<<

KR0000044 KAERI/RR-1896/98

7| # 7H Development of Advanced Reactor Technology

Development of Integration Technology for Integral" Reactor

71

31/30 KAERI/RR-1896/98

7| ft 7R-V Development of Advanced Reactor Technology

Development of Technology for Integral Reactor

7} 1999. 3.

xi-

A S. o| CD Ot

I.

n

330 SMART

7]

o) 3. 3. ^-g-^r m.

SMART 4

SMART

1- 71

Codes & Standards

Codes & Standards

Work Breakdown Structure

4. SMART

- II - 5. SMART

SMART i%7\

6.

SMART

SMART

IV.

7|

^ Eamed Value

- iii - SMART 7B^^^1^ -f^sg: 4

7]

SMART

o^^ ^^# ^f ^]f^]^(H^ ft ^=. CDEE 91 yo^^-# MED 91 MSF

# 71 ^-^ SMART

- IV - V.

SMART

7)

- v - SUMMARY

I. Title

Development of System Integration Technology for Integral Reactor

n. Objectives and Importance of the Project

1. Objectives

The prime objective of this project is to integrate the conceptual design of an integral reactor, SMART producing thermal energy of 330 MW, which will be utilized to supply energy for seawater desalination and small-scale power generation. This project also aims to develop design integration technology for effective design of the reactor.

2. Importance In developing and designing a nuclear reactor, several technical areas should be systematically coordinated and integrated to produce a single valuable product. In this regard, the integration technology plays a key role since the interface coordination, control and management of those technical areas directly impacts on the achievement of the goal. The reactor design primarily requires the establishment of the integrated goal, design requirements and bases, and the plan of design process. Furthermore, the design can be effectively carried out and the results can be integrated in the useful form when several technologies are systematically interconnected and utilized. They include technology for control and coordination of design information flow between design areas and design processes, management technology for the utilization of tremendous design information and documents, technology for the

- vi - performance evaluation of design, and process management technology. The development of all these technologies and its application to design is thus essentially emphasized for the successful development of the indigenous reactor design and associated technologies. m. Scope and Contents of the Project

The scopes and contents of this project are related to the effective performance of the conceptual design of SMART through the coordinated interactions between technical areas. The include the establishment of design requirements and bases, the evaluation of codes & standards to be applied to the design, the coordination and management of design, the integration of design, preliminary economical evaluation of SMART application, and the planning of required activities for the continuous design works.

1. Establishment of Design Requirements and Bases

• Establishment of Preliminary Items for Design Requirements and Bases

• Evaluation and Establishment of Design Requirements and Bases

2. Evaluation of Codes & Standards for Design Application

• Survey of Existing Codes & Standards

• Evaluation of Applicability of Existing Codes & Standards

• Proposal for Development of Codes & Standards

3. Development of Design Integration and Management Technology

• Evaluation and Coordination of Design Activities

• Establishment of Design Schedule and Work Breakdown Structure

• Coordination of Design Information Flow and Management of Design Process

• Development of Work Performance Evaluation System

- VII - 4. Integration of Conceptual Design of SMART

• Establishment and Integration of Requirements for Operation, Safety, Functions and Performance of

• Integration of Conceptual Design

• Management of Design Technology and Information

5. Preliminary Economical Evaluation of SMART Application

• Survey of Economical Evaluation Methodology for Nuclear Seawater Desalination

• Establishment of Economical Evaluation Methodology

• Economical Evaluation of Seawater Desalination with SMART

6. Planning for Next-Stage Design

• Establishment of Design Schedule and Process

• Planning of Tests and Experiments for Technology Verification

• Planning of Computer Codes Development

IV. Results

Top-tier requirements with respect to the reactor design were established to maximize the utilization of the merits and characteristics of integral reactor. Preliminary design requirements and bases for each functional design area were individually set up so that they satisfy the top-tier requirements. The interface conditions were then finally considered to modify and complement those design requirements and bases.

The reactor design requires the application of the codes & standards. Unfortunately, the codes & standards applicable to the design of integral reactor have not been established yet in the country. The applicability of the existing codes & standards and regulatory laws established for loop-type reactor to the integral reactor has thus analyzed and evaluated. The results of

- VIII - the evaluation came up with the conclusion that the general areas are mostly applicable but some are to be partly or not possibly applicable to the integral-type reactor due to it's structural characteristics of integral reactor. Also as the results, considerations and directions were recommended for the development and establishment of those codes & standards that can be applicable to the design of integral reactor.

To effectively control and manage the tremendous amount of design activities, it is necessary to measure and evaluate the work performance. In order to develop the work performance evaluation technology, the Earned Value concept which is widely utilized in USA was adopted and then complemented by reflecting our design mechanism. The use of this evaluation system made it possible to analyze the work performance without spending much time, and thus contributed to enhance the effectiveness of design management by directly reflecting the evaluation results to the design activities. Furthermore, the study on introduction of the con-current engineering concept to effectively control the design process, technical information, manpower, and cost made it possible to establish the fundamental bases for the .

The integration of SMART design purposes to integrate and evaluate the technical feasibility of the design concept and implemented technologies. The evaluation of the design concept against the preliminarily established design requirements and bases, and design goals proves the technical feasibility. The eventual technical feasibility can be proven through the performance and safety analyses. To this end, limiting transients and accidents were selected, and analyses were performed against them. The results showed that the design concepts are acceptable by satisfying the limiting conditions for the steady state cases. However, it was evaluated that minor modifications in some design concepts are needed to satisfy the limiting conditions for certain transient and accident cases.

- ix - The preliminary economical evaluation was performed for the applicability of SMART to the seawater desalination. The computer program, CDEE and evaluation methodology developed by IAEA were selected for the evaluation. The evaluation was carried out for the thermal desalination processes, MSF and MED, with respect to the optimal energy utilization by considering the energy extraction methods from turbine. It was found that the MED process with the heat energy extraction from the middle of turbine is the most economical concept by producing the target of water product and generating the maximum electricity.

The reactor design can be effectively performed only when a reliable design schedule is available. The design schedule and process for the next phase were thus established based on the them of the conceptual design phase. Furthermore, established were the plan for the development of computer codes to be utilized for the SMART design, and the plan for verification tests of implemented technologies.

V. Proposal for Application

The concept of SMART, it's technologies, and design requirements and design bases integrated in this project are to be used as bases for the basic design of the next phase. The design plan will be used as the basic schedule for the basic design of the next phase, towards achieving the design goal. The results of preliminary economical evaluation for the seawater desalination are expected to be utilized for the suggestion of the direction of seawater desalination by using nuclear energy. Furthermore, the results of the applicability evaluation of the codes & standards will be the valuable information for establishing the codes & standards that are applicable to the design of integral reactor.

- x - CONTENTS

Summary (Korean) i (English) vi List of Tables xv List of Figures xvii

Chapter 1. Introduction 1

Chapter 2. Design Requirements and Bases for Integral Reactor 5 1. Introduction 5 2. Design Requirements and Bases for SMART 6

Chapter 3. Evaluation of Codes & Standards for Design Application 23 1. Introduction 23 2. Reactor Design and Codes & Standards 23 3. Evaluation of Applicability of Existing Codes & Standards 27 4. Proposal for Development of Codes & Standards 40

Chapter 4. Development of Design Integration and Management Technology 45 1. Introduction 45 2. Establishment of Design Schedule and WBS 47 3. Development of Performance Evaluation System 50 4. Process Modeling Methodology for Concurrent Design 56

Chapter 5. Integration of Conceptual Design of SMART 65 1. Introduction 65 2. Core Design 66 3. System Design 78

- xi - 4. Mechanical Design 92 5. MMIS Design 108 6. Component Design 123 7. Safety Analysis 138

Chapter 6. Preliminary Economical Evaluation of SMART Application •— 153 1. Introduction 153 2. Establishment of Economical Evaluation Methodology 154 3. Preliminary Economical Evaluation of SMART Application 161 4. Conclusion 167

Chapter 7. Planning for Next-Stage Design and Development 169 1. Introduction 169 2. Establishment of Design Schedule and Process 172 3. Planning of Tests and Experiments for Technology Verification 179 4. Planning of Computer Codes Development 194

Chapter 8. Summary and Conclusion 201

Chapter 9. Achievement of R&D Goals and its Applicability 205

Chapter 10. Future Application Plan for R&D Products 207

References 209

- xii - i SUMMARY vi

xv

U^l- •• xvii

4 1 # ^-& 1 4 2 # S ^7^1^-g- 7]#7]^ ^^ ^ ^7} 23 4 1 ^ 7HA 23 4 2| 4***3. ^^]if ^-g-71^71^ 23 4 3 ^ 71 € W 51 71^71^ ^^J 3g7> 27 4 4 ^ SMART ^7^11- $}*y 7l#7l^- 7H^ ^H? 40 ^f 4 ^ ^7j]7H1t^el 5J ^5171^711^ 45 4 1 ^ 7g^. 45 4 21 ^^T-471151 ^ 51 ^-^^51 47 51 ^r*IS ^-^^1^^ ?m 50 | ^M^H ^7fl# ^1*1 HSAfl^- Sli] ^^s. 56 4 5 # SMART 7B^^4 #^J- 65 4 1 ^ 7H^. 65

4 | l 66

78

- xiii - 92 ^7^1 108 123

4 7 1

4 6 # SMART %-§- ^lu]^4^ 3g7]. 153 4 1 1 7flA 153 4 21 ^4^ 3§7fH>v^€- 154 4 3 1 <^Hl ^4^ ^7} 161 441 ^§ 167 4 7 # 4 2 #711 1711711^71]^ ^^1 169 4 11 7fl.& 169 4 2 1 l7ll7H^ ^-^^^ 172 4 3 1 SMART 7l^3i^ 1^ T£ +M^ 179 4 4 1 SMART iTfl^-g- ^^.H 7H^1^ 194 4 8 # ^^j- ^ ^^- 201 4 9 % ^^-711^ ^-S^^S *£ tflil7H£ 205 4 10# ^9-7H^^2f^ %-§-4^ 207

209

- xiv - 3-1 29 s. 3-2 SMARTS ^-g-1 ^^f T£ 7)^7]^ 31 s. 4-1 ^ 55 s. 4-2 IDEF T#^S] 7Byi^% 58 3: 5-1 68 S. 5-2 SMART 7fl^f- «^A -M*!*|- 79

5-3 SMART ^71^-^71 7H^^7i]A}oo1= 124 a 5-4 Plant Condition -§H=Hr^- 138 5-5 *}3. Plant Condition ^^-Sr 139 a 5-6 140 a 5-7 SMART A>3.^-^ uj A}^.^^-^^- 140 a 6-1 SMART ^t^#^M S 162 a 6-2 163 6-3 SMART #sHS3] ^^^7f ^># ^3f 164 a 6-4 r ^r^fl ^€ ^r ^^^ ^^*f ^>7f •• 165 a 6-5 MED ^ ^^^ j 167 a 7-1 173 a 7-2 190 7-3 •• 191 7-4 191 a 7-5 MMIS ^7^|^ro> ^^^^ g| ^114^ 192 a 7-6 193 a 7-7 197 a 7-8 198 a 7-9 7]Tjf-gXI ^3.iEL 7|f^7fl^ 198 7-10 B^7fl^ 199

- xv - 3-2 ^><^ 7\^7\&3\ ^^TT"^ ^ tl^^-^l ^7^1 25 3-3 tH^ T^f^l TT-^I-S.^ ^llTffJE. 26

4-2 SMART -^Tl] Work Breakdown Structure 48 4-3 CPM Schedule Report ofl 49 4-4 Earned Value 7\\* , 52 4-5 RVI %A -feel^ tfi^M 54

4-7 IDEFO S-VjlS) -T^^-fi^fc ^J S^ 59 4-8 DDEF3 S5.Afl^=. *.^S. 60 4-9 EDEF3 ^^Ji.4: ^ S*l 61 4-10 SMART ^1-5.^*11 3*Hi 3.^ 62 4-11 RVI 'i^l IDEFO S.'i 63 4-12 RVI *!7il IDEFO 3.*£$) M^ty 63 4-13 RVI ^Tfl-H 4|*> IDEF3 5S^]i S.^ 63 5-1 ^1^1 ic^ ^-Ji-S.^ 68 5-2 RELAP/MOD341- Look-up Table ^ll^l^l

5-3 SCOPS 7l^«l# 7H^S. 73 5-4 SCOMS 71-^^L-i- 7^S. 73 5-5 eJ^rTll-i? -rr^-S. 80 5 / Til. A) T$\ ~5lJ -J$\ ^? OQ -O >tT e^l*\-M| o^ * * **• • •* ••• ***^ 5-7 ^r7fl^ 7fi^£. 85 5-8 tl^Tllig- 7H^j:S. 89 5-9 SMART ^V-S/S W| 3^>^J %^ 93 5-10 SMART Qx\S.

- xvi - 5-13 SMART i^l ^cHS^l- 3lWl 98 5_14 -f^^H a}]H] 4-£-*1l^ ^^f 1°2 5-15 ^-^-7] Hfl^J Routing S1! 103 5-16 SMART -^^fS-^^1 ^^ -TF^$ S*i 105 5-17 SMART -f^l^tHM 3*]-^ JB.^^}- ^>^S. 125 5-18 ^^^-^l •kHf-'Hl -^Itl Q^^?} 126 5-19 ^^^-^ -n->l]^]:^ j?l-§-3§7|- 126 5-20 SMART *-<§44 ^-^^5: 3^f-^ S.&1 130 5-21 MCP ^HJE.JS.Bl A|^|-g- % A]^[^l 131 5-22 ^^71^ ^-S. - Torque -^i 132

^" ftp tj^ J^ ^71 ^2 A^ *rlf| ^J "t^. "**7 JC^. yCV ^I Ol ^ "il-^J "D XJ^I 1 'i C

5-28 i^^l#^2]- -g-^-^-^ *i£J- 146 5-29 Tfl^f-^J-^^Sf 147

^"r-rr-^ DNBR J\SL 148 5-32 ^r^& s^^iA] DNBR 150 5-33 ilHr1?* 3i}^>A}3.Al 7}

7-1 SMART 7l$ -i7|]# ^j*]; ^f^HJ-^S

7-5 NSSS Safety/Transient Analysis ^^Jl-i-S. 177 7-6 ii4]^7^]^rc>> ^7j]2|2}"i| ^S.*^^ 178 7-7 &AA^k &^nAQA^ 178

- xvii - 1 §• M

71

- 1 - 71

71 , 7]

-§-5l

- 2 - Sl-b

SMARTS

°l-§-

SMART71- o]

H^ 71^

NEXT PAGE(S) left BLANK rcfej-

, 7]71, 7] 7]

71 4^ *\

stis.nl

4

SMART

- 5 - SMART

SMART

fe Design Philosophy^]

A] 7l

iL^-fe 7]

(1) SMARTS

(2) ^^7]^g-9-7|]^5] <£t-^ 330

(3)

(4)

(5)

(6) ^^ c^o

(7) ^>^ ^x] ^^1^ 0.3gl-

- 6 - (1)

(2)

- 100% 60

- 20%

- 90%

- 90%

SMART

(3)

- 7 - 7mm,

(4)

Square^

(5)

40 °c

-g-71

(6)

•• ft ~ (7)

^«}o^ ?J|S.SB|(canned motor)-H -§-71

(8)

- 9 - (9) ^A}>g 3EJJ71

(10) SMART #*tf ^r^7]?> «§• SMART

(1)

(2)

(4) *£$.£: *m ^^ Aj-3.4(station blackout) *lt> 4 ^(coping time>Sr (5) ^

-^s. -a4

(6)

- 10 - (7) #

(8) ^71^-g-Til^ <£&*}*} &^r Ao^H7f 1HJ3I* 4

(9) «|

USNRC BTP, RSB

(11) ^^7

^|| ^^(Anticipated Transient Without Scram - ATWS)^H1.£

(12)

(13)

(14) 34*}^ ^^ Sfe ^>^«H1 ^£.«> ^^ 7]71

(15) SMART-b

(16)

-11 - (17)

(18) 43.

(19) NUREG-1465

(20) 75%7]- 13%#

(21) 7] ^- 7}

(22)

3. ^ 244?!: 25 rem

(23) 0.5

(24)

- 12 - ft)

(25) 7)^^ 6.5. SMARTS

(26) 7]^^^.^ SMARTS &&

(1) NUREG-1070 SMART ^^71^-^-Tll^f- ^TlJA] NUREG-1070

NUREG-1070

- 10CFR50.34(f)ofl ^#5l

A - NUREG-0933^1 ^Hf-£H ^Ife USI ^ o^l/#^1 &t\2l GSI

^ TMI

^ USI

- 13 - *>

- SMARTS] ^-g-5]fe ^irg-^ ^^(probabilistic safety assessment - PSA) $M Ef- ^M (2) *m -§-71 -i^ ^o>

^^ -§-717}

-8-7151 71^ ^lA^oi aj-jisi

(3) f4

(4)

2. ^^ ll £jl4.-b SMART ^^4 g|1> fe i4l4^ ^ ^} SMART - 71 71 S| ^-«- £3 ^^S: -84 71 § 4^51 *H ^4^- ti*H 1SS. 7l 711- ^1^14, %*} % 41^ ^-fi-71- ^<^c»> ^rfe ^># ^nl?>t:>. 711

- 14 - 7]

factor)

7\. tt ^« ^7)1 71$ Af^L ^r^- ^711 71$ A}3.fe

cM -Ml - SMARTS

^^! *©]

^ SMARTS o) ^^

100% Al ^ ±20% ^ -^ ±20%/^

- 15 - - ioo - KefF £ 0.95*1 «]^7fl 2*1 off 4 6r]7)j - 20% #^ *oW14 Keff £ 0.95^1 tt

717114 7l# 4^4°fl 7l#^ ^r^i 4*> 3:^l(limiting condition for operation - LCO)oli4 cj-s. yj-^^ ^.^ 4*1- o.|tij-

^^(reactor protection system - RPS)^ ^--§- 7^1-^-(engineered safety features actuation system - ESFAS)^

SMARTS 7}^^^ 90%#

- 16 - Canned Motor Pump ^Bfl£| ^£44 ^S# 4

«Vt:].. o SMART*)

SMARTS

SMARTS

100 men-rem/year 90004 Canned Motor Pump S# A).

- 17 - 717H1

SMARTS ^?I^# *

7} •$ro]?>}£.Sj. ^7\],^*m3., ^) ^.fiL 7l7l^ ^A 7)715] J

SMART

3.

SMARTl-

SMART £*l iL^^l 4*]: ^^HJ-31 ^ SMART »g-o|5| 4^*]: W^) ^>. SMARTS 1.70(rev.

SMARTS 4^8:

protection system)*] (engineered safety features)^

- 18 - if SMART

7HJ-

7171 4

71-

1.70OJI SMARTS

- 19 - anticipated transient without scram) 4 ^r^-^fe <^5| 7H^ rn>*f %-i-^ 4^i(anticipated operational occurrence)^ SMART frequency - -4, (infrequent - ^ ^ 4 SMART ^^l^ ^4" 7] SMART7]-

71 4

71 § Aj-^Lofl c)ft> *!-§- 7l^^r NUREG-0800, 4^ (standard review plan - SRPH ^^5]

^711

- 20 - e>. 43. SMARTS 15%!- X\

10~6 n)

Grace Period!-

«hg-3E.

Canned Motor PumpS.

NEXT PAGE(S) left BLANK - 21 - si ^

714^711,

(regulations, codes & standards) -§•-§- o}6\]

SMART

SMART

- 23 - 2.

- 24 - .[l] 6] SflTJfe

4 t

3-1

- 25 - (General Safety Criteria)^ ^ «tel£ ^ ^41 H?

(Specific Safety Requirements)^ ^^^^Hl-H ^^r-Slfe 7l

(Safety Regulatory Guides)^ aM^fl^l <&#<% ^ S.

(Safety Review Guides)^!

fe ANSI, ASME, IEEE, ASTM, RCC -§• iq^-^ ^^71^-71^^- 4-§-/^-§-*M ^f. H^m qt>^7lfSl 7f 1995\1 11^ #^^71 #71^ (Korea Electric Power Code : KEPIC)£]

.4 496-32^1

- 26 - a

$13., , o]

1.

- 27 - ^ 3-3

1970\!tfjcfl , 1987

(Korea Electric Power Code : KEPIQSl JL

- 28 - 3-1

€^ IM &n #^S 1,2^7]

^^ S§

^gJ-^ilg(CFR) AECB ftmg 2!-S7|$(J1A|) (RFS)

S^S^IIS (RCC) (Regulatory Guide) Si x|§ Eiej/aa^iTfls (RRC) £59^*1 £ (SRP) ?|-i4c|- SJX^ss

- ASME - ASTM - IEEE SlriiSW (NF) f5 7|#7|§ - ACI - ANS

?3(ANSI)

2. SMART

- 29 - ofi KEPIC *} ASME

51

330 SMARTS

3.

SMART ^Tflofl rfl^T; 7] 3-6^7] ^ ^^ofl (regulations, codes & standards) -§••§• SMARTS]

- 1807f SMART

•te 4

-f- SMART

- 30 - 3-2 SMARTS

7|Hr 7|S?£

1 3 a -y?ii-g-o|:

2 ERSSPI^IS 1 3 Code of Federal Regulations 20 14

4 US NRC Regulatory Guide 58 50

5 • R 7M|S|-S| 7|#7|§- (ASME Code) 9 7 ^Ml^^l, ^?|7|^7||

6 22 19 (ANSI Standard)

7 oR ^xHM^sl 7|^ (ANS Standard) 4 4 aR A|i! SI *HS*rS| ?IS 8 12 12 7|7||^7||, ^7|7[^?)| (ASTM Standard)

DR S7| gj gx^si 7|§ aiSSJNI. g 26 21 (IEEE Standard)

10 oR # T"-S«tS| 7|§ (AISC) 1 1 ^i7i-a^i 11 o|^ ai<5SS| ?IS (ISA) 2 2

12 DR €SSSI 7|5 (AWS) 1 1

13 DR 5A^^ 1 1

14 DR a^e^S 7is 3 3 MMIS-g?l| 15 Standard Review Plan 5 5

16 NUREG 10 10 MMIS-^Ti]

17 SECY 2 2 MMIS^Tfl # S 180 152

(1) 10CFR 50. App. A GDC : Criterion 26 - Reactivity control system redundancy and capability.

- 31 - ^ SMART

PWROIIA-1 SL\-}, SMARTS

(2) Appendix B to Part 50 : Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants. "§• ^1^^: PSART-1- FSAR<^1 S^-5] ^ QA Program^] ttf^M 7)^ v}3. $Xz\. Design Control %V^W ^Tfl ^2f^ %*1 (verification or checking)^ 4^1 ^S^M ^*]r ^M# Ji9-^|-3. $lc}. ^4 SMART ^7^1

(3) 10 CFR 50. App. I : ALARA

]^ ^ ^.^ofl ;£*]- ALARA 14S.51 ^^i 4*J ^£ 9 *> ^o]n>. SMARTS ALARA

(4) RG. 1.68 : Initial Test Programs for Water-Cooled Reactor Power Plants. Appendix A

PWRo]!,} BWR^] ^^fe A]^ %>^-O] 7l#5H Sl^. SMARTS 3.7fl

PWR

- 32 - nucleate heating^] rcj-e>

(5) RG 1.77 : Assumptions Used for Evaluating a Control Rod Ejection Accident for PWRs. RG 1.77 Appendix A^fe aM-g- o]^ A]-JLA]

space-time kinetics J= MASTER#

(6) RG 8.8 : ALARA^l °1 xl^-cr ALARA(As Low As Reasonably Achievable) 7^6]]

, SMARTS

6\] rcj-e} s]^. ^^K§. *tf}^ ^ *X^ as. ^^2f^^A^ ALARA

(7) ANSI/ANS-51.1 : Nuclear Safety Criteria for the Design of Stationary PWR Plants.

(1) 10 CFR 50.46 : ECCS Criteria, ECCS^l SMARTS

- 33 - Instrument Line Break, Purification System Line Break ig-o] ^H^^l-^^r^l^] tJf^H Short Term Mitigation ^g-f Accumulator-!- MPa)*H sfl^Sf.2. Long Term Mitigation^

SBLOCA

(2) 10 CFR 50.61 : Pressurized Thermal Shock, SMARTSA-1^-

SBLOCA*]

(3) 10 CFR 50.62 : Anticipated Transient without Scram, ATWS Events ^r^9^] Diverse Protection System(DPS) -i*) SMARTSAjfe ATWS7]- ^^§^ =g-f ^^Mlf-^I 6J"^°1 19 MPa<>11 £

hydraulic connected circuit breaker7r TH^^^L

(4) 10 CFR 50 App. A

© Separation of Protection and Control Systems (GDC 24)

h SMARTS 7]^r7H^^r Safety Channel^- Control Channel^ ^e]*^ 7jJ^7](sensor) ^ 51 ^.^-(Malrunction)ol

(2) Reactivity Control System Redundancy and Capability (GDC 26) SMARTS 3^3U]ir ^-f-i> Jc^^^l- 7]^7il^^S *fl^^3. $1 •& ^^7^^!^: ^^-^ ^ ^14. aem 4iAlfe Makeup Pumpl- o| Emergency Boron Storage Tank5.-f-^ -g-^#

- 34 - MTC

© Inspection of Reactor Coolant Pressure Boundary (GDC 32) SMARTS

© Containment Heat Removal (GDC 38) SMARTS ol*}^I^ ^4^r^]^ (Water Inventory)^: 1 Steel 1I ff 4] Steel

(5) RG 1.139 : Guidance for Residual Heat Removal.

ff-(PRHR System)o]

(6) ASME Overpressure Protection (Div-1 Subsection NB)

y^^ no% SMARTS 1^1151 i^^^ 110%#

(7) ASME Rules for Inservice Inspection Reactor Coolant Pressure Boundary^] ^}^ 7]7]£{ ±3. SMART ^lA-lfe e^r^^-S. 7}&$ ^Aft ^ ^ &£ ^«. (PZR vfl^- CEDM Nozzle Welding Point, SG Tube Welding Point ^)-§- 4 Al 7f

- 35 - (8) ANSI/ANS 18.1 : Radioactive Source Term for Normal Operation of Light Water Reactors.

Off-line Off-line ^^1^ K ^-^1^ On-line W^& ^ lfi^ 7f

(9) IEEE 279 : Standard Criteria for Protection Systems for Nuclear Power Generating Stations.

L Isolation Device A|~g- -^ ^^Q 7]^# -§^(4.7 Control and Protection System Interaction)*^^" -SL^^f^l ^1^}. SMARTS]M^ -S.

Isolation Device-! -f-«H

SMART 2\&o]]^

SMART

(1) 10 CFR 50 App. A ^ GDC 32, RG 1.83/ 1.150, ASME Section XI Inspection of Reactor Coolant Pressure Boundary 7]7]

- 36 - 4<=Hl ^t> %£-$- SMART ofl4fe

100%

(2) 10 CFR 50 App. H, 3.X\ 92-20

(3) RG 1.20 :

, Category I.H SMARTS 7 ^ in-situ

(4) 10 CFR 50.61 : Pressurized Thermal Shock, 7}

LBL0CA7f ^AJES °

SBLOCA^I

- 37 - nf. MMIS

SMART ,£SS

SMART ^SM^)1

(1) IEEE /ANSI 1042 : Guide to Software

, SMART 4:Sm ^

(2) IEEE/ANSI 1063 : Standard for Software User Documentation

6\] cH*> ij-fc j^^i^- 4^1-3. $X^h ^- S^^r SMART 4iS

(3) IEEE/ANSI 1219 : Standard for Software Maintenance

SMART ^^S

(4) IEEE/ANSI 1016 : Recommended Practice for Software Design Descriptions

- 38 - 7]#A-1 (Software Design Description)^ iSM

c> ^ 4*oi-4 ^ ufl-g.^] tjf*]; ^]^^- ^|A|*>3. 5tl4. KWH, SMART

SMART 7H^^|# MM ^ ^ ^^ ^>^^€ ^7^)7l§ 4^ ^-§-7]^ol *o>^ SMART

o]-§-t> SMART <>M^1 ^7^ %°]t\. &.*} SMART

(1) ANSI/ANS 51.1-R1988 : Nuclear Safety Criteria for Design of Stationary PWR

SMART

A\ £.7\*}3. Q Coincident Occurrence ^ Single Failure Frequency7}

(2) ANSI/ANS 58.9 : Single Failure Criteria

*&7§7\&*\3. ^r^- ^ «||^ x]o\) 7}^\c^o\ ^ single Failure^! -^-S SMARTS

- 39 - (3) IEEE 379 : Single Failure Criteria ^71-^4:2. £-fr 9J *1H *HI 7}^Ho^ Single Failure SMARTS

(4) RG 1.77 : Assumptions Used for Evaluating a Control Rod Ejection Accidents for Pressurized Water Reactors

SMARTS]

, SMARTS id 7)] ^ ^(fof-g. o]^; A] CEDMo] LOCA A>3.5H^ol ^^.^

(5) 10CFR50 34.46 Apeendix K : ECCS Evaluation Models

SMARTS 71^^7(1 7H^| 3g7}Sli(Evaluation Model : EM)5]

SMART

71 ^<

SMART#

- 40 - 7}.

, 71

, dynamic rod worth

SMARTS ^-g- El-^-A^o] Q$~ ol^f^Sl ^ •&# ^"4^ SMARTS

<=»>

10CFR202f U]3.%} 4 SMARTS

10CFR20*! L Stlfe 1957V1 *kl£& 10CFR20l!f 1977\1

2. SMARTS

- 41 - 7\. ^^^ ^v LBLOCAfe SBLOCA

SMARTS ZL Q^^ ^^^# 411 ^ft H1 M h }) ^± ] l Off-line

- Off-line

- ATWS

3.

7}. el-

717151

- 42 - SMARTS 9J in-situ

LBLOCA LBLOCA^j SBL0CA7]-

o]

4. MMIS-iTl] 7]

*>

oil- SMART 4

4-§-4

- 43 - 5.

SMART <#*lt;fl*j ^-g- 7^M °1*I-5F]-§-71§£- ANSI/ANS 58.9£f IEEE 3792f :££*]; Qx}$. ^-^^-^4 7\}^7}7]S>] #<£3. °\ ^Q ^ °1# °]-§-*H ANSI/ANS 51.1-1983(R1988)# oj-i- cq^H SMART #

Coincident Occurrences^l- Single Failure^ JL^*> SMART PSA

i-f. SBLOCA ECCS •?i4S.^ ECCS ^-^-SL^i^ 3§7l-H>1-^§^: 10CFR50.463^ 10CFR50 Appendix K^I 7}^5\°] $X-$-*\, 1987^^] 7fl^^ Appendix K^l i>|*H SBLOCA ECCS ^^^7}^ 4- 7g^^ Appendix REM(Realistic Evaluation Models)^ ^-g-^V*H ^l^3Ht 4-g-^L & ^7] 3:^1^ ^711^^ T£ Ji^^ 7^ # %-g-*}<^ SMART

r\. CEA Ejection SMART i^^^r

Regulating Bank7|-

- 44 - 5!

^.S.fe PERT/CPM^j Network

(multi-disciplinary)7} ) nfl-f

WBS(Work Breakdown Structure)

-down approache IDEF(Integration DEFinition)

- 45 - SMART

7]

>!^^ Mock-up, Prototype, Virtual Model tf Network Client/Server 4 CAD/CAE -i Networking

[5MA-1

SAMRT

S!i4.

- 46 - "f5 Safe

1. Work Breakdown Structure (WBS)

MIL-STD881[6]

OBS(OrganizationaI Breakdown Structure)^ ^$>g fe FBS (Functional Breakdown Structure)^. ^3E]B}, FBSfe SS.^|S CWBS(ContractuaI Work Breakdown Structure)7}

Contractual Work Breakdown Structure (WBS)

Organization Breakdown Structure (OBS) I SMART | | Nexty

1—

CoitAccourt -Schedule -Budget • Cost Account Manager

ZL^ 4-1 OBSif WBS^

- 47 - -l£ CWBS*} = Segment^ fetfl, o] Segment CA(Cost Account)7]- ^

7171 7]71

H^l 4-2 SMART Work Breakdown Structure

SMARTS Segment fe WBS#

, ^ 5l7fl Segment, 40(H Summary Activity, l,500

- 48 - 2.

>-]^^I^ Logic Network Activity ^Ji£]- ^^7|^ Activity i ^-^ Resource fe Work Package Owner

4-3 CPM Schedule Report

- 49 - f. ojofl re^f £ <&^7fl^^&eHM-b SMART ^, MMIS,

WBS 9-A^^# ol-§-tl CPM Schedule Report^ <^ Activity (Early Start), ^7l^S(Early Finish), ^]^^-^(Late Start), x Finish) ^H] ^^2} Float^-S. t+Bj-T-fe Activity1! ^g-^^-^-S., Resource 4 , Activity

Activity^ ^*|^l-£# %^1^ ^r al^-^, d]# 5-7iS *>

fe SMART

DoE ^HH ?to] %-§-5]3. $ll^- ^3L}-^el>«.l^^

*> SMART

- 50 - 1. ^^ (Earned Value Analysis)

fe ^-^-S.^ Work Package ^-& Segment^] 7j]

- Budgeted Cost for Work Scheduled(BCWS): Si^Sf ^r*|^fe^] ^

Actual Cost for Work Performed(ACWP):

Budgeted Cost for Work Performed(BCWP): 71^- } Q} BCWPfe

- 51 - ACWP<4

*fl

Schedule Variance(SV) : ^ (Critical Path)

SV = BCWP - BCWSif

Cost Variance(CV) :

CV = BCWP - ACWP ^ ^o]

Variance at Completion(VAC): BACA]- EAC# H]J1*M VAC = BAC - EAC

ss

ZL^J 4-4 Earned Value

- 52 - 2. ^$ H81^ ol EVMS^ *l4(current)4}- *]-g-7]-*] »| ^ (cumulative), A};*} (completion)^*] 4# ^*££ *1^# <§Fg*WI Qr.\. tfl t. SPI(Schedule Performance Index), CPI(Cost Performance Index), ZLZ]3. TCPI(To-Complete Performance Index)7|- $X^h SPI^f CPfe

TCPfe °>^= <^|4^ EAC i-MM CA

, BCWPif

WIP(Work-in-Process) CPfe ^7]* , BCWPif

ojn] ^*|^ Activity!- cJf^^S. *V

Activity^

>. ^, TCP t^, TCPI - (BAC-BCWP)/ (EAC-ACWP)i}- ^o] I^B]-^ ^ Qz}. ^^ CPI if H13.2M- 4 TCPfe ^olSa^ ^^^1^7} Sjfecfl, ^-^r ^^-^ # ^^*tecfl A}-§-^ ^ ^cf. TCPIif ^3 CPI^ X}°]7\ 20% 44r EAC7f 2f7i ^*|£^f ^J7fl7f EVMSoflA-)^ WBSM- OBSSJ 4 if x]^-7fx|^ ^*H] rfl«> 4^.# 7Mi SV, CV, SPI, CPI, H TCPI ]

- 53 - - sw> cvi- - sv, cv^ *

- CPI, SPI, TCPI Work Package^

EAC#

3. ^^# SMART

5a

m wmffrtm ts m w ReVisior evtslon qt preliminary design loads. : * av?|qp.ment!of.tent9tive. f.proRQnept.steJp.ix ' Static analysis for prs(rnrnajydesigrt|S • Survey of proper (ationales ; Conhrmaiion^of initial sizing forstatic loaidin - -: ' &&S Review of preliminary sketch flfcompone^S : j : : :&^Re^ewo{prelimlniiiy:sketcaofa&eiM ES7 Dynamic analysis for preliminary deslon. • :

jrra of slrnpllfied dynamic ajnaVsts : \ \ • '. '. | '• Review of dynamic analysis results I ; ; j ; ; • : Pevetoprnentcrinleitac? dataforjottiersystem - ; : '' Development of preBminary dynamic leads : •• •

0Prepirabon of preliminary assertiij;:; preliminary system designsequlrifredulriee ::••:•••:; ::**: Internal Re i?* glfRI svstam Seslan rsqulremeh)?

DJ& 4-5 RVI

- 54 - Segment -f- 7]7%<£Jfl&>}$i\ ^^f^-^^1 (Reactor Vessel Internals)

*} Report Earned Value Reporter Cost Performance Report(CPR)<^lt:}. n.^ 4-5^ Sample Project^! -$2HlH"£- 4\Q Earned Value ^1# 711^*1 Resource Profile^ ^.^^3. $X^l 4-1^: ofl^U Segment^ '98.6^7^1^1 d14. °lfe, BCWP, BCWP, ACWP, BAC, EAC Al^(Current), ZL nfl^l^J ^r^(Cumulative), |^ (Completion)^!*\$] SV(%), SV, SPI, CV(%), CV, CPI, 3. TCPI &# 44 -tt^^rSiC 1^.^, 4

4-1

BCWS BCWS 631 BCWP BCWP 606 ACWP ACWP 619 BCWP-BCWS - 25 SV(%) SV/BCWP X 100 - 4.1 BCWP-ACWP - 13 CV(%) CV/BCWP x 100 - 2.1 SPI BCWP/BCWS X 100 96 CPI BCWP/ACWP X 100 97.9 TCPI (BAC-BCWP)/(EAC-ACWP) x 100 96.4

SV- -4.1%7r Sjfe 4.1% , 4 CV -2.1

- 55 - 2.1%

SPfe Data Date ^4 96%O|TJ}, 7^ f. SPI7]- 100%3]

100

fe- ^JLS. oj-g-^r:]-. ZielJL, CPfe 97.9% ^c-11, TCPI7F 96.4%^.

97.9^1 7\*]7\ n^<£c\i$. ^^

1-5%

1.

-^A|^-t|(Concurrent Engineering) ^^1 ^y-^^-^S. %-S-5|3. $afe IDEF(Integration DEFinition) 19761,1 USAF (US Air Force)of Enterprise Model)# fi^-&f7| ^|*> ICAM (Integrated Computer Aided Manufacturing) HS«)M5] A)^^ uj ^7)^0.5. ^H1^^^]-. K>EF

- 56 - SADT(Structured Analysis and Design Technique)! x^S) -§•/.] •§-*}• x^Q-Q ^ $XSi^ ^i^Q ^,^-S.M CALS(Computer-aided Acquisition and n Logistics Support) lf^ u> OrM^r n}^ <^^ ^^^B|S^*1 FIPS^ A)^ v^ ^^l^*-o1 IEEE, ISO

-b n^l 4-6^1^

Sequential Engineering

Initial Scope Pis i m+i nary — Production Design Definition Design

•*— Life-Cycle Time

Concurrent Engineering

Initial Design [ —I Scope Definition ] 1 Preliminary Design Detailed Design I i Test & Analysis Prototyping Production Time Saved CE Life-Cycle Time

ZHU 4-6

2. S3.A|| i

- 57 - K)EF (AS-IS Model), 1(TO-BE Model>§-

IDEF 3- ^Ife ^€r IDEFO(Function Modeling)^- IDEFl/lX(Information and Data Modeling)olT}. o]^. H^^S. 1990^CH

4-2 IDEF

IDEF Method Purpose of Method Status IDEFO Function Modeling n a&s IDEF1/1X Information/Data Modeling n im^ IDEF3 Process Description Capture n 'a&s. IDEF4 Objective-Oriented Design IDEF5 Onthology Descriptive Capture IDEF6 Capture IDEF7 Audit Method IDEF8 User Interface Modeling 7H©oiig IDEF9 Business Constraint Discovery Capture IDEF10 Implementation Architecture Modeling IDEF11 Information Artifact Modeling IDEF12 Organization Modeling IDEF13 Three Schema Mapping Design IDEF14 Network Design 711^011 S

- 58 - 14. IDEFO IDEFO ivities), SE-fe- 7]-^(Function)^- t £r*h ^f^ss is-ti^H •^••^ •^°l -^ IDEFO s^ 4-72]- ^-o] a]-^ ^Bfl^. S^]3tJ^ 7]-^(Function):z}- ICOM(Inputs, Outputs, Controls, Mechanisms)^.:

Function ^J Function^^ :#7j]# y o^(0utside-In Approach)^

MOi I(Controls)

—• (Inputs)"*' (Function or Activity) (Outputs)

•Output3

atriumi (Mechanisms)

4-7 IDEFO 3.^$]

IDEF3

- 59 - IDEF3 ^Ji-b

^flsrf^ufl, HS.4^^-§-fi.4(Process Flow Description)^ <>lS.A>(Object State Transition Description)7f

IDEF3 HS.4^ ^

r. IDEF3 4-8^ IDEF3 S

(1) UOB(Units of Behavior) (2) (3) (4) Referents : UOBi}

Use Corp Quality Define Roles Define Elements to Improvement and Establish Cycle ResponsMttes EE on System

3.1 1.1 8.1

Define Benefit Enrollnnert Process

6.1

ZLQ 4-8 IDEF3

BDEF3 fe 3. 1^. •&-§-. lfe UOB UOBfe, UOBl-

- 60 - ^(Elaboration)^!

1) ^1^):^ ^*l(Temporal Precedence) , 2) (Object Flow)

UOB

U0B7f UOBS ^ Fan Out(Divergence) U0B7]- ^ Fan In(Convergence)

UOB Symbols Uoka

UCHBUbote 1 rn.ityi " 1 OftieetFlowUlk 1.1.: -':. {-,•'.'-''••.

Referents and Notes —SynchraiwiuiAND

—OH

g—ExduatvaOR

ZL^3 4-9 IDEF3

- 61 - 3.

7\.

^i^^ SMART(System integrated Modular Advanced ReActor)

K SMARTS]

HU 4-10 SMART

CAD/CAM/CAE ^^

CAD/CAM/CAE

CAD/CAM/CAE

- 62 - f. RVT Sf\*y IDEF

(outline drawing), A] ^i em requirements), ^]^^! -^ ^ ^ (system description)!- ASME 3.S., ^-4J3L^i, -¥-*>^^ -§-5j S^^^ ^t> CAD/CAM/CAE ^ resource).^ 47fi-|#(mechanism)o| %-g-5]<>|

RVI Al>,

ZL^J 4-11 RVI IDEFO H^ 4-12 RVI ^ IDEFO

(node tree) Activity/Concepts D^^!

- 63 - Activity Based Cost nfles} &DJ-. , 7]^

IDEF3 S3.4^ RVI

. "RVI System Model" -b "Assembly Drawing'-o]

^^, RVI

Pirtminafy

Onwfcvg SptdficaSon Evtrt* fEh r.i |

4-13 RVI IDEF3 SS4^

- 64 - 5 # SMART

n]| c.

*>

database

fl

SMART ^JSL

SMART

- 65 - n 2 ^ SMART

57H

SMART 7}

235

5 wt. 0.05 4.95 wt.as#

WABA ^ AI2O3-B4C

^2f Al2O3-B4Ci]- . [12] [13]

Aov-§-

^

(xenon reactivity defect) [14]

- 66 - 25 ^9|JiS.(checkerboard)

h 29

B4C . 33

71

& 41 H]

^-A -feo] 2 m«Jl 17x17 U02 57 .^.T^, 4.95 wt. 990 26.25 MWD/KgU) ^*>

AI2O3-B4C 1,304 12 wt.*S} Gdz03-U02 -g- 244 7H

9 7fl^ Ag-In-Cd . 32 7|J^ B4C 41 1% 5-1 gj a 5-1 off

7]

CASMO-3/ MASTER 3.17, 6flA| +30% AO 20% o|#ofl,fc| ±65%, 20%

1 -40 pcm/°C -3 pcm/°C ~ -25

- 67 - D D D 1

B A B A B 2

B B A 0 A B B 3

D A A D A D A A D 4

D B D A C A D B D 5

D A A D A D A A D 6

B B A D A B B 7

B A B A B 8

D D D 9

5-1 6(1*1

3: 5-1

Gd203-U02 Si Mr AI2O3-B4C A 20 4.95 240 24 - B 16 4.95 244 20 - C 1 4.95 236 24 4 D 20 4.95 228 24 12

DNB ^^#

- 68 - MASTER

. [20]

ial zoning)

2.6

fe

SMART

- 69 - 2. ^ SMART ^\ fl\ ^ ^M 1 g4^ 4# $*fc £j^ oj-^IH^ sf\^Y i^*>^t:K JE*> KRB-1 AoV:?H[21]# SMART ^^5.^1 ^-g-SJ; 4 SMART

!-. SMART ^^r*! ^^<^1^ DNBR ^-^^r MATRA[22]it KRB-1 ^^^# °l-§-*H ^r^^^^}. ^^ AM <8# 3&4^7l ^^ DNBR 2.072} CE-1 ^J-^-iJ *>4 DNBR 1. 4 990^<^l^ SMART i^^ DNBR

Ai S.A^ L}E}L|t ^l^jSfe DNBR Levy

3&4 11 ^^ A}-g-*j: 4^71-7} A-?^^K SMART 3&4 Jc^ofl «]«H ^^L^, ii^^r ^^1^^-S. fe -5«S M-Bl-ii^. ii-a ^-a- 1-T1 *Jtfl ^H^lfe 651 Btu/lbmo]

25% ^-t:}. o]^ SMART «?^^.^ ^d]7l- KOFA^fl > 87fiofH 57HS #Sd7] 4^"C'I^K SMART 0.095 BarS 7l^ 3.Z] 3&4 317] ^^ 7%o]t\. SMART l 3&4 5171 -8^51 4f 30% ^

SMART «f«!S -g7K^do>e*£ "r^*l"^oI 7}^j- ^. 20°C -

^^ 1.18 KH3.M 3.Z] 3&4

SMART -t^^ ^^"^^i S^«^>H^ DNBR ^r^^lfe MATRAif KRB-1 ] SMART

- 70 - LE.°i RELAP5/M0D37f 4*5^ ^Tfl^-fHNr Look-Up Tabled &m

MPa^A-liE. RELAP5/MOD3^f Look-Up Table ^7^7} ^^> Ji^^tl ^^\M: & &.£. # 4, ^^ Q^0] 12 MPa fe Look-Up Tabled K2 RELAP5/M0D3if Look-Up Table ^Il7jl7|- MATRA/KRB-1 ^1^]^} H|S| DNBR# Ji

K Winfrith A]^|^|-^-# ^"^tl ^^S. 31-2-7]- ZLQ 5-2<^l ^l^lSl^l-fe^l, S.

£.$)

3000

2500

2000 +30% /

o 1500

_ Q. Winfrith Data [1] "a" 1000 G = 600, 1200 kg/m's A 70 bar O 100 bar 500 • 140 bar T7 ISObar

500 1000 1500 2000 2500 3000

^"Measured

5-2 RELAP5/M0D3if Look-up Table

- 71 - SMART

=. MATRAif KOFA-§- SMART i^ ^r^^^^l ^

6)

3. tl^l^ % SMART-§- Jt-y^l^I^Smart COre Monitoring System, SCOMS) -(Smart COre Protection System, SCOPS)^ *U1#J»3. ^U)*]-3L 1L2:*1-JE^- COLSS ^ CPCS# SMART Tll^] <^^-£^- ^^l^Sd^K ^l^f ^^ SMARTS

10-4% o]^ ^-f ZL 7l-^ 3. -a^r^^l DNBR^f ^#^ SCOPS *|7ll7l€# ^>^

. SCOPS-fe

100% A}

^ 100% A}oHM ^^H 5 %/min

15%if 100% 4

5-3 ^ ZL^l 5-4^ SCOPSij- SCOMS SCOPS

- 72 - SCOPS , CEAP, UPDATE, POWER, SCOMS ^SS^Hfe

Flow Adjusted DNBR RCP Speed RCP Delta P Outputs to POWER & STATIC FLOW Inputs (Core Flow Tin (UPDATE). Calculation) Tout Exeore Flux E UPDATE I Pressure (DNBR and TRIPSEQ CEA Core Power (Trip Signal CEAP Generation) Positions CEA Deviation PFm Update) (CEA Program) Outputs to FLOW & POWER

POWER STATIC (DNBR Tout& Inputs (Power Distribution) Inputs Calculation) (FLOW& Saturation Temp. UPDATE) (FLOW)

5-3 SCOPS «:•!•

Alarm/Display

Feedwater Flow Delta P Feedwater Temp. Feedwater Pressure SG Pressure

RCP Speed Core Power Limit Core Outlet Temp. based on DNBR Core Inlet Temp. Core Power RCS Pressure Distribution andASI Core Power Limit CEA Position based on LPD In-core Flux

Licensed Power Limit

~L^[ 5-4 SCOMS

- 73 - 4. SMARTS W4L -5-2}<£# 0RIGEN2.1 3-E. SMARTS NSSS Tfl-g- >i7}l £ BOP ^Ttfofl o]

^ SMART

DORT

2.8803xl0'16 n/cm2S ^7l-5|^t:}. o)^. 1OCFR5O.61^1 +20 2 1.0xlO n/cm &&} 4^r ^-5LS. SMART*] Q

g1 ff] R-Z 71^-7-^^1 cJ|*M DORT 3H 91 ^#^r 3.70x106 -& «>^ 40 cm *J*l<>fH 1.53xlO13 3.60x105 6.68x106 n/cm2sec5. 40 cm ^^Hl^H 1.03xl014 5.80x105 n/cm2secS.

-§-71 SJJMI J ^MI- 91

3/4517)if ^^ UfBVldtS., U^X] ^^^ ^fe 61= 3/451717}

1 (SMART:

- 74 - . LOCA n*\6\] >«fg-^ ERF-fe

. MCNP4B j #H SMARTS! Pin/Box Ul-i-ofl tfl# ERFl ^f^K SMARTS ^^5. 4^-i- o|^43-Al 7}^S] EAB ^ LPZ >3. RG 1.77O1M

5/65171^ 490 m ^ 5,633 m 7]€\S] EAB LPZ ^TiHlA^ ^ o|^-^5it:>. 31144 s}^^^ 20 ~ 1OO%S H £2} n)^-47f 100% 3>^S ^-fdHS. EAB4J- LPZ 91' ^-tl ^5ov°] 10 CFR 100OM ^Al*> s}^. ^1*>^1 oj 3 Sv ^ 250 mSv

SMARTS 7]^ ^711 ^^ofl rcj-ej-

5. SMART

.^^)1^ CASMO-3/MASTER 3. HELIOS/ MASTER SHAflTlM- 43-°] MATRA i| ^U-f- SB^ SH^l MARS[24] MASTER# ^f-^l-Sd^K ^Aov ^^ ^^°1 ^H^^S. ^^r SMART ^#^^1 ^1-5+ ^r^# JH*H ^^ ^^^V^r^l-^ 2\W<& COMPASS [25]*]

SH°J MASTER-! ffl^&ty. MASTER

- 75 - MASTER 3£.

JEK ^ , MATRAfe

^- MATRA71- (Heat Capacity, Heat Conductance) ^£}-# ^L^^M $i3. &7J

]7] ^]^fl 7jf>do| o]

SMARTS

2 = ti MASTERS

MARS 1.35] ^-tg- A)^^-i- ^-^l-^uK o|5j*> -^^J- A|>r^{^. *ov*u SMART SMARTS <

(Object Oriented) 4^: 4^# #*> ^^ «?1^] B>o)a.e|el (Dynamic Link Library, DLL)# 4-§-*>^^>. MASTER/MARS f^3£5] X\

jfl^o. ABB_CE t COLSS (Core Operating Limit Supervisory System)7]-

- 76 - (on-line)^

SMART «>^^^ <>!*]•£) ^^3} ^1^ ^ ^H >M^1§ 9-^] on-line in

COMPASS COMPASS^ 3]- COMPASS^] #^-g£fe ii^ «f-i7JlS£ MASTER^ , SMART Jt^ofl ^}-§-^ ^-f-oflfe COLSSif

- 77 - 1. SMART SMART T 7\7]7\ *1# ^S.^ Large Break L0CA

f. SMART 4

SMART >H^^ ^A ^Tll^fe a 5-KHI

7}.

ASME isLE. Ill, & ^44fe 414S-S-71 2 cm n^LS. <&

-§-71

- 78 - 5-2 SMART

i^^iJ-^MWt) 330 •^§•7] ^ (kg/hr) 550,000 ^^](ni /h) 2/10

•^r^J 4 *«^(MPa> 15 •Ma +*Wtf) 1/4

fe ^ 5-5ofl

- 79 - Debris Filter

5-5

717} fl-M. 71^7} 5:6)) 3]%}

- 80 - ^M", 7171

714

71

4 51

711

717151 ^.^ 51

hydraulic Control System)^

- 81 - . zj- 4^^ , 17HS1

AM si

7}

711

72

- 82 - Concrete Containment Steel Containment Atmosphere

Heat Exchanger \ 1 L.

Safeguard Vessel

Feed Water Feed Water Main Steam *C> Main Steam

Reactor Vessel Steam Generator

-HU 5-6

. 4 ^l^^r

- 83 - o)

key-locko]

key-lock

4

7}

o|

HU 5-7011

724

- 84 - 1,2,3,4

— •*•—*• aa?aaa 1,2

5-7

Period)^

7171 *] 7}

S: 27{f*l al*-^ 4 7J7I 91 » 100% . 4

- 85 - System)^

, 4

724

4 7 . 4 uflofl Internal Shielding Tank) ifl

fe H^ 5-8^1

- 86 - Concrete Builing

HVAC XXX X Safeguard Vessel I I T T /

Reactor Overpressure Emergency

PRH Com >ens atiot Tank

Internal Shielding Tank

O.^ 5-8

2.

7}. SH(ONCESG)

fe U- SAFE, ATH0S3 SMARTS A}

- 87 - ONCESG IHfe

-3~£(COLDPZR)

3.7)7} ^14 SMARTS]A-]^ ^-^

COLDPZR^ ^^H^^>S^1 SMARTS]

C>. SMART -iTflA] o|5|«>

SGINS 3.^.

Laplace

- 88 - Routh-Hurwitz

£S o]

3. MMS 3LE. 7}. MMS 3H

, 7171

Framatome Technologies Inc. (FTI) Modular Modeling System(MMS)e}fe r.}. MMS S^.#

SMART ^A 7^1^^ ^^^H^# ^?> 7l7lS#^ cU^-^ MMS 3.^7} •^fe ^.^1^1^, SMARTS MMS 3.^7 MMS 3.i=# o]-g-*> SMART

- 89 - MMS &£.<

SMART 3.^-^V ^Jf 7] 7]

debugging

4. #^

SMART ^Jg.'iTflcfl-b 71 ۥ

, once-through helically coiled tube

^S SMART 4i^>S.^- 7]^- ^xfS.51- U}$ ^4^^ ^-^# 7WJ2. 51^-^1

7171

SMART #43. ^^71 ^-^-T]!^ (NSSS)5l

- 90 - 4^ *L 3J ^^M |# ^*> SMART NSSS SJ *$*§• £<§• Afci S^# ^*j| SMART

- SMART

5.

CFX version 4.2

thermal sizing

ZL# *t 7fl

l^. throttling

- 91 - 1. SMART #} } SMARTS Stl

. SMARTS

SMART oMfe-

(annular space)cH] 12 7l|7>

SMARTS

2*]-

43.,

safe ^^oi sa

- 92 - H^| 5-9 SMART

7}),

- 93 - f. SMART

44 12

41

SMARTS ^^ 3.71 7f

717]§

, *> 4

-§-715. SMART 10m,

- 94 - * Hi

•SSDH

Flange

Upper Cylinder

Lower Cylinder

Bottom Head

H.^ 5-10 SMART

- 95 - 1. 2. S5I= 3. 5. =£?|^§}l ti 6. S^»^ SAIS OlSStH tfi 7. HHS(drain) 9. §S¥ SAII io. xtisaAi s^aws tt 11. tfe! SE3AIS XHSSE3II ini 12. icHg^esxi axi? 13. 14. Segment Gate 15. !7>gK?l2l 16. 3h£:41&![H tfi 17. 18. infelSI^^I iufi

a^J 5-11 ^^-§-7) 717)

SMART 71, ^-^ 5-12). -§-71

- 96 - 5-12 SMART

SMART 3.7]}

- 97 - 4 -f^^

xma

sis

ZLQ 5-13 SMART

- 98 - 2. 7(1* SMARTS

7]

7H

^g.^ SMARTS SMARTS

7im*f

91 1) SMART 91 ^l^l^-^l-, 7f

91

2)

- 99 - |^ SMARTS .S. (regulations, codes & standards)

SMART 4i} 7B^ 2D & 3D

^], #4 91 ^] H^l^fl HM IDEAS S^ 2D & 3D S^ 4^^ } 4

2) 7H^ -S.4i 3^}-?i S'i 7H^ ?J Assemble 7f[^ A4i 717HS. 3H*i 3^f^ S^# IDEAS S^ assemble *>Sln>. o|

IDEAS SHf A}-g-^}<^ 2D & 3D 3.

- 100 - 2)

€ ^71717} *l }IL3. 7}7]

3) ^S. 7171 91 7171, 91

(4)

91

5)

IDEAS 3..E. 91 ANSYS ^S.

- 101 - ^|] 5-10).

^n 5-14

- 102 - ro-coupled)

(6) "A

a^ 5-15).

ZL^ 5-15 Routing

- 103 - 7) *x]/JL^ 7fl\i ^l^g^ iM i B lMg]l MK^£- 15

71,

8) B

o>^sH^# sf]#

9)

SMARTS , ^.513. 4

SMARTS ^^-^-#cHl tfl^}^ 71^ 91 ^7HA^. 4^, 44 7}V8,

- 104 - 5-16).

•=?•«

CEDM MCP RV PZR

740 CS8

1 754

SG Outer Disptacer

x,i,Rx,Rz 622 II -v* 810 Full

so Fun

FA

640 a <+ - • • -#'

CORE STRUCT. SIOE SCREEN

ZL^ 5-16 SMART

- 105 - 2)

SMART

3)

IDEAS, ANSYS, ABAQUS, ADLPIPE -§-5] 3£f workstation^! -i^|*>3. ^ gj c(o|T5] ^-8- benchmarking^ ^«H Jl^-^ ^>t> ^sfl^i ^^# £fe network^- ^^B 7]7l

- 106 - 2) SMART

CAD/CAM W HH ^ ^1 fgf ]^ a^af IDEAS*]

IDEAS#

3) K-Annulus 3£ 7fl1£ SMART ^ (hydro-coupled) ^ K-Annulus 3H§ 7)| Windows-g- H^.ZL^^.5. 7Vi^°M, £-& 9l benchmarking

- 107 - SMART #] £ H]\§ ^H QQ £^]^ fl*Hr ^ |l J 4Hl ^ll ^#R ^^14^1 ^fe SMART

7l7l# ^^H ^^^^1711 ^8^. gl 21M-KM- ^^-*}$it:>. ^.elU TMI

VDU -^^ U]^l#7l7l# 7l«>^.S. ^^l^lfe SMART

SMART

[28]. lfe SMARTS

^l^ *Hfe SMART

SMART ^^171711^711^ ^1*11-71711- ^

- 108 - 1) ^3 SMART

2)

SMART

SMART ^#0) 7>^^i^- ^^B)l- o}-§-*>

. 0}

71,

SMARTS Tfl-f-. (Critical Function)^]

7|7iq- 717] TL^l^ , 71 %>, 7)71

- 109 - : SMART

3g.fi.*>

: SMARTf-

SMART ^1H^

^K SMART

f. [30]

2. SMARTS

4 4 4-S- ^ SMART

7}. 1 ^l^ ^^11^ 4%f^f |1H SMART J f) SMART 51

- 110 - ESF R.G. 1.97 Category 1

FPD, , 2

7]71 JE.Jp- ol^S]-^ ^-^# 7} FPD gl FPD

14.

- m - VDU (Visual Display Unit)

cflo] VDU

, VDU

IEEE 279^ IEEE 603^1

aj-g-ofl IEEE 7-4.3.2

- 112 - 2)

S.^ J&€- 7171 JEfe

- 113 - o NSSS *> Tfl

o NSSS NSSS NSSS

. NSSS

o BOP

o BOP ^ BOP

ATWS(Anticipated Transient Without Scram)£| ^^# 3z|e]-7l l 7]

2) ^r NSSS, B0P#

3.71] ^ B0P^|«H7lI-f-^S. NSSS

^: 4 NSSS A

- 114 - o SMART el, Ef MMIS ^71),

2)

*>

, NSSS

- 115 - «>. 4*1

1)

, 4

2)

- 116 - 4. SMARTS 3.

^: MMIS

1)

, ©4

2)

^- MMIS

o Tll^ZL

- 117 - -A, B, C,

3. MMIS

44*1

- 118 - . [34]

Touch-screeno]v> Non-hardwired

. SMART

- 119 - M^H7lfe SMART 7)»}±S.

SMART MMIS

l MMIS

l-fe IBM 4 Mbps^J- 16 Mbps^ o 5

- 120 - : SMART

: MMIS

EMI/RFI SMART

SMART ^H^^r ^^j-^r^iA] 1^] ^^o| 7^*].£^. ^^^ ^ VDU

f. SMART

heatup) ^f

lt:f. SMART

SMARTS

- 121 - u]

Cjfu| ZL o]

-122 - 1. SMARTS Af§-5|fe

£ JE 5-32J-

section^ ttfe ^ PT-7M ^ ^-#^ PT-3VS

A safe

- 123 - SMARTS

5-3 SMART

^^1 7}^*> Section ^ 4 #<£^ ^W*!*!, mm 17

#7l«^7l 7M1S ^ 12 3^-g ^^*o> 31*1, mm 13. S 6 15,8 324 ^^^ -frJL^ol, mm 2800 54 168.8 z 17 ^^}^ -frS ^>^^, m 0r1054

o)^}^ ^-S #^, m2 0.0206 5^^/^^^^ mm 182/726 ^i^ ^l^x^^l, mm 12x1.5 ?ii ^/sl*l mm 2/3.5

^

ti e ^^^ 4 o^ ^1*1, mm 13.5 ^ o\ kgf 2000

- 124 - H^ 5-17 SMART

- 125 - Instability Rat Resonance Rat O IV) o en o cn o IJ U rfE en i i 1—4 00 lift rii =10

CD I*

ofn IV)

cn 2. SMARTS ^44^%^^(MCP)^ Q*}SL Wofl 4^7} o] ^sj-fe <5HS.E|(axial canned motor )^ 4f^5 ^K >*MMi3H*|Sl £_#£. ^ I982m3/h, ^ 13.5m, *Hf£.£. 31O°C, 15MPa, ^ ^^^O

08Crl8NilOTiolt:f.

^ A

- 127 - SMARTS 4tflii] 75%^

DCA{Double Circular Arc)

^fe 60[Hz], 7]$] $.-£-8: 0.8, ^-i- 0.8# 71^*3. fl-b 0.6[mm], Sl^>^ ^g-ffe 0.5[mm

5,3. «^|fe a

^ 3-tf 440[V] IGBTS.

7HJ

, SVPWMS

- 128 - TMS320F240 DSP 15/60HZ-& #^

MCP

IBM CATIA

. MCP

- 129 - m

(a) 5-20 SMART

- 130 - g

-ex

"* " *• ..,£ ~*""2 """"I *

H^ 5-21 MCP

- 131 - Experimental Value FEM

250-

500 1000 1500 2000 2500 3000 3500 Speed [rpm]

H.^ 5-22

- 132 - 3. SMART-g-

3.7}

CAD/CAE ^^r ^HS^H^l I-DEAS 3£ l^ 5-24) 9S #^3.^-^ 4^-g-^-^^K^-^ 5-25)^ ^«g*V9lt>. ^J2.

3.7]

180° cs. -B

5-26^1 A] Ji^. Hfif ^Oj ^^^ ^-Ajol 4^] ^.Ufe 47i) U}^ln} 5%

5-27*1-

- 133 - 4

3.5.3, (Electron

- 134 - - 135 - 1500

2,000AT

// NLJ 1.500AT | / / <^ 1000 Q / / / s r A aJLJ 1.D00AT1 Y 2 r w\ ff \ 500 H l\ /A i \\ If \ # - Catatetioiifof2D /I -+--I- Experiment I I 1 1 1 1- \ 3 4 5 Displacement [mm] 5-26

2000

g iooo

Displacement [mm] D.^ 5-27

- 136 - 4.

«^HJ 4ss^ ja.^-51^ ^1-7)^ j^af i|JM l 4 ^ Cr 18°^ type 430F 430FRO) -dj- brazing^

wettabilityl- Brazing# ^1*1 ^f7f

- 137 - nit SMART 7fl1**K2. &b SMART

SMART£) 3.-8 SMART SMART "^ SMART 7] SMARTS

SMART ^>^^-^i ^7fl7l^-A]-3.£)- <^^J&-^€r SMART J2.xH*M ANSI/ANS-51.1-1983(R1988)[36]# 7l§AS Frequency^ ^t> ^i^>S. ^BH (Plant Condition) ^^7} SL 5-4<^l LJ $iuf. 44 ^7]43.fe ^^4-t^ #

5-4 Plant Condition Plant Condition Reactor Year ^ (PC) ^^ 2j^ AfaL !&$•& (F)

1

2 F > 10"1

3 10"1 > F > 10"2

4 10"2 > F > 10"4

5 10"4 > F > 10"b

SMART A}:

- 138 - 5-7ofl <%*]#°\ $1^3. SMART

JE 5-5 *>JL Plant Condition

PC PC PC PC co <;icr2/io(3 CO > 10"2/IO(2) co <;io~2/io<3> PC of 10 CO> 10"2/IO(2> •££ SF ZL2\5L SF n^ai SF

2 2 3 3 4 3 3 4 4 5 4 4 5 5 5 CJ I 5 5 5 CJ I

PC - Plant Condition 10 = Initiating Occurrence CO = Coincident Occurrence (-^£ Coincident Occurrence SF = Single Failure

SMART

(MDNBR) : 1.30 (AECL Look-up Table : 12O4°C

: 2804°C (BOC), 2700°C (EOC)

18.7 MPa (^^1^^^ 110%)

: 10CFR100

fe SMART

- 139 - 3. 5-6 n Plant Condition ^^y-^l }ۥ

*)-§• PC-1 PC-2 PC-3 PC-4 PC-5 a. 3 #£3 A M- A}3i AH 10CFR50 Ap X X X X X pendix I £f 10CFR100 offsite radiolo gical dose-1 ANSI/ANS- £L 51.1-19 83CR1988) . b. 3 #£3*1 4 A}oLA]oil ANSI/ANS X X X X X -51.1-1983 (R1988) €43^3^ ^^[ c. "|uj- A]-j7 A] OI] -^<^^ ^7^1 X X X -jZ|-S|^] ^£.S- ^^-•Sj- *V^ d ^"3^: 3'^•£3 ^l^lfe" ^"# 3#"^ X )] -^X[-S ^i'S

5-7 SMART

Increase in heat Removal by the Secondary System Decrease in Feedwater Temperature PC-2 Increase in Feedwater Flow PC-2 Increase in 10% Steam Flow PC-2 Steam Line Break Inside or Outside Reactor Vessel PC-5

- 140 - Decrease in Heat Removal by the Secondary System - Loss of External Load PC-2 - Turbine Trip PC-2 - Steam Isolation Valve Closure PC-2 - Feedwater Isolation Valve Closure PC-2 - Loss of Feedwater Flow PC-2 - Loss of Pressurizer Cooling Water PC-2 - Loss of Condenser Vacuum PC-2 - Feedwater Line Break Inside or Outside Reactor Vessel PC-5 Decrease in Reactor Coolant Flow Rate - Total Loss of Reactor Coolant Flow PC-3 - Reactor Coolant Pump Rotor Seizure PC-4 Reactivity and Power Distribution Anomalies - Unauthorized CG Withdrawal from Subcritical or Low Power Conditions PC-2 - Unauthorized CG Withdrawal at Power PC-2 - CG Drop PC-2 - Loss of Power to CPS PC-2 - CG Ejection PC-5 Increase in RCS Inventory - Inadvertent Operation of the Makeup System PC-2 - Inadvertent Operation of the ECCS PC-2 Decrease in RCS Inventory - Steam Generator Tube Rupture PC-3 - Small Break Loss of Coolant Accident PC-4 Radioactive Material Released from System/Component PC-4 ATWS and Beyond Design Accidents

SMART #*}S. &$.7\}i§- 7flVl.gr t\x]rg Ji^Tj]^- (SCOPS : SMART COre Protection System)^S. DNBR^J- LPD (Local Power Density) Q

SMART iSTj]^ 7fl^^.^ SMART 7fl^7fl£| ^^^"S-^ il 51 ^J

- 141 - 3. #^ : 115% 3. i^l"^ £•£ : 325TC $*] : 80% ^^| : 20% : 16.7 MPa = 12.0 MPa

- 3. ol^]^ #7]^^ ^) : 4.0 MPa - *i ^l^H]^ ^-7]^^ ^g^l : 2.0 MPa - MDNBR : 1.30 (AECL Look-up Table) - LPD : 9.99 kw/ft - SCOPS ^

SMART ^^4^# #*> 44^ 43. ^.71^:^^: SMART (LCO : Limiting Core Operational4 ^14*fe ^-^-S. H^^.^^. 7} SMART

ANS

. ^71 Afci^ ^Alojl oV^Tfl^. ^^3.^"2l- 7171

SMART SMART jn-a-i^i, «?«is. *in, -frm}^ ^4, 714 si 7171 si

- 142 - SMART >g7!I$l -^^4 ^ *I#*ll*|-§- tf«M SMART

^l7}]7f 3gA*>i:l-. SMART 7fl^^7|Hl^fe SMART -£7ll7fl\i

^: SMART

Hfe SMART ii^-a^ ^-OH1^ Tjf^tl: MATRA[37] 3L^ g-54^ C0NTEMPT4E38] 3.H# SMART H^fl| qg £ H# 1 4S 711^513. S5lfe *1*1 ^1^-^^ S=^l MARS [39] 2Hf 7] H1 MARS/SMR 3Hf £• ^l<>fl>H 7^& ^<^] Sa^>. MARS 3.^ ^.

MARS SI=ofl SMART ^>^4^- g| 7l7l %•*]] ^^*} *>JL SMART ^^|oj| tcf^- nodalization-i- CK ^-^rl, SMARTS tt]tflig ^^^^^ | > nodalizationS SMART ^^ 5J ^^sfl^^- ^*H MARS/SMR

bundle CHF SJ*l

MARS/SMR 3.S<

- 143 - 2. SMART 7fl^i|7|] SMART 7^ 4*14^

7K

(1)

SMART .^ o}

- Keff < 0.95^1 o <>l-§-*H

100% 20%

20% (Keff < 0.95)^1

*>

*>

SMART

- 144 - 7171

(2) SMART

, *1

SMART Hitfj^ ^^^ ^^" 3*Hi ^*!H

(7f) #^ fe SMARTS 20% #^ Af)) -y-BH^f JL71 -t^l , ^"71 i^^| (BOC, EOC) ofl cH*H 44 100% -* 20%,

20% -> 100% #^ ^Sf# sD^^j-^u} 1Oo% ~ 20%

40 °C °)^ -frxl«fe ^o|t(.. ^fS^i -tlSlfe in. 108 % o]^ ^^ <^^>4# <^^o| 16 100% ~ 20% #^ ^§ ] 4 H^ 5-282f 5-29 %**te SMART 4

^714^7} 7fe*V ic-a (4^ £#^1 Tfl-M-

SMART

- 145 - MARS/SMR-j SMARTS 75%

5-30). ZL

75%

1.4- 100% -> 20% 20%-> 100% 1.4 Rx-power (EOC) Rx-|jower (EOC) 1.2- Rx-power (BOC) Rx- :ower (BOC) - 1.2 rnn d flow

1.0- 1.0

0.8- 0.8 o ••2s 0.6- ... 0.6 -

0.4- 0.4

0.2- 0.2

0.0- 0.0 0 160 320 480 640 800 960 1120 1280 1440 time (sec)

5-28.

- 146 - 16.4M- 16.4M 100%->2Q % 20% -5•100% 16.2M- EOC - 16.2M 16.0M- BOC BOC 16.0M 15.8M- 15.8M • 15.6M- 15.6M ^ - 1 1 g 15.4M- \^...... 15.4M I"

,-•' •>-• M 15.2M- *., 1 iA// 15.2M N a. / • "^ 15.0M- H 15.0M Q. Vv- ; • \.^ / 14.8M 14.8M- ..•:•.. t 14.6M 14.6M- 14.4M 14.4M - V 14.2M 14.2M- •%' ••'•••'•- 1 ' 1 ' 1 1 14.0M 14.0M - 160 320 480 640 800 960 1120 1280 1440 time (sec)

5-29.

Flow Distribution on SG & Downcomer Annulus

7.5

6.5

_ 5.5

,, 4.5 Xi o>

(D 3.5 2.5 B 1.5 0.5 0.0 O.S 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 9.0 9.9

Circumferential Angle :•: 33 5-30. ^

- 147 - -©- Core power -A- FWflow -a- DNBR

0.5- 0.0 0 50 100 150 260 250 360 Time (sec)

5-31. DNBR

(3) SMART SMART

40°C , SMART SMART

SMART 5-7«Hl SMART

. SMART

SMART O > ^S.^ SMART

- 148 - SMART 71^7^ *$<&& ^# -£*|*}7| $1*H afltUfcZ S]}*j A] 3f 5.AcNl^ DNBR-§- ^H*]-$^h SMART 7l|^^7fl^ DNBR# ^H*> ^ *)ifc DNBR (MDNBRM ^^7]^ sf^AJ-^L A] ^H^B}, MDNBR &o| 1.3655. SMART

(2) ^

SMART . SMART 2^35. T^l^^j-^ ^SM- #^*> ^2f ^^-^^ 4^4^-7} O.^ 5-32 18.37 MPaS. SMART 110a; <$^<>\ 18.7 MPa#

3.1 MPaS. A^-a.^

(3) ^

SMART

4 ^o] Jn^^-cj. ^.u]. go cm SMART {^^ ^ 1

(4) SMART

SMART

- 149 - MDNBR,

, SMART

10.

9-

8 -

7 .

T 6~ o '5 4- *-»

3 -

2 1 -

0 i i | i j 8 10 12 14 16 18 20 Time (s)

^L^ 5-32 DNBR

20000000

18000000 -

16000000

w 14000000 I

12000000 -

10000000 100 200 300 400 500 Time (s)

5-33

- 150 - 1000O 20O00 Time, sec 15000

OL^ 5-34

NEXT PAGE(S) left BLANK - 151 - 6 S- SMART

tc|-eV £- o^Le^fe SMARTS

^ SSZL^^l DEEP (Desalination Economic Evaluation Programme)^ ^^ SMART7]-

SMART7]-

DEEP SS.ZL^^|A-1 o|^-*>^L $X^ power credit

3.

4

SMARTS MED #?JS5| £ltfl g ^ ^ ]

1) DEEP ?S2iS CDEE(Cogeneration and Desalination Economic Evaluation)* & ^iH^ o| ^g.m€r General Atomics7|- 7H&«FS6lSoi lAEAoiH o|#s|ji

— 153 "• 1.

4 •¥•*} cff^^J time framed

:>§ a] )€r Hl^- 3. EL7\7\

^Bim (buying power of money)#

- 154 - , DEEP SSZL

71

714 4l6-}^r

711

= %•

- 155 - EkxLC _ jt, Ck

Ck A-*. /i . LC *-

^r 4

H)-g-o)

- 156 - [ P#

, P5f F }

F=P(l+x)N (1)

F

recoveiy factor)e}3.

2.

*> DEEP ^ 1S>$1> 3r #^5fe M?!!

^ $ #Hl ml fe JMli SMART#

membrane ^-^o] $a^-^ ^^^^-fe- MEDiJ- MSF7]- ^t:]-. -S- ^i^-^-M-b SMART7}

. $X^ MED DEEP SSO.^^ T&M- #1H^ ^4^ ^r^ tto^^r ^*f[^-^- top

- 157 - down . o]

cost), ^.S «HM*1 ^(backup heat source)^ 4"§-tJ],

lk<>\

O

w3/a) O

O

O

^ #5$S.£l base unit cost($/( m3/d))] X selected

unit size(m3/d) X (unitSj 7H^) X (

- 158 - Seawater Intake/Outfall System^ Hj-g- + base H|-g- + Owner's cost + Contingency cost + IDC

= unit 3.7H1 4^ ^ Tfl^ + unit 7fl

- unit 3.71 oil

= [0.7 + 0.3 X (0EHHI1!IS.$1 base unit 3.71 )/selected unit 371)0.5] - unit

- effect = 0.8333 + (effect ^) X 0.012

O 3

X % T$^% 7}^# X 365(d/a)

power credit ^# 4-§-*r^l- <>1

^fe ^]K ^ MED #^S MED #=HH<^1

- 159 - MED

jm li a# #]i in back pressure turbine^ JL^^^.5. %-g-*fe HJ^^- ti •frfca. sa^as. olel^]: ^# o^^r SMARTS

^r SMARTS

o ()

Wds /d) c ^ ^ ^ x(598-0.6x Tmi)x4.1868(J/g/ C)

I, Wds = -f-

GOR = Gain Output Ratio

Tmb = Maximum Brine Temperature

4.1868 = #3J H]

Joule $\ ^3-]^- Watt/sec^N,

- 160 - GOR7f

1.

(2) fe ^ ^i^H](ovemight cost),

«H SMARTS ^^ SMARTS ^^i^HH fe scaling factor!- 4-§-*H SMARTS n|-.[47] ^5J^ scaling factorl- 0.9S

B] UB>5I ^^711^^7} 4S6fl i)*]-^ 1000MW9"

- 161 - 1940$/kWeAS . SMARTS lOOMWe °)E- scaling factor 0.91- lOOMWe^- *M 2,442$/kWe<^l 2,327$/kWei+ ^ 12.50 $/MWh

10.3$/MWh

(3)

S 6-1 SMART ^^1 tlS< ch 01 SBiiilslgisisiasiai Illlllllllilillllllli MW(e) 100 MW(th) 330 & <£:§:-§- % 30.3 eC 38.4 0.06 Tfl^SM ^-cr 4^. ^^1# 0.04

$/kW(e) 2,220

^» ^^3 TT'"l^it 01 $/kW(e) 222 ^^•S-7] 7H^ 48 $/MWh 12.50 t^<^^. ^7lHl $/MWh 10.3 Sfl^llHl $/MWh 1 \1 30

% 8 ^^7|^> ^ 6\?.\ % 8 7] -^- SJ"3Nl ^ .£. \d 1998 7I cp. 0^ i^: 2005

- 162 - DEEP SS2

6-2

HI* 4*3* fl« 71 § *^ w3/d 24,000 900 Base unit cost $/m3 7H^ 12 $/a 66,000 $/a 29,700 $/m3 0.030 $/m3 0.020 ^f^el *^*^I»1 $/w3 0.020 ^.^Hl-g- % 0.50 Backup heat source^ ^>^ «]-§- $/MW 55,000 ^>^-] & °C 21.0 ^41 ^eHr^ TDS ppm 25.0 condenser range •G 5.0 condender approach °C 2.0 t^ pump 6J^ bar 1.70 sfl^ pump 3L* 0.850 kWh/w3 1.09 0.030 0.065 Back up heat source^] ^1^^ A>3.^xl^- 0.050 Back up heat source^ ^1^5^^) ^^ 0.050

*H^^ TDS ppm 38,500 21.0

- 163 - 2. SMART « SMART #eHH fe S 6-32f SMARTS)

r 0.055$/kW(e)hS 30%

7\ 57. 22.4%, 18.4%

a 6-3 SMART -H^HS] ^^7f ^# 2

B 41 ^ XT SMART %& #€^ •$•*? %% ^•5- -^r^j -£-.5.(Site specific) °C 33.5 1r i§-^(Site specific) MW(e) 102 MW(e) 5.3 7>^# % 90.2 ^^> ^^ ^^^ GW(e)h/a 806 SMART #^ #1!B*| «i# ^7} M$ 244 M$ 41 M$ 285 ^^^>7} $/kW(e) 2,791 <^^> 3.^a] M$/a 25.3(57.4%) <£# ^^Hl M$/a 8.1(18.4%) M$/a 9.9(22.4%) M$/a 0.79(1.8%) M$/a 44.1(100.0%) BJ ^-Sj- ^-^ ^1-7]- $/kW(e)h 0.055

- 164 - 3.

GOR(Gain Output Ratio)

#^S2] base unit cost7|- GOR^I ^*H- -f-*H base unit costal

6-4 Base Bto.it Cost fMWe) 40 °C 6.2 669 0.92 93.1 45 °C 7.8 713 0.86 93.5 50 "C 9.4 758 0.83 93.9 55 °C 10.7 794 0.82 93.9 60 °C 12.1 833 0.83 93.8 65 °C 13.3 866 0.83 93.7 70 °C 14.5 900 0.84 93.5 75 "C 15.6 930 0.84 93.4 80 °C 16.6 958 0.85 93.3 85 °C 17.5 983 0.86 93.2 90 °C 18.3 1005 0.87 93.0 95 °C 19.0 1025 0.88 92.9 100°C 19.7 1044 0.90 92.7

40,000

GOR ZLBlJl base unit cost^M*]

2) IAEA2] ^7H xFsah s|Ai°| DEEPo]W£| Gain Output Ration base unit cost Base unit cost = 496.9 + 27.8 GOR, GOR^- Gain Output Ratio o|c(-

- 165 - 0.83$/m3J^

4. MED

, SMARTS ^-^r lOOMWe l,800$/kWe ~ 2,442$/kWe^

distillation^ ^*1 ^71 ^g-^-oll £H*1 t5|

40,000 m3/d§.«^Bi 100,000

6-5

200$/kWe

3) 94s &i±& ^-3.s\ =?-£%; selected unit size# 20,000m3/ds sf2, -a^fFafe unltsi 7H^s sgs^^K ^^w 40,CXX)m3/dS| g-^ a 20,000m3/d x 23. ^^s|t*l, 60,000m3/d£| &^ ^4.^ ^afe 20,000m3/d x

- 166 - 60,000m3/dS. 4

3: 6-5 MED

(Me) 40,000 0.80 93.5 60,000 0.78 89.3 1,800 0.046 80,000 0.77 84.7 100,000 0.76 80.0 40,000 0.81 93.5 60,000 0.79 89.3 2,000 0.049 80,000 0.78 84.7 100,000 0.77 80.0 40,000 0.83 93.5 60,000 0.80 89.3 2,200 0.052 80,000 0.79 84.7 100,000 0.79 80.0 40,000 0.84 93.5 60,000 0.82 89.3 2,442 0.055 80,000 0.81 84.7 100,000 0.80 80.0

70 °C

-b SMART# MED <&7%1Q; SMARTS MED #?IS

- 167 - SMARTS- £-£;

SMARTS] £^7}*! 2,442$/kWe# fe 0.83-0.84$/w3^! ^M ^^*}7] ^«> MED 60-70 °C<>i ^J^S.

40,000 SL3.

SMARTS

SMARTS ^«n 71 moduleSl-7> *

SMARTS MED #?ES^1 base unit cost, ZLd]3. MED #?HS.

- 168 - SMART H^I^, SMART SMART ^^

SMART

*V WBS# WBSfe Segment, Summary Activity, ZLZ\3. <#*]] Activity-^

Segment^ 7)^- ^l7Jl£^l ixfeH ^1^^ ^r& Work Packaged. Summary Activity^ WBS7} ^-^£1 -!-.§. 3]-«t*>jL ^^^^-i- ^lt> ^4 Activity.*] ^$7]#:zf Logic Til, ^S^, Resource

^: Primavera CPM S£.# %-g-^}7l] 5]t^, Summary Activity

Manpower ^-el ^ Cr^tl ^BH5] ll^ij, Logic Network^

- 169 - 2. 51

SMARTS A 7l7l7f loop

(integral type) ^^©1^. ^^]ofl ^^-^ ^^ 7j{U ^ 17x17^ 3L-b 9-4^^^- 7H^I, U-il^ ^^t !, ^^-§-71 q^ ^717^71

MMIS

SL3. SMARTS 71^ loop^ 51 ^H SMART

$X>\) Qt\. <>]$# ^^-<^1 -SJ«H SMARTS

16.0 loop ^^^1S ^TJl, ^4 &S.*M «

lfe I992\d^l A^7fl7^ Al^s|^ 1995^] 51 -M^-i- 7i^ 1995M

- 170 - SMARTS ^-g-^JL ^ afe ^ ^^}7

3. SMART

4

oj-g-o]

utility

SMARTS

- 171 - SMARTS

7)€- ^-g-Sif i:f€- ^^l^}. SMARTS

fe BenchmarkingolU sfl^ tfl^i- ^TJHl tfl*> SMARTl- -f Bl5] 3.-8- 414SS. 7H

) H^IH^ SMART -g: JL3.H& SMART ^^A>-§-^ <=i4H ^H l ^ ]^^%# ^ ^^j ] ^^ SMART

SMART i^HI 38 > H^H SMART

1. ^ ^} 2 71 # ^Ml^l- ^TlS. *> WBS^ ^^]AS.^-E| o|^.o]^lcf. SMART ^m WBS^ ii-a-iTd, ^^n, 71^1^4, MMIS ^7]71 ^^|7H^ £°\3. -T-^sjol $LM, «=>1# Ai Work Package ^^M Segment^. ^Hf-51.2, °1# Segment^ c^ ^4^> 7l#^H-§-# S^*fe Activity^,

- 172 - S 7-1 <^^-ff 51 7]s

LO EL: &%&<>* L2 : Segments LS : *i1 S •a7j|7i 4JA|g §41 Sal

i 4|7|glBt§ a s l^a «-*4 as ^ tiTfl a j JESS. •7fl# g7j| £|«(Sf 4 7;fs S7I • in-fej •MTU • t^J -1171! a§/•«•lax^ a a7} * ^^t^H ^11 i'< -KTII 1I# -^7(| 4J1 Clf^TII-S * 5i"S^i7f * ii s- -a Tii BOP. &T<2bl S7(|aa 7Hg> •BOP -UTJl ^Tiiaa yui ^Tjiaa

i* +a ?2E7H * *•• ^1 S|-gSf^7(| =p-^ ****** mi y-«H ^a7|; 1

• §*^ *I sfl-tf H.a'B7i-^ ».flM TOI^ Tssii*j7H ifl-i!7|# • Level D i 37fa*wa asai 37fa^7na 7IIS *lg«7|- t *qo| MMIS a 7||7|£7H£ °J2J-7|7(|S7||(MMI) -SJ 71| N7|| •l!7(|7|| 7||*Mt>|7(|S(ISiC) •4f7J 41S -M71I7II'y- S7|- a PIRT *(•& ffl£2f a 4is*js a o|.S-e- aH7Hg!- a ej-a&iM a-i+jsf |7j7|5Ah:a a •NPA 711 Ef

J a etas & 871- *4 a *n*i SJ-BB 7Hg. s-as nit ti7(|7|5AH a a si S7|S- -ys ^44ailA-( 5J-4J jq o)S-?f-^*|(CEDM)-a 7J7H a- • CEDM -a 7fl7Hg!- a ^ § *jis-AIS • SG -a7(i7m a ¥©sag «JfeA a aaf3H^efiH(MCP)4|7||7Htf •MCP VX 7«sf a1 ¥- MS

^S. Logic Network fe Activity Identifier, Description, Code ^1^1 -^^ Activity ^iL, Duration, Logic Relationship^] , Activity "r^^l ^fc.A5|-fe- Manpower-g-^ Resource ^ ^ Work Package Owner

l-g-*> 4 2TLM1 SMART Schedule Reportl

- 173 - >•> Pnmavera Project Planner - [SM20]

»->i-~(CHn*ta*iES-'*e<=t =-*

H^l 7-1 SMART

*\, Activity Identifier^- c]-^-^ n_^i 7_2£f ^-^. 2 4el^^ Serial Number7f 0^1 3J.gr ^^ o] ^.^= Activity ^4 Activity^ ^-^-7]-

s 1 1 0 oh 0 0 1 1 1 1 1 1 Project Identifiers: SMART) Segment Identifier Design Output Category- Serial Number ZL^l 7-2 Activity Identifier

Activity Description^ ^^ , Activity -b Duration^ ing day) , Scheduling^

- 174 - Activity Logic o\t\z\

°1# 7l •£*}•£.# CPM 3£f o|-g-«M, Early Start, Early Finish, Total Float Total Float^ «B^ Activity^] ^^ 5]fe^l, ^ sir:].. zielJL, Activity 7f ^^L Milestone

jfe^l, °1# Constraints er3- ^H, Schedule Report^]A-l^ Early Start

Resource Hardware, Software,

Resource

O]

Schedule Report, Logic oit:}. nejuh ^L Schedule fe Activity

Activity^]

Top-Tier , CEDM-iT^l

- 175 - FA Mechanical Design Fuel PreWnary Design FR Performance A J-L Fud Tetrp. Dats mcore FuelMech. hstData 4 FA Core. Fuel • Geometry Pert. And. Geotn. Geometry • Numbers TrvtsienVSA &Shaoe

CEA*t S

Preim. Fud CycH & UP Design Cor* Design & Anriyses (Nuclear. T/H COPSAXWS, ShieMng)

hcor« CEOMReqts hjt.Oota FtuenceData Rx Power • Ceomeiry Physics R Cycle Length •Nurrbers Data Operation Req. - ReT. Fuel Assly Ref.CEDM etc... Core CEDM Geometry Size &SnaoeDoia Fteots I

Reactor htemels Design RVA Dywrtc Analysis

T/H CEOMReqts CCDMReqts *Twe •Step Length •Nurrbers •Speed

RVA Seismic Data i CEDM Prefminary Design ICEDMA ICEDH T««. Knemofic Schemes)

7-3

EstabKsfi Design Estabfeh Design and Develop Normal Operation ReQUfefftents & Analysis Procedure Analysis Model Level A 4 B Analysis ftegutatoryCrtterta

Develop Dynamic Analysis Prepare RVA Components Model Oe$ign Specifications Dynemc and Level 0 Analysis

Perform RVA R»fto* RVA 3-0 Prepare XMeU Arrange™** CtxTQontra Sizing Solid Modetng l~*i 4 Coftpomrt Sketches impact Arorysis CafcUatkxis

Pertorm RVA Components Prepare Stress Analysis Basic Design Report Acceptance Criteria

Prepare Final Evaluate Fabricabilty Prepare S*R Input RVADravflngs Evaluate 0 & U

Evaluation Periorm RPV Integrity EvAxtion Acceptance Catena

ZLrg 7-4

- 176 - SMART SETs/ITL SETs/ITL PIRT Test Requirements Experimental Data I SRO8E SMART Licensing SMART Licensing Documentation Issue Phenomina Strategy

SMART SA RELAPS/SMR RELAP5/SMR SMART SA Methodology Modification Code Validation Code Manual

PPS Setpolnt Analysl1 Preliminary PPS Setpoints Methodology PPS Setpoints

RELAP/SMR SMART SRDBEs SAR Input Basedeck Analyses Documentation

Input DaUlw , Safety/PerformaKe T/H Documentation Analysis ' h

TASS/SMR SMART PRDBEs PRD8ES Response Basedeck Analyses Documentation

PROBE Preliminary Control Control Sys em Documentation System Setpoints Setpolnt 1 SMART PA TASS/SMR TASS/SMR TASS/SMR Methodology Modification Code Validation Code Manual

NPA Graphics TASS/SMR TASS/SMR SMART NPA Configuration Graphics Link NPA Manual O.Q 7-5 NSSS Safety /Transient Analysis ^^-Jl

- 177 - 3. ^ 7-15J Summary Activity^-

Late Finish Time# 4* &^

Document Number

.1.2/29/00. .1.U.3.Q/0!.

S.1.30.5100 ST365200 sTSosTdo

.ai.a:2Ai.,Rev,oi. 0.1/25/0.1 01/26/0.1 12/2.7/P.1 P..1/26/0.1 1.2/2.7/0.1 01/26/01 JMY/o.V .#.£.3*1 i.o.7/2.7/Q.!.l.s.! 5.0 i.i.oo.l O.^ 7-6

^ a^j 7-721- ^cfl,

I xxxxx I -|FS| -1 SD I 1 I 0 I 0 1 -

Project

Serial Number 7-7

- 178 - SMART

o] A] Software ^^1 *H ^)1 5 ^-^ SMART

^ SMART

[50]

SMART i^£ SMART SMARTS]

SMARTS A^ UO2 2.000 17x17

44 4^ 17x17% 17x17^ 17x17% «|<*I^"

- 179 - Zircaloy *l*134*fl 57tf

17x17^ 17x17^

17x17^ 440] 17x17^ ^^S^-H-fe- 27{f5l 1 5H4. «4«M 71$ 17x17^ SMART ^i ^

Si,

data

CHF ^1 TC ^^ 1^ ^W W 4 ^^ 4 CHF1-

- 180 - H ^ ^8>l> j|l* 4H ^}] CHF

tWfe 43* 7j^5| ^45. 7|^* ofl^- c^^Tll «tf. fi 7-20))^

2. - SMART *

. o|ij. ^ 4S.* -g^Tll^ ^ 6J:^7B^ol *j}Bj}£ SMARTS

SMARTS

^^(SET: Separate Effect Test)

: Integral Effect Test)-£.S ^^f. 7fl^3l2l- ^£ 7171 mfe ofl-M-fe ^^ 717| i£fe #*m

SMARTS

- 181 - , 7\

Tj-f- ^^S. 7 7}*l7f £#S|$U«} o]§ 4 4011 rjftf

SMART

hydraulic zoneofl rcf^- orifice grouping ^ ^44* H)^^ -fi-^^S ^^ ^^^ -g-i- ^#«4. SMARTS #71 iH!7|ir helical coil tube ^S. 3} ^4^ o]^}^- ^4^7} «: post-dryout <$<$*)}*[ ^^5l-£ coil tubeS. **)« ^ ^^flH dryout

3EJ71 ttH-golcl-. Helical coil tube 43. «^

SMARTS 4

SMARTS

heat-up:^ 2J- steady stateoflAJ 7>^7l 4

- 182 - -?-^(Wet Thermal Insulator)^, -g^tf. ^4^1 4©]^! #3,2.

tg^. Wet Thermal Insulator^ 7}<&7] &# <$q*\) ^.elJL -f-^-g-^i-ll^ CEDM Tie Rod Guide f|| ^^ component^] SMARTS]

^^1 ] gv ^^^s. SJ-oisfca RELAP-5 ^^]

h SMARTS 7^71 off A] fe N2 7^7} Gas Cylinder TankS.-f-B]

f. N2 7^

o}6\]

©1©]: *>uj-. ^*|, SMART ^ SBL0CA7> ^At> ^lt>4^- ^^1 *ms. SBLOCA

r 7)^3] Taguchi/Uchida 3& S.

pool

- 183 - Almenas -§-^-5.^^ ^-§-^^fe 517

]^ 4f) fl end shielding tank) ^

SMART7]- •^1 ^ol ^dW^ 4. °1 4 «fl^i MM

[&.tf o] -?I-§-^r internal shielding tank£f OL ^ fltl1!* 7]-^^c>l <&r.\. 3E.*} SBLOCA vessel) relief valve7|- <^^ 3.-8: 3.' 4^-§-7l Ml .21 external shielding tankS. S^l °1-2HI :o-7lif -S-^-Slol ^#51-b *s-7]7\ external shielding tank MHH o^^Tll -S~§^1 ^--^-£1^- xl7f -f-J3L*> ^-^l<>lc:}. ir 7l7> ^3f^^.S. -§-^-51^1 ^-i- ^-f" -s-^-^l^l ^-cr #7l^

0}

SMART ^r S 7-3ofl

3. SMARTS ^ofl-b #71^^71, 7|-^7], ^44 ^^ -§• NSSS

- 184 - 7H CAD

o}6\] concurrent engineering)^ CADif

7f 7}

- 185 - . SMARTS

SMART

4. MMIS SMART 4

717H1

SMART

SLT$ O]

- 186 - SMARTS

fe^l 4

H]

4

. SMART MMIS ^: X 7-501]

5. ^71 7]

- 187 - 7]

44 "A compact^Tll

(two-phase flow)5]

4 9i

-fe Magnetic Jack Type

- 188 - mechanical seal

3600

€r S 7-631-

- 189 - 7-2 111!HHHHHHHHHHHBIHUH 1. ^S 17x17g S)2i£.

A|§ 98.4-01.12

AH •- Al ft) 99.3-02.2 AJ^Al tj S «= 1 td - -r->i-r"& *! ^ ujS'gJ if^| . aiiaas|sa^^A|s (1 *})99.7-02.3 - 4»*F«f 3E20||A-i°I JI|a.^ (2^)02.4-07.6 2. -g^sieis AH - DUSlh*ll -a^Aii 99.4-01.3

(1*000.1-02.3 o^^:A|l - inMI ^4: Aj^ x|-S-aA_(. oj (2x|-)02.4-05.12 - «qtiaaa*q ics| 99.1-02.3 -y§A|i - •aws aa si AH^gg - «ieaga*ii •¥•§ 99.1-02.3 All - unn^ a^ si ^£^s •^ ^= XH e •§• AH Al ^) 3. ^j7j|S^^ Ajg 97.7-02.3 CHF &SHN 3§ ^S^a a*}

- 190 - 7-3

97.7-02.3 if S 51 grouping

2. 97.7-02.3

- Heat-up/state state >M 99.4-02.3 S| ^^ Si

CEDM Tie Rod Guide tube

4. y|-§^ 99.4-02.3 Two-Phase Critical Flow si sH 99.4-01.3

6. #7|# 99.4-02.3 SI Bubbler

7-4 m *r

99.4-01.6

04.4-06.6

3. Slxi^m-^sS my- 05.1-07.12 •£!# S7|-A|S(CVAP)

- 191 - 7-5 MMIS m •?

- sa*iE| =SS.E|-OJ 98.10-02.12

99.4-01.12

99.4-02.3

99.4-02.3 MMIS • ^^* s"Efrel -a Til 99.1-02.2

- wi^ » > « 99.4-02.3

2. 2J^}7|^|°l7i| S§A|^

- *I|O|"E! Mock-up 3# - HFE/HIS 4d?||s| s|^-x|a 99.4-01.12

- HflX s|AM« xISoi¥ 98.7-02.3

- 192 - 7-6 m i

- »7itta7i ¥« - E|EHS ,1 M,i «a. 98.4-01.3

- xilcH-tl-^SS-*! •?••§• 98.4-01.3

98.4-01.3 £^?J si miolU O|-H,

- #7l^7|(SG) «« 99.4-02.3 -^^as 'ss S7i- 99.4-02.3 (CEDM) S!SB| -a^ /a§ Alt! - :^^s^ 99.4-02.3 zds-c! a# si Miss-s-

- 193 - SMART

SMART

71,

SMARTS ojej^ ^4 ^-^# 3.^^ ^-f Jf^

^^ Benchmarking^]^

. ojafl

SMARTS SMART

SEMENS

Westinghouse

- 194 - 7fl

2. SMART ^^H-g- ^^ 71^ SMARTS 7]^*]

Silt:}. o]5]*> 7H^^.5. SMARTS in^, 7}^7|, ^ 7l7]7}

SMARTS SMART TH^TH'a- 91

SMART 7fl^>i4^1 4-§-*}Sit:}. n_

SMART

3. SMART

91

- 195 - ABB-CE, WH, FRAMAT0ME4 4 4

SMARTS 7]^^ ^e]^§ #*}iM- ^B] ii^J, 7f

7] SMART ^|l |

SMART -g^ofl ^1^ %-g-*l-7]

(utility

Benchmarkingoli-]-

SMART# o] ^^*> ^AV 3.^*) ?m $&•& S 7-7OU-H S 7-10oil

- 196 - 7-7 & m 97. 7 - 02. 3 97.10 - 99. 3 98.10 - 99. 9 SI£3T13E/X|-#4|7AHS-*I' SO|AI jo-id 98.10 - 00. 3 98. 4 - 00. 3 MASTER-SMR 2*(- 7|&7|^ 2.Q 5! a SI 71)^ 99. 4 - 01. 3 2E}7J1 5lH*||?il g#-§- Benchmark ?(lt} 00. 4 - 01. 9 2Ef>U iaH*)|7)| g#§ -a^l^S o|ja 00.10 - 01. 9 g«r4!£ S7|- 3S ^-ij 01. 4 - 02. 3 2E.MI 2HJ6j^lia#a.3.A) 5J °lg 01.10 - 03. 3 g-y^l-^ sH-^I^SS/aM 7NAj/7H^ 98. 4 - 00. 9 On-line Surveillance System?!!'ef 98.10 - 00. 9 On-line Prediction System A*£ 99. 4 - 01. 9 •c! Operation Support System 7HSJ- 99. 4 - 02. 3 gS SU 3.3.M 5|-AJ 01. 4 -02. 3 ^^1*11^)1 g>^& / ?i%\3.B. 7H^ 98. 4 - 99. 3 S^IJNIJNI §! SSfSH a# (1*H 98.10 - 99. 3 ic-fel 4££SH^ @J-Q& / 7^S|-7|gj 98.10 - 00. 3 99. 4 - 00. 3 *H3I A|?i ^e} x^sf 99.10 - 01. 3 Muttigroup 'QS.H -^ @J^ #/7^5}7| a 99.10 - 01. 9 01. 4 - 02. 3 SWR SJ-Aj 01.10 - 02. 3 in-femej&samnns||(i!2.A|) 99. 7 - 00. 6 ic-fel Ss4^aa#g §(SS.A|) 00. 4 - 01. 3 99.10 - 00. 6 COPSIM 00. 4 - 01. 3 01. 4 - 02. 3 s& a# sy fi.iiAi sfAj 01. 7 - 02. 3 SMART =rSFSf-3E2J§S Si §-4| 99. 1 - 99. 9 =l^2i J5t-MA|tms'Sl3=/£-q 99. 7 - 00. 6 Jrl 3- jj\- If- Ql *?* Al A) $J 00. 1 - 00.12 ZIRCO-S *|T| JS.3J- S. Aj O SI Pi Zfj C2 yti Hj- 00. 7 - 01. 6 as a§ 01. 7 - 02.12 M JIA) ^h^ 02. 1 - 02. 3 fms. ss ss!2) su 99. 1 - 99. 3 99. 4 - 99. 9 99. 7 - 99.12 g3i£oK^eo2i a^ia^as 99.10 - 00. 6 00. 7 - 01. 3 = £23 5)-Aj 01. 4- 01.12 oilfll 4=s 01.10 - 02. 3 02. 1 - 02. 6 auiAi sf-a 02. 7 - 02.12

- 197 - 7-8 HHHBiiiSBiiiiiiiiBiiiiiiiBiHiillllll 2H7|fe S3 ^g am 97. 7 - 98. 6 ¥2. aS7Hy (fifi^S) 98. 7 - 99.12 JC-71 HI All -71 ol od ONCESG 2E a§ S3 7HAj, fi.fi}. 00. 1 - 00.12 53 3feS4 2E 1-41-felAH %j\ gj «4j 01. 1 - 01.12 4|S fi2A| Qg 01. 7 - 02. 6 2E 7|fe 53 ^^ Sl-H 97. 7 - 98. 6 *IS7^7| ^2 as 7«gJ- (agf/^g) 98. 7 - 99.12 COLDPZR 2E as S3 7HAJ, fi.fi!- 00. 1 - 00.12 -Sfe*ll

7-9 HiSBIIIIIBIIIHliHHiilHIIBiM 2E 7|^ S3 md am 97.10-98.3 ¥2 as JUS!- 97.10-98.12 K-HYDMASS V7H2i££| SIS 2E as, 7H-id 53 MfiF 98.10-99.9 •aiyl. fi.jiAi sf-a 99.4-99.12 2E 71^ S3 m$ am 99.8.1-98.6 SSI S7|g01|Ai ¥2 as 7ny 98.4-99.9 FREESHELL HI 2fS§t 2E aS, 7«Aj §1 Hgt- 99.10-00.9 H.2AJ 5j;Aj 00.4-00.12 sss -a ? 2E 7|fe S 3 4-y am 98.1-99.9 2#oii ^*n7i- ^fi. ol# S3 £1 7H^ 98.7-99.6 FLUSHELL *n°-ia g°2\ 2E aS, 7HAj gj fig). 99.7-00.6 fi^Ai S|/Aj 00.4-00.12

2E 71^ 53 ^•i& am 98.7-99.12 ^2 as 7H^ A[0|7|- fi-SIIS 99.1-00.3 COASHELL *n$is a^Hi 2E aS, 7l|Aj gj MS(. 00.1-00.12

S.HM ^^ 00.10-01.6

- 198 - 7-10 n » m • s a S H ^ '«»°« * » * * ' ^e- ^^ ^^ * 97. 1 - 97. 6 S2HJ3 ^31 S! ^feoi|^ 2HZJ--y 97. 7 - 97.12 3xm ^7U-^3I5 aE^S 98. 1 - 98. 6 ?»B|EilO|^ gg 2£^ 98. 7 - 98. 9 S3AJ 3(--a 98.10 - 98.12 3*H! 4^ofl* §i °j?gs| SSA|f g g.£f SiE^S 00. 7 - 00.12 Hlloli! a^,iJ4|sl|4j ssai 97. 1 - 97. 6 97. 4 - 97. 9 ss soi gj-^ 7|-^i^ ^^\ 3i g~7sy 97. 7 - 97.12 a- ^ atfe sis ^}^(oap) JE-2} §H^1 SI^ ^^I| 97.10 - 98. 3 4)5j^|7|| FEM 6||4} =£33 97.10 - 98. 6 Si 2H3&S 0(1 98. 4 - 98. 9 98. 7 - 98. 9 98.10 - 98.12 00. 7 - 00.12

NEXT PAGE(S) left BLANK - 199 - 4

SMART 3., 4

1996^"

*oV:f

7H

4

SMARTS

- 201 - 7] SjSJHfe ^"T- ^44^51 ^-#°1 ^At> ^^S- ^SlSJUM o]^ 2

^ Earned Value

SMARTS %-g-2f ^^H^^- SMARTS

=. CDEE

MED 91 MSF

J} MED

SMARTS ^4^ g} SMART

- 202 - SMART

SMART

NEXT PAGE(S) left BLANK - 203 - Si

1999^ 330 SMART

SMARTS SMART

7)

^ U^ $]

SMART

- 205 - SMARTS]

- 206 - 10

SMART o)6\ SMART 1999^

SMART

o)

fe SMARTS

NEXT PAGE(S) left BLANK - 207 - [1] tSs sj, "X(-AJ|DH^IX(-S. 21ST?-^I^|w^H^0- fiJIA-i", KINS/GR- 112/114, £.H-HX!-sleJ-S7|#£!, 1996.

[2] 7I^2|, 1998.

[3] SIT S|, "SMART ^3I» *l& S'r? 31 7|#7i- *jS*f S7r, s ^H^S^, KAERI/TR-1237/99, 1999, 3

[4] o|5!^, u&^ni£ =SSj^s| ^a|", 7|ir^al, xi|23, *I|12£, 1984, pp. 40-45

[5] |A|g^^^7l|S ^l& SADT gJ-SBsl 2JS, S-^SSJM-^SI tfitsa, 1998.11, pp.70-81

[6] DoD, "Work Breakdown Structure for Defense Material Items," Military Standard 881, Washington, US Government Printing Office, Mar.25, 1993.

[7] i, vol.9, no.2, 1998.8, pp.137-152

[8] DoE, "Cost & Schedule Control Systems Criteria for Contract Performance Measurement," NTIS, Springfield, VA, 1979.

[9] Garrett, R.W., "Eight Steps to Simultaneous Engineering," Manufacturing Engineering, Vol.105, No.5, 1990, pp. 41-47

[10] B. Prasad, "Concurrent Engineering Fundamentals; I. Integrated Product & Process Organization", Prentice-Hall;NJ, 1997

[113 B. Prasad, "Concurrent Engineering Fundamentals; II. Integrated Product Development", Prentice-Hall; NJ.1997

[12] *i£5 fi|, "S4:S ^^ISS^S hi^^n nit," KAERI/RR-1712 71! 20H.

[13] OlSS- fi|, "#4:SJ*||t! €^S^J O1|id|oij^7j|_|« KAERI/TR-849/97, :, 1997^ 4€.

[14] O|S& fi|, "ii^t^x^£J oilbltij^Tll-ll," KAERI/TR-875/97,

- 209 - T1-^, 1997^ 6S.

[15] a|4l-€- s|, "Nuclear Characteristics Analysis Report (NCAR) for SMART (System-integrated Modular Advanced ReacTor)," KAERI/TR- 1162/98, 1998^ 111L

[16] oltf-2 2I, "MASTER 2.0 User's Manual," KAERI/UM-3/98, 1998,3

[17] 2g£ s|, "MASTER 2.0 : Multi-purpose Analyzer for Static and Transient Effects of Reactors," KAERI/TR-1211/99, ± 1999t3 11!.

[18] B. O. Cho, et al., "The Features and Solution Methodologies of the KAERI Nuclear Design Code MASTER," proc. of Int. Reac. Physics Conf., Mitto, Japan, 42, 1996.

[19] SM s|H|, Vol.4, pp.457~468, KINS/AR-306, 1998.12.8~9.

[20] #*H^ s|, "SMART i-fel ¥°I-^#^S -^^ @7F', KAERI/TR- 1109/98, 1998t3 7S.

[21] D.H. Hwang, YJ. Yoo, J.R. Park, and Y.J. Kim, "Evaluation of the Thermal Margin in a KOFA-Loaded Core by a Multichannel Analysis Methodology," J. of KNS, Vol. 27, August, 1995.

[22] Y. J. Yoo and D. H. Hwang, "Development of a Subchannel Analysis Code MATRA (Ver.a)," KAERI/TR-1033/98, £RS*l-s|?* T1^:, 1998^ 4H.

[23] F. H. Bowditch,, "An Experimental and Analytical Study of Fluid Flow and Critical Heat Flux in PWR Fuel Elements," AEEW-R 2050, February 1987.

[24] SXHS SJ, "iWS! 2i^^^^^l!#^-^SH MARS 1.3311- 3*h£! in AI sij-fidTll SE MASTER 2.0# StrS: MARS/MASTER 3.E.S\ A| SuHS 7HH-," a^S^^SfSl 98 ^^11 sj-#^££|, SSfcfl^Jul, 1998 10.30-31.

[25] B. O. Cho et al., "Development of the Integrated Core On-line Monitoring and Protection Aid Surveillance System," 98 ^Ml Sr#i*S£|, S-SKHsj-H, 1998 10.30-31.

[26] ??l^r s\, "el^7|7j|^7||*||7j|7||^-", KAERI/RR-1706/96,

- 210 - , Jul. 1997

l [27] o|^ 3, "£jil}7|7:im^| 7H ^M3.Ai"j SMART-MM-RR210-02 (Rev. 01), ^4:, Feb. 1999

[28] r =£3i 7^|s(", SMART-MM-RR221-01, fi-^H *m o^^1^, Mar. 1999

[29] ^, "SMART t|^|#7|7| 7H!^a-a&", SMART-MM-PD200-02, ,Mar. 1999

[30] o|*J ilfiZHAi", SMART-MM-SR224, i.R^^^^^^, Mar. 1999

[31] s?i^ si, "SMART "KAERI/AR-494/98, °.^^^^^^^, Mar. 1998

[32] SJ-SIS, "7||^i|cH7j|# 7ljyMILAi", SMART-MM-RR210-01, ^-^, Mar. 1999

[33] ^£1^ fi|,"d|x|#iJ-A|7|# 7H^-"KAERI/RR-1705/96, ^±, Aug. 1997 [34] S|g S|, "SMART 74|^7|# ^^"KAERI/TR-1028/98, T1^:, Mar. 1998

[35] £!#£ sj, "SMART =IS# #& S-tlS" =5If ^Tll^-^s. 7||

[36] ANSI/ANS-51.1-1983(R1988), Nuclear Safety Criteria for the Design of Stationary Pressurized Water Reactor Plants," American Nuclear Society, 1988.

[37] YJ. Oyo and D.H. Hwang, "Development of a Subchannel Analysis Code MATRA (ver. Alpha)," KAERI/TR-1033/98, KAERI, 1988.

[38] H.D. Hwang, er al., "Development of the Containment Transient Analysis Code for the Passive Reactor," KAERI/TR-1058/98, KAERI, 1988.

[39] W.J. Lee, B.D. Chung, JJ. Jeong and K.S. Ha, "Develpment of a Multi-Dimensional Realistic Thermal Hydraulic System Analysis Code, MARS 1.3 and its Verification," KAERI/TR1108/98, KAERI, 1988.

- 211 - [40] S.K. Sim, et al., "Development of Safety Analysis Technology for an Integral Reactor," KAERI, 1999 (to be Published).

[41] IAEA, Assessment of the Economic Competitiveness of Nuclear and Fossil Energy Options for Seawater Desalination using CDEE, Vienna, 1997

[42] IAEA, Expansion Planning for Electrical Generating Systems, A Guidebook, 1984.

[43] IAEA, Getting started with DEEP, A Short Guide to DEEP 1.0, Vienna, September, 1998.

[44] IAEA, Methodology for the Economic Evaluation of Cogeneration/Desalination Options: A User's Manual, 1997.

[45] IAEA, Consultancy Meeting on "Economic Comparison of Different Energy Options for Seawater Desalination", Presented by Breidenbach, 17-19 March 1997

[46] %*m S*il£ ^e^, KAERI/RR-759/88, 1988.

[47] £[x[-e| £*||£ &M&?, KAERI/RR-947/90, 1990.

[48] OECD/NEA, Small and Medium Reactors, Paris, 1991.

[49] m^ , KAERI/CM-157/96, 1997.

[50] 2i#s si, -SMART an % 3^>i# , SMART-PM-PR700-00, 1999, 2

[51] HH^S- si, "SMART =^±, KAERI/TR-1239/99, 1999, 3

- 212 - INIS KAERI/RR-1896/98

1999 5)1 212 p. o 26Cm. V

©1 SMARTS

914. SMART

. SMART

SMART SMARTS

SMARTS] , SMARTS ## -^tb , SMART

, SMART, BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Sponsoring Org. Standard Report No. INIS Subject Report No. Report No. Code KAERI/RR-1896/98 Title/ Subtitle Development of System Integration Technology for Integral Reactor

Project Manager Moon-Hee Chang and Department (Advanced Reactor Technology Development Team Team)

Researcher and Department

Pub.Place Taejeon Publisher KAERI Pub. Date 1999. 3. Page 212 p. & Tab. Yes( O ), No ( ) Size 26 Cm. Note Mid-to-Long Term Nuclear R&D Program Open( O ), Restricted( Report Type Classified Class Document Research Report Sponsoring Org. MOST Contract No. Abstract The objective of this project is to integrate the conceptual design of an integral reactor, SMART producing thermal energy of 330MW, which will be utilized to supply energy for seawater desalination and small-scale power generation. This project also aims to develop system integration technology for effective design of the reactor. For the conceptual design of SMART, preliminaiy design requirements including the top-tier requirements and design bases were evaluated and established. Furthermore, in the view of the application of codes and standards to the SMART design, existing laws, codes and standards were analyzed and evaluated with respect to its applicability. As a part of this evaluation, directions and guidelines were proposed for the development of new codes and standards which shall be applied to the SMART design. Regarding the integration of SMART conceptual designs, major design activities and interfaces between design departments were established and coordinated through the design process. For the effective management of all design schedules, a work performance evaluation system was developed and applied to the design process. As the results of this activity, an integrated output of SMART designs was produced. Two additional scopes performed in this project include the preliminary economic analysis on the SMART utilization for seawater desalination, and the planning of verification tests for technology implemented into SMART and establishing development plan of the computer codes to be used for SMART design in the next phase. The technical cooperation with foreign country and international organization for securing technologies for integral reactor design and its application was coordinated and managed through this project. Integral Reactor, SMART, Design Requirements, Design Bases, Subject Keywords Codes and Standards, Design and Development Management, Performance Evaluation System, Economics, Technology Verification Test, Code Development Plan