Development of System Integration Technology for Integral Reactor

Total Page:16

File Type:pdf, Size:1020Kb

Development of System Integration Technology for Integral Reactor KR0000044 KAERI/RR-1896/98 7| # 7H Development of Advanced Reactor Technology Development of System Integration Technology for Integral" Reactor 71 31/30 KAERI/RR-1896/98 7| ft 7R-V Development of Advanced Reactor Technology Development of System Integration Technology for Integral Reactor 7} 1999. 3. xi- A S. o| CD Ot I. n 330 SMART 7] o) 3. 3. ^-g-^r m. SMART 4 SMART 1- 71 Codes & Standards Codes & Standards Work Breakdown Structure 4. SMART - II - 5. SMART SMART i%7\ 6. SMART SMART IV. 7| ^ Eamed Value - iii - SMART 7B^^^1^ -f^sg: 4 7] SMART o^^ ^^# ^f ^]f^]^(H^ ft ^=. CDEE 91 yo^^-# MED 91 MSF # 71 ^-^ SMART - IV - V. SMART 7) - v - SUMMARY I. Project Title Development of System Integration Technology for Integral Reactor n. Objectives and Importance of the Project 1. Objectives The prime objective of this project is to integrate the conceptual design of an integral reactor, SMART producing thermal energy of 330 MW, which will be utilized to supply energy for seawater desalination and small-scale power generation. This project also aims to develop design integration technology for effective design of the reactor. 2. Importance In developing and designing a nuclear reactor, several technical areas should be systematically coordinated and integrated to produce a single valuable product. In this regard, the integration technology plays a key role since the interface coordination, control and management of those technical areas directly impacts on the achievement of the goal. The reactor design primarily requires the establishment of the integrated goal, design requirements and bases, and the plan of design process. Furthermore, the design can be effectively carried out and the results can be integrated in the useful form when several technologies are systematically interconnected and utilized. They include technology for control and coordination of design information flow between design areas and design processes, management technology for the utilization of tremendous design information and documents, technology for the - vi - performance evaluation of design, and process management technology. The development of all these technologies and its application to design is thus essentially emphasized for the successful development of the indigenous reactor design and associated technologies. m. Scope and Contents of the Project The scopes and contents of this project are related to the effective performance of the conceptual design of SMART through the coordinated interactions between technical areas. The include the establishment of design requirements and bases, the evaluation of codes & standards to be applied to the design, the coordination and management of design, the integration of design, preliminary economical evaluation of SMART application, and the planning of required activities for the continuous design works. 1. Establishment of Design Requirements and Bases • Establishment of Preliminary Items for Design Requirements and Bases • Evaluation and Establishment of Design Requirements and Bases 2. Evaluation of Codes & Standards for Design Application • Survey of Existing Codes & Standards • Evaluation of Applicability of Existing Codes & Standards • Proposal for Development of Codes & Standards 3. Development of Design Integration and Management Technology • Evaluation and Coordination of Design Activities • Establishment of Design Schedule and Work Breakdown Structure • Coordination of Design Information Flow and Management of Design Process • Development of Work Performance Evaluation System - VII - 4. Integration of Conceptual Design of SMART • Establishment and Integration of Requirements for Operation, Safety, Functions and Performance of Systems • Integration of Conceptual Design • Management of Design Technology and Information 5. Preliminary Economical Evaluation of SMART Application • Survey of Economical Evaluation Methodology for Nuclear Seawater Desalination • Establishment of Economical Evaluation Methodology • Economical Evaluation of Seawater Desalination with SMART 6. Planning for Next-Stage Design • Establishment of Design Schedule and Process • Planning of Tests and Experiments for Technology Verification • Planning of Computer Codes Development IV. Results Top-tier requirements with respect to the reactor design were established to maximize the utilization of the merits and characteristics of integral reactor. Preliminary design requirements and bases for each functional design area were individually set up so that they satisfy the top-tier requirements. The interface conditions were then finally considered to modify and complement those design requirements and bases. The reactor design requires the application of the codes & standards. Unfortunately, the codes & standards applicable to the design of integral reactor have not been established yet in the country. The applicability of the existing codes & standards and regulatory laws established for loop-type reactor to the integral reactor has thus analyzed and evaluated. The results of - VIII - the evaluation came up with the conclusion that the general areas are mostly applicable but some are to be partly or not possibly applicable to the integral-type reactor due to it's structural characteristics of integral reactor. Also as the results, considerations and directions were recommended for the development and establishment of those codes & standards that can be applicable to the design of integral reactor. To effectively control and manage the tremendous amount of design activities, it is necessary to measure and evaluate the work performance. In order to develop the work performance evaluation technology, the Earned Value concept which is widely utilized in USA was adopted and then complemented by reflecting our design mechanism. The use of this evaluation system made it possible to analyze the work performance without spending much time, and thus contributed to enhance the effectiveness of design management by directly reflecting the evaluation results to the design activities. Furthermore, the study on introduction of the con-current engineering concept to effectively control the design process, technical information, manpower, and cost made it possible to establish the fundamental bases for the project management. The integration of SMART design purposes to integrate and evaluate the technical feasibility of the design concept and implemented technologies. The evaluation of the design concept against the preliminarily established design requirements and bases, and design goals proves the technical feasibility. The eventual technical feasibility can be proven through the performance and safety analyses. To this end, limiting transients and accidents were selected, and analyses were performed against them. The results showed that the design concepts are acceptable by satisfying the limiting conditions for the steady state cases. However, it was evaluated that minor modifications in some design concepts are needed to satisfy the limiting conditions for certain transient and accident cases. - ix - The preliminary economical evaluation was performed for the applicability of SMART to the seawater desalination. The computer program, CDEE and evaluation methodology developed by IAEA were selected for the evaluation. The evaluation was carried out for the thermal desalination processes, MSF and MED, with respect to the optimal energy utilization by considering the energy extraction methods from turbine. It was found that the MED process with the heat energy extraction from the middle of turbine is the most economical concept by producing the target of water product and generating the maximum electricity. The reactor design can be effectively performed only when a reliable design schedule is available. The design schedule and process for the next phase were thus established based on the them of the conceptual design phase. Furthermore, established were the plan for the development of computer codes to be utilized for the SMART design, and the plan for verification tests of implemented technologies. V. Proposal for Application The concept of SMART, it's technologies, and design requirements and design bases integrated in this project are to be used as bases for the basic design of the next phase. The design plan will be used as the basic schedule for the basic design of the next phase, towards achieving the design goal. The results of preliminary economical evaluation for the seawater desalination are expected to be utilized for the suggestion of the direction of seawater desalination by using nuclear energy. Furthermore, the results of the applicability evaluation of the codes & standards will be the valuable information for establishing the codes & standards that are applicable to the design of integral reactor. - x - CONTENTS Summary (Korean) i (English) vi List of Tables xv List of Figures xvii Chapter 1. Introduction 1 Chapter 2. Design Requirements and Bases for Integral Reactor 5 1. Introduction 5 2. Design Requirements and Bases for SMART 6 Chapter 3. Evaluation of Codes & Standards for Design Application 23 1. Introduction 23 2. Reactor Design and Codes & Standards 23 3. Evaluation of Applicability of Existing Codes & Standards 27 4. Proposal for Development of Codes & Standards 40 Chapter 4. Development of Design Integration and Management Technology 45 1. Introduction 45 2. Establishment of Design Schedule and WBS 47 3. Development of Performance Evaluation System 50 4. Process Modeling Methodology for Concurrent Design 56 Chapter 5.
Recommended publications
  • Software Project Work Breakdown Structures
    CSSE 372 Software Project Management: Software Project Work Breakdown Structures Shawn Bohner Office: Moench Room F212 Phone: (812) 877-8685 Email: [email protected] XKCD: In honor of the RHIT bonfire… Plan for the Day n Plus/Delta Evaluation Reflections n Work Breakdown Structures (WBS) +/∂ Feedback: Lectures Pace Improvements 0 – much too fast ● On Target 13 – somewhat too fast ● More interactive exercises 24 – Somewhat too slow ● Bit slow (3) vs. Bit fast (2) 0 – much too slow ● More (2) vs. Less (2) depth Working well ● More visual material ¨ Lectures well-organized/paced ● More analogies/connect dots ¨ Good class/group activities ● More case studies ¨ Right material & good slides ● Avoid dry material ¨ Group games ● Avoid random calling on people ¨ Daily quizzes ● Less discussions with partner ¨ Knowledgeable instructor ● Move time to later in day ¨ Good case studies ¨ Cartoons/humorous slides +/∂ Feedback: Quizzes Quizzes Improvements 14 – Very helpful ● Quizzes are fine 20 – somewhat helpful ● Be more specific in answers 2 – somewhat unhelpful ● Easier (4) vs. 1 – Very unhelpful Harder (3) questions ● More open-ended questions (2) Working well ● Make questions even shorter (1) ¨ Enforced note-taking ● Avoid “list the…” questions ¨ Focuses lecture direction ● Better matching questions to ¨ Indicates high points slide content ¨ Good study guide/aid ● Put a fun question on quiz! ¨ Questions work well ● Don’t have quizzes (1) ¨ Integration with material ¨ Good coverage of important topics +/∂ Feedback: Reading and Homework Reading
    [Show full text]
  • The Work Breakdown Structure Matrix: a Tool to Improve Interface Management
    THE WORK BREAKDOWN STRUCTURE MATRIX: A TOOL TO IMPROVE INTERFACE MANAGEMENT MYRIAM GODINOT A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2003 The Work Breakdown Structure Matrix: Myriam GODINOT 2003 A tool to improve interface management _______________________________________________________________________________________ ACKNOWLEDGEMENTS This research would not have been possible without help and support from many people and organizations. I wish particularly to express my greatest gratitude to the following: - My supervisor, Professor David K.H. CHUA, for his invaluable advice, support, and never-fading passion for construction management throughout the course of this research. - The infrastructure team in the company that was at the center of my case study, and in particular Vincent PROU and Mathias BERRUX for their good will and interest in its implementation, and Siti YUSOOF for her joyful support. - The Intelligent Transport and Vehicle Systems laboratory of the National University of Singapore, who welcomed me in its team. - And finally, my family, who let me go away for a second, even harder year, and my friends, both in France and in Singapore, for their patience, encouragement, understanding and continuous support throughout my research. I am grateful to all of them and wish them all to be passionate as I was about what they do and to accomplish their dreams. ii The Work Breakdown Structure Matrix: Myriam GODINOT 2003 A tool to improve interface
    [Show full text]
  • NASA WBS Handbook
    https://ntrs.nasa.gov/search.jsp?R=20180000844 2018-11-27T18:41:15+00:00Z NASA/SP-2016-3404/REV1 NASA Work Breakdown Structure (WBS) Handbook National Aeronautics and Space Administration January 2018 Page NASA STI Program…in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. the advancement of aeronautics and space Collected papers from scientific and science. The NASA scientific and technical technical conferences, symposia, seminars, information (STI) program plays a key part in or other meetings sponsored or helping NASA maintain this important role. co-sponsored by NASA. The NASA STI program operates under the SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information technical, or historical information from Officer. It collects, organizes, provides for NASA programs, projects, and missions, archiving, and disseminates NASA’s STI. The often concerned with subjects having NASA STI program provides access to the NTRS substantial public interest. Registered and its public interface, the NASA Technical Reports Server, thus providing one of TECHNICAL TRANSLATION. the largest collections of aeronautical and space English-language translations of foreign science STI in the world. Results are published in scientific and technical material pertinent to both non-NASA channels and by NASA in the NASA’s mission. NASA STI Report Series, which includes the following report types: Specialized services also include organizing and publishing research results, distributing TECHNICAL PUBLICATION. Reports of specialized research announcements and feeds, completed research or a major significant providing information desk and personal search phase of research that present the results of support, and enabling data exchange services. NASA Programs and include extensive data or theoretical analysis.
    [Show full text]
  • Modelling, Analysis and Design of Computer Integrated Manueactur1ng Systems
    MODELLING, ANALYSIS AND DESIGN OF COMPUTER INTEGRATED MANUEACTUR1NG SYSTEMS Volume I of II ABDULRAHMAN MUSLLABAB ABDULLAH AL-AILMARJ October-1998 A thesis submitted for the DEGREE OP DOCTOR OF.PHILOSOPHY MECHANICAL ENGINEERING DEPARTMENT, THE UNIVERSITY OF SHEFFIELD 3n ti]S 5íamc of Allai]. ¿Hoot (gractouo. iHHoßt ¿Merciful. ACKNOWLEDGEMENTS I would like to express my appreciation and thanks to my supervisor Professor Keith Ridgway for devoting freely of his time to read, discuss, and guide this research, and for his assistance in selecting the research topic, obtaining special reference materials, and contacting industrial collaborations. His advice has been much appreciated and I am very grateful. I would like to thank Mr Bruce Lake at Brook Hansen Motors who has patiently answered my questions during the case study. Finally, I would like to thank my family for their constant understanding, support and patience. l To my parents, my wife and my son. ABSTRACT In the present climate of global competition, manufacturing organisations consider and seek strategies, means and tools to assist them to stay competitive. Computer Integrated Manufacturing (CIM) offers a number of potential opportunities for improving manufacturing systems. However, a number of researchers have reported the difficulties which arise during the analysis, design and implementation of CIM due to a lack of effective modelling methodologies and techniques and the complexity of the systems. The work reported in this thesis is related to the development of an integrated modelling method to support the analysis and design of advanced manufacturing systems. A survey of various modelling methods and techniques is carried out. The methods SSADM, IDEFO, IDEF1X, IDEF3, IDEF4, OOM, SADT, GRAI, PN, 10A MERISE, GIM and SIMULATION are reviewed.
    [Show full text]
  • Systems Development Life Cycle
    Systems Development Life Cycle From Wikipedia, the free encyclopedia Jump to: navigation, search For other uses, see SDLC (disambiguation). Model of the Systems Development Life Cycle with the Maintenance bubble highlighted. The Systems Development Life Cycle (SDLC), or Software Development Life Cycle in systems engineering, information systems and software engineering, is the process of creating or altering systems, and the models and methodologies that people use to develop these systems. The concept generally refers to computer or information systems. In software engineering the SDLC concept underpins many kinds of software development methodologies. These methodologies form the framework for planning and controlling the creation of an information system[1]: the software development process. Contents y 1 Overview y 2 History y 3 Systems development phases o 3.1 Requirements gathering and analysis o 3.2 Design o 3.3 Build or coding o 3.4 Testing o 3.5 Operations and maintenance y 4 Systems development life cycle topics o 4.1 Management and control o 4.2 Work breakdown structured organization o 4.3 Baselines in the SDLC o 4.4 Complementary to SDLC y 5 Strengths and weaknesses y 6 See also y 7 References y 8 Further reading y 9 External links [edit] Overview Systems and Development Life Cycle (SDLC) is a process used by a systems analyst to develop an information system, including requirements, validation, training, and user (stakeholder) ownership. Any SDLC should result in a high quality system that meets or exceeds customer expectations, reaches completion within time and cost estimates, works effectively and efficiently in the current and planned Information Technology infrastructure, and is inexpensive to maintain and cost-effective to enhance.[2] Computer systems are complex and often (especially with the recent rise of Service-Oriented Architecture) link multiple traditional systems potentially supplied by different software vendors.
    [Show full text]
  • Download English-US Transcript (PDF)
    MITOCW | ocw-16.885-lec19 This will be Professor Cohen's kind of last complete lecture, although, on the last day of classes the plan is we're going to take some of the time just to talk over what we've done and review things. And it will be really oriented towards general aspects of systems engineering. And, Aaron, I will turn it over to you. Thank you. Today, I'm going to lecture primarily on systems engineering but management as it relates to systems engineering. I have several checks and balances. And, of course, today I've got people from the Draper Laboratories and people from the predecessor to Draper Laboratories, MIT Instrumentation Laboratory are going to check me to see if I say the right thing. First of all, I would like to say to you as a class that I read your last submission reports and really thought they were outstanding. They show a great deal of interest, a great deal of understanding and a great deal of initiative. And so, I really compliment you. And I'm sure your final reports will be better, but they really were very, very, very good. You've heard a lot of people talk previously, starting with, in my way of thinking, Dale Myers who was sort of the person who started the program in Washington at the time. You didn't hear from another very important man, George Miller, who was really Dale's boss at the time. But George is still alive, is still doing very well.
    [Show full text]
  • H)EF3 Technical Report Version 1.0 Chard J. Mayer Christopher P
    L. H)EF3 Technical Report Version 1.0 _| i L, _chard J. Mayer Christopher P. Menzel : i_:_pa_la S.D. Mayer Know!edge Based Systems Laboratory L Depar tment- 0 fin-dustrial Engineering Texas A&M University College Station TX 77843 Reviewed by Michad-K, Painter, Capt, USAF Armstrong Laboratory Logistics Research Division Wright-Patterson =Air Force Base, Ohio 45433-6503 :_ _=_January 1991 i _: ?_ | - , i (NASA-CR-I90279) {RESEARCH ACCOMPLISHED AT N92-26587 THE KNOWLEDGE BASED SYSTEMS LAB: IDEF3, VERSION 1.0] (Texas A&M Univ.) 56 p Unclag G]/_I 0086873 L == ; IDEF3 Technical Report Version 1.0 Richard J. Mayer Christopher P. Menzel Paula S.D. Mayer Knowledge Based Systems Laboratory Department of Industrial Engineering Texas A&M University College Station TX 77843 Reviewed by Michael K. Painter, Capt, USAF Armstrong Laboratory Logistics Research Division Wright-Patterson Air Force Base, Ohio 45433-6503 January 1991 umd w _- :7. m w Preface This paper describes the research accomplished at the Knowledge Based Systems Laboratory of the Department of Industrial Engineering at Texas A&M University. Funding for the Laboratory's research in Integrated Information System Development Methods and Tools has been provided by the Air Force Armstrong Laboratory, Logistics Research Division, AFWAL/LRL, Wright-Patterson Air Force Base, Ohio 45433, under the technical direction of USAF Captain Michael K. Painter, under subcontract through the NASA RICIS Program at the University of Houston. The authors and the design team wish to acknowledge the technical insights and ideas provided by Captain Painter in the performance of this research as well as his assistance in the preparation of this report.
    [Show full text]
  • A Project–Product Model–Based Approach to Planning Work Breakdown Structures of Complex System Projects A
    IEEE SYSTEMS JOURNAL 1 A Project–Product Model–Based Approach to Planning Work Breakdown Structures of Complex System Projects A. Sharon and D. Dori, Senior Member, IEEE Abstract—Project planning practices employ various methods domain and the product domain—gradually and hierarchically at various stages, with work breakdown structure (WBS) being evolve from abstract concepts into detailed information. The a prominent starting point. Using WBS, the components and hierarchical decomposition in the project domain cannot be associated enabling products are often not explicitly expressed. We first introduce the notions of generic project construct and performed independently of the system domain. In other words, system build. Using a running example of a simplified unmanned this decomposition requires zigzagging between these two aerial vehicle, we review the WBS method and discuss prob- adjacent domains in order to map them to each other. This lems stemming from the lack of explicit and direct representa- mapping between the two domains becomes more difficult tion of the product facet in the project plan. A comprehensive as the product to be developed gets more complex or as the project–product life cycle management model is the exclusive authoritative source for deriving project management tools, in- project scale grows. Project complexity often depends also on cluding WBS, augmented with product-related information. the complexity of the organization and the connections among its parties [4]. A definition that integrates the product aspect Index Terms—Complex systems, conceptual modeling, model- based planning, object–process methodology (OPM), project man- with the project aspect has been suggested by Shenhar and agement, project planning, project–product life cycle management Dvir [5], [6], who argued that the project complexity depends (PPLM), work breakdown structure (WBS).
    [Show full text]
  • Improving the NEPA Process Through Project Management Best Practices
    Improving the NEPA Process through Project Management Best Practices November 1, 2018 Marie Campbell NAEP President • President, Sapphos Environmental, Inc. • 35 years experience with environmental compliance • Served as Acting Chief, Environmental Resources Branch, U.S. Army Corps of Engineers • Firm received 2012 Recipient California Governor’s Environmental and Economic Leadership Award and California Air Resources Board Climate Action Leader Award • MA, University of California, Los Angeles, Geography • BA, University of California, Los Angeles, Ecosystems What is NAEP? • The multidisciplinary association for professionals dedicated to the advancement of the environmental professions • A forum for state-of-the-art information on environmental planning, research and management • A network of professional contacts and exchange of information among colleagues in industry, government, academia, and the private sector • A resource for structured career development from student memberships to certification as an environmental professional • A strong proponent of ethics and the highest standards of practice in the environmental professions What does membership include? • Subscription to the peer-reviewed, quarterly journal Environmental Practice • The NAEP National e-news, an exchange of short topics of interest, news and information • The NAEP National Desk, an informative bi-weekly publication • Discounted registration fees for NAEP’s Annual Conference • Discounted registration fees to our Educational Webinar Series • Opportunities to advance
    [Show full text]
  • Product Realization Process Modeling
    NAT’L INST. OF STAND & .TECH R I.C III! Ill" I" 'I mill mill II ml II II AlllDM NISTIR 5745 Product Realization Process Modeling: A study of requirements, methods and and research issues Kevin W. Lyons U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 Michael R. Duffey Richard C. Anderson George Washington University QC 100 NIST .056 NO. 5745 1995 Product Realization Process Modeling: A study of requirements, methods and and research issues Kevin W. Lyons U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 Michael R. Duffey Richard C. Anderson George Washington University June 1995 c U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION Mary L. Good, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arati Prabhakar, Director . r•^ - . 'it'/ ' ' ' ' - ' ' -•*'1 X' . r • ^.,' v./f/v ’• '^^,. • T,?. - ^ •' V.y' ’ ' :AIa ' / ><- l> r / PRP Modeling: Page 2 1. Introduction 7 2. Definition of a PRP Model 8 3. Overview of PRP Methods and Modeling Issues in Manufacturing Industries 9 3.1 PERT-based Models 9 3.2 IDEF-based Models 10 3.3 Traditional PRP Modeling Practices 12 3.4 Emerging PRP Model Applications in Industry 14 3.5 Industry Requirements for PRP Models 14 4. Modeling Issues for Advanced PRP Computer Tools 16 4. 1 Activity Network Representations 17 4.2 Representing Design Iteration and Activity "Overlapping" 18 4.3 Uncertainty Modeling of a PRP 20 4.3.1 Some Simulation Considerations 20 4.3.2 Activity Duration Uncertainty 21 4.3.3 Concurrent Activities and Stochastic Modeling 22 4.3.4 Alternative Representations of Uncertainty 23 4.4 Representing Economic Information 24 4.5 Data Collection and Validation Issues for PRP Models 27 4.6 Knowledge-Based Representations in PRP Models 28 5.
    [Show full text]
  • Multi-Level Modeling of Complex Socio-Technical Systems Report No
    Multi-Level Modeling of Complex Socio-Technical Systems Report No. CCSE-2013-01 Dr. William B. Rouse, Stevens Institute of Technology Dr. Douglas A. Bodner, Georgia Institute of Technology Report No. CCSE-2013-01 June 11, 2013 Copyright © 2013 Stevens Institute of Technology, Systems Engineering Research Center This material is baseD upon work supporteD, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) unDer Contract H98230-08-D-0171. SERC is a feDerally funDeD University AffiliateD Research Center manageD by Stevens Institute of Technology The authors gratefully acknowledge the helpful comments anD suggestions of John Casti anD HarolD Sorenson Any opinions, finDings anD conclusions or recommenDations expresseD in this material are those of the author(s) anD Do not necessarily reflect the views of the UniteD States Department of Defense. NO WARRANTY THIS STEVENS INSTITUTE OF TECHNOLOGY AND SYSTEMS ENGINEERING RESEARCH CENTER MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. STEVENS INSTITUTE OF TECHNOLOGY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. STEVENS INSTITUTE OF TECHNOLOGY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. Center for Complex Systems & Enterprises Report No. CCSE-2013-01 June 11, 2013 2 ABSTRACT This report presents a conceptual framework for multi-level moDeling of complex socio- technical systems, proviDes linkages to the historical roots anD technical unDerpinnings of this framework, anD outlines a catalog of component moDels for populating multi-level moDels.
    [Show full text]
  • IDEF Methods for BPR to Support CALS
    IDEF Methods for BPR to Support CALS Comprehensive Solutions for a Complex World IDEF and CALS • CALS technologies enable paperless environments or the electronic flow of information. •The implementation of CALS technologies require a re-engineering of enterprises. IDEF and BPR • Business Process Reengineering (BPR) assists in re-engineering the enterprises and the successful implementation of CALS. • IDEF Methods support BPR activities (e.g., knowledge acquisition, As-Is analysis, To -Be design, project planning, and implementation). What are Methods? Methods: A structured approach to capturing knowledge that maximizes accuracy but is also flexible enough to capture the real-world characteristics of that knowledge. What are IDEF Methods? Integration DEFinition methods Knowledge Acquisition, Analysis, and Design tools Languages that include both graphics (diagrams) and text Formal procedures for constructing models or ditifdescriptions of a parti tilcular aspect tf of an organization Why IDEF? IDEF: The IDEF Family of Methods was co- developed by industry and government. Their pppurpose is to provide a com prehensive yet flexible framework for describing, analyzing, and evaluatinggp business practices. The y are not proprietary and are supported by international standards. Characteristics of an IDEF Method Designed to address specific aspects of a problem, or provide different perspectives of the same problem Provide an explicit mechanism for integrating the results of the application of one IDEF with another Embody the knowledge
    [Show full text]