Marquette Biomedical Sciences Faculty Research and Publications Biomedical Sciences, Department of 2-2019 Roles for the Uptake2 Transporter OCT3 in Regulation of Dopaminergic Neurotransmission and Behavior Paul J. Gasser Marquette University, [email protected] Follow this and additional works at: https://epublications.marquette.edu/biomedsci_fac Part of the Neurosciences Commons Recommended Citation Gasser, Paul J., "Roles for the Uptake2 Transporter OCT3 in Regulation of Dopaminergic Neurotransmission and Behavior" (2019). Biomedical Sciences Faculty Research and Publications. 191. https://epublications.marquette.edu/biomedsci_fac/191 Marquette University e-Publications@Marquette Biomedical Sciences Faculty Research and Publications/College of Health Sciences This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation below. Neurochemistry International, Vol. 123, (February 2019): 46-49. DOI. This article is © Elsevier and permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. Roles for the Uptake2 Transporter OCT3 in Regulation of Dopaminergic Neurotransmission and Behavior Paul J. Gasser Department of Biomedical Sciences, Marquette University, Milwaukee, WI Abstract Transporter-mediated uptake determines the
    [Show full text]
  • Status of Brain Imaging in Gastroparesis
    Review Status of Brain Imaging in Gastroparesis Zorisadday Gonzalez * and Richard W. McCallum Division of Gastroenterology, Center for Neurogastroenterology and GI Motility, Department of Internal Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Ave., El Paso, TX 79905, USA; [email protected] * Correspondence: [email protected] Received: 6 March 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: The pathophysiology of nausea and vomiting in gastroparesis is complicated and multifaceted involving the collaboration of both the peripheral and central nervous systems. Most treatment strategies and studies performed in gastroparesis have focused largely on the peripheral effects of this disease, while our understanding of the central nervous system mechanisms of nausea in this entity is still evolving. The ability to view the brain with different neuroimaging techniques has enabled significant advances in our understanding of the central emetic reflex response. However, not enough studies have been performed to further explore the brain–gut mechanisms involved in nausea and vomiting in patients with gastroparesis. The purpose of this review article is to assess the current status of brain imaging and summarize the theories about our present understanding on the central mechanisms involved in nausea and vomiting (N/V) in patients with gastroparesis. Gaining a better understanding of the complex brain circuits involved in the pathogenesis of gastroparesis will allow for the development of better antiemetic prophylactic and treatment strategies. Keywords: gastroparesis; brain imaging; functional magnetic resonance imaging (fMRI); positron emission tomography (PET) scan; central nervous system (CNS) 1. Introduction Gastroparesis is a chronic heterogeneous motor disorder with variable clinical manifestations including episodic nausea, vomiting, retching, post-prandial fullness, early satiety, and/or upper abdominal pain in the absence of mechanical obstruction [1].
    [Show full text]
  • Sex Differences in Serotonergic and Dopaminergic Mediation of LSD Discrimination in Rats
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 8-2017 Sex Differences in Serotonergic and Dopaminergic Mediation of LSD Discrimination in Rats Keli A. Herr Western Michigan University, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Psychology Commons Recommended Citation Herr, Keli A., "Sex Differences in Serotonergic and Dopaminergic Mediation of LSD Discrimination in Rats" (2017). Dissertations. 3170. https://scholarworks.wmich.edu/dissertations/3170 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. SEX DIFFERENCES IN SEROTONERGIC AND DOPAMINERGIC MEDIATION OF LSD DISCRIMINATION IN RATS by Keli A Herr A dissertation submitted to the Graduate College in partial fulfillment of the requirements for the degree of Doctor of Philosophy Psychology Western Michigan University August 2017 Doctoral Committee: Lisa Baker, Ph.D., Chair Cynthia Pietras, Ph.D. Heather McGee, Ph.D. Missy Peet, Ph.D. SEX DIFFERENCES IN SEROTONERGIC AND DOPAMINERGIC MEDIATION OF LSD DISCRIMINATION IN RATS Keli A. Herr, Ph.D. Western Michigan University After decades of opposition, a resurgence of interest in the psychotherapeutic potential of LSD is gaining acceptance in the medical community. Future acceptance of LSD as a psychotherapeutic adjuvant may be predicated on knowledge about its neural mechanisms of action. Preclinical drug discrimination assay offers an invaluable model to determine the neural mechanisms underlying LSD’s interoceptive stimulus effects.
    [Show full text]
  • 2019 Annual Report
    2019 Annual Report [TITLE] Contents Centre Director’s Message 3 Objectives 4 IMPACCT at a glance 5 Awards and achievements 6 Research projects summary 7 Chronic Breathlessness management - World first medication listed 8 Publications summary 9 Postgraduate Palliative Care Course 10 IMPACCT Team 13 ImPaCCT:NSW Team 23 Clinical Trials 23 PaCCSC and CST Team, PaCCSC Governance 24 CST Governance 26 Consumer Advisory Group 30 External Academic Appointments 30 Editorial Roles 31 UTS Committees 32 UTS Teaching and Learning 33 IMPACCT-led Grants Awarded 2019 34 Collaborative grants led by other areas or institutions awarded in 2019 35 Current Projects 36 Higher degree research students 64 Publications 67 Conference presentations 77 Collaborations 78 ITCC Clinical Trials Sites 79 Visiting Scholars 83 External Engagement 84 Approvals & Overall Comments – Centre Annual Report 87 2019 ANNUAL REPORT | IMPACCT 2 Centre Director’s Message The Centre for Improving Palliative, Aged and Chronic Care through Clinical Research and Translation (IMPACCT) takes real world problems and works collaboratively to develop feasible, affordable and effective solutions. Combining the input of our lived-experience advisors (consumers), with the insights from our clinical experts, industry partners and the depth and breadth of expertise within our academic group, ensures that our research and educational endeavours are grounded in improving what matters most to older people - those living with progressive chronic illnesses and people with palliative care needs. This year, many of IMPACCT’s academics were honoured with a variety of awards, highlighted below and showcased in the Annual Report. One of the most significant achievements was the world’s first registration of a medication to manage optimally treated breathlessness, and its subsequent addition to the pharmaceutical benefits scheme list in early 2019 was a major highlight.
    [Show full text]
  • Dopamine Agonists 1
    VA/DoD Drug Class Review: Dopamine Agonists 1 VA/DoD Drug Class Review: Dopamine Agonists Department of Defense Pharmacoeconomic Center (DoD PEC) Department of Veterans Affairs Pharmacy Benefits Management Strategic Healthcare Group (VA PBM) and the VA Medical Advisory Panel (VA MAP) Introduction The purpose of this review is to evaluate whether the dopamine agonists (DA) are therapeutically interchangeable. The dopamine agonists are subcategorized as ergoline and non-ergoline. The ergoline compounds (bromocriptine and pergolide) are derived from the ergot alkaloids. The non-ergoline compounds include pramipexole and ropinirole. Though the exact mechanism of action in Parkinsonism is unknown, all of the dopamine agonists are thought to work by directly stimulating postsynaptic dopaminergic receptors in the nigrostriatal system. The two ergoline agents were introduced into the market in the 1980’s. Only bromocriptine, which was FDA- approved prior to January 1, 1982, is available in generic form. Table 1: Dopamine agonists available in the U.S for the treatment of Parkinson’s disease Strengths & FDA approval Generic Brand (Manufacturer) formulations date Bromocriptine Parlodel (Novartis); Generics Tablets 2.5, and 5 mg N/A* available Pergolide Permax (Amarin) Generics Tablets 0.05, 0.25, and 1 mg 12/30/88 availab le** Pramipexole Mirapex (Pharmacia) Tablets 0.125, 0.25, 0.5, 1, 7/1/97 and 1.5 mg Ropinirole Requip (SKB) Tablets 0.25, 0.5, 1, 2, 3, 4 9/19/97 and 5 mg *Parlodel was approved prior to Jan 1, 1982. ** pergolide was voluntarily withdrawn from the market on March 29, 2007 Parkinson’s Disease is a degenerative brain disorder that affects approximately 500,000 to 1 million people in the United States.
    [Show full text]
  • Phencyclidine Increases Forebrain Monoamine Metabolism in Rats and Monkeys: Modulation by the Isomers of HA966
    The Journal of Neuroscience, March 1, 1997, 17(5):1769–1775 Phencyclidine Increases Forebrain Monoamine Metabolism in Rats and Monkeys: Modulation by the Isomers of HA966 J. David Jentsch,1 John D. Elsworth,2,3 D. Eugene Redmond Jr.,2,4 and Robert H. Roth2,3 Departments of 1Neurobiology, 2Psychiatry, 3Pharmacology, and 4Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510 The noncompetitive NMDA receptor antagonist phencyclidine enantiomer altered the effect of PCP on DA turnover in the (PCP) has psychotomimetic properties in humans and activates nucleus accumbens or the PCP-induced increases in serotonin the frontal cortical dopamine innervation in rats, findings that turnover in PFC. PCP (0.3 mg/kg, i.m.) exerted regionally se- have contributed to a hyperdopaminergic hypothesis of schizo- lective effects on the dopaminergic and serotonergic innerva- phrenia. In the present studies, the effects of the enantiomers of tion of the monkey frontal cortex, effects blocked by pretreat- 3-amino-1-hydroxypyrrolid-2-one (HA966) on PCP-induced ment with S-(2)HA966 (3 mg/kg, i.m.). Importantly, these data changes in monoamine metabolism in the forebrain of rats and demonstrate that in the primate, PCP has potent effects on monkeys were examined, because HA966 has been shown dopamine transmission in the frontal cortex, a brain region previously to attenuate stress- or drug-induced activation of thought to be dysfunctional in schizophrenia. In addition, a role dopamine systems. In rats, PCP (10 mg/kg, i.p.) potently acti- for S-(2)HA966 as a modulator of cortical monoamine trans- vated dopamine (DA) turnover in the medial prefrontal cortex mission in primates is posited.
    [Show full text]