Software & Systems Process Engineering Meta-Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metallurgical Engineering
ENSURING THE EXPERTISE TO GROW SOUTH AFRICA Discipline-specific Training Guideline for Candidate Engineers in Metallurgical Engineering R-05-MET-PE Revision No.: 2: 25 July 2019 ENGINEERING COUNCIL OF SOUTH AFRICA Tel: 011 6079500 | Fax: 011 6229295 Email: [email protected] | Website: www.ecsa.co.za ENSURING THE Document No.: Effective Date: Revision No.: 2 R-05-MET-PE 25/07/2019 Subject: Discipline-specific Training Guideline for Candidate Engineers in Metallurgical Engineering Compiler: Approving Officer: Next Review Date: Page 2 of 46 MB Mtshali EL Nxumalo 25/07/2023 TABLE OF CONTENTS DEFINITIONS ............................................................................................................................ 3 BACKGROUND ......................................................................................................................... 5 1. PURPOSE OF THIS DOCUMENT ......................................................................................... 5 2. AUDIENCE............................................................................................................................. 6 3. PERSONS NOT REGISTERED AS CANDIDATES OR NOT BEING TRAINED UNDER COMMITMENT AND UNDERTAKING (C&U) ..................................................... 7 4. ORGANISING FRAMEWORK FOR OCCUPATIONS ............................................................. 7 4.1 Extractive Metallurgical Engineering ..................................................................................... 8 4.2 Mineral Processing Engineering .......................................................................................... -
Software Project Work Breakdown Structures
CSSE 372 Software Project Management: Software Project Work Breakdown Structures Shawn Bohner Office: Moench Room F212 Phone: (812) 877-8685 Email: [email protected] XKCD: In honor of the RHIT bonfire… Plan for the Day n Plus/Delta Evaluation Reflections n Work Breakdown Structures (WBS) +/∂ Feedback: Lectures Pace Improvements 0 – much too fast ● On Target 13 – somewhat too fast ● More interactive exercises 24 – Somewhat too slow ● Bit slow (3) vs. Bit fast (2) 0 – much too slow ● More (2) vs. Less (2) depth Working well ● More visual material ¨ Lectures well-organized/paced ● More analogies/connect dots ¨ Good class/group activities ● More case studies ¨ Right material & good slides ● Avoid dry material ¨ Group games ● Avoid random calling on people ¨ Daily quizzes ● Less discussions with partner ¨ Knowledgeable instructor ● Move time to later in day ¨ Good case studies ¨ Cartoons/humorous slides +/∂ Feedback: Quizzes Quizzes Improvements 14 – Very helpful ● Quizzes are fine 20 – somewhat helpful ● Be more specific in answers 2 – somewhat unhelpful ● Easier (4) vs. 1 – Very unhelpful Harder (3) questions ● More open-ended questions (2) Working well ● Make questions even shorter (1) ¨ Enforced note-taking ● Avoid “list the…” questions ¨ Focuses lecture direction ● Better matching questions to ¨ Indicates high points slide content ¨ Good study guide/aid ● Put a fun question on quiz! ¨ Questions work well ● Don’t have quizzes (1) ¨ Integration with material ¨ Good coverage of important topics +/∂ Feedback: Reading and Homework Reading -
Writing and Reviewing Use-Case Descriptions
Bittner/Spence_06.fm Page 145 Tuesday, July 30, 2002 12:04 PM PART II WRITING AND REVIEWING USE-CASE DESCRIPTIONS Part I, Getting Started with Use-Case Modeling, introduced the basic con- cepts of use-case modeling, including defining the basic concepts and understanding how to use these concepts to define the vision, find actors and use cases, and to define the basic concepts the system will use. If we go no further, we have an overview of what the system will do, an under- standing of the stakeholders of the system, and an understanding of the ways the system provides value to those stakeholders. What we do not have, if we stop at this point, is an understanding of exactly what the system does. In short, we lack the details needed to actually develop and test the system. Some people, having only come this far, wonder what use-case model- ing is all about and question its value. If one only comes this far with use- case modeling, we are forced to agree; the real value of use-case modeling comes from the descriptions of the interactions of the actors and the system, and from the descriptions of what the system does in response to the actions of the actors. Surprisingly, and disappointingly, many teams stop after developing little more than simple outlines for their use cases and consider themselves done. These same teams encounter problems because their use cases are vague and lack detail, so they blame the use-case approach for having let them down. The failing in these cases is not with the approach, but with its application. -
Using the UML for Architectural Description?
Using the UML for Architectural Description? Rich Hilliard Integrated Systems and Internet Solutions, Inc. Concord, MA USA [email protected] Abstract. There is much interest in using the Unified Modeling Lan- guage (UML) for architectural description { those techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. IEEE P1471, the Recommended Practice for Architectural Description, represents an emerging consensus for specifying the content of an architectural descrip- tion for a software-intensive system. Like the UML, IEEE P1471 does not prescribe a particular architectural method or life cycle, but may be used within a variety of such processes. In this paper, I provide an overview of IEEE P1471, describe its conceptual framework, and investigate the issues of applying the UML to meet the requirements of IEEE P1471. Keywords: IEEE P1471, architectural description, multiple views, view- points, Unified Modeling Language 1 Introduction The Unified Modeling Language (UML) is rapidly maturing into the de facto standard for modeling of software-intensive systems. Standardized by the Object Management Group (OMG) in November 1997, it is being adopted by many organizations, and being supported by numerous tool vendors. At present, there is much interest in using the UML for architectural descrip- tion: the techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. Such techniques enable architects to record what they are doing, modify or ma- nipulate candidate architectures, reuse portions of existing architectures, and communicate architectural information to others. These descriptions may the be used to analyze and reason about the architecture { possibly with automated support. -
Metamodeling Variability to Enable Requirements Reuse
Metamodeling Variability to Enable Requirements Reuse Begoña Moros 1, Cristina Vicente-Chicote 2, Ambrosio Toval 1 1Departamento de Informática y Sistemas Universidad de Murcia, 30100 Espinardo (Murcia), Spain {bmoros, atoval}@um.es 2 Departamento de Tecnologías de la Información y las Comunicaciones Universidad Politécnica de Cartagena, 30202 Cartagena (Murcia), Spain [email protected] Abstract. Model-Driven Software Development (MDSD) is recognized as a very promising approach to deal with software complexity. The Requirements Engineering community should be aware and take part of the Model-Driven revolution, enabling and promoting the integration of requirements into the MDSD life-cycle. As a first step to reach that goal, this paper proposes REMM, a Requirements Engineering MetaModel, which provides variability modeling mechanisms to enable requirements reuse. In addition, this paper also presents the REMM-Studio graphical requirements modeling tool, aimed at easing the definition of complex requirements models. This tool enables the specification of (1) catalogs of reusable requirements models (modeling for reuse facet of the tool), and (2) specific product requirements by reusing previously defined requirements models (modeling by reuse facet of the tool). Keywords: Model-Driven Software Development (MDSD), Requirements Engineering (RE), Requirements MetaModel (REMM), Requirements Reuse, Requirements Variability. 1 Introduction Model-Driven Software Development (MDSD) aims at raising the level of abstraction at which software is conceived, implemented, and evolved, in order to help managing the inherent complexity of modern software-based systems. As recently stated in a Forrester Research Inc. study “model-driven development will play a key role in the future of software development; it is a promising technique for helping application development managers address growing business complexity and demand ” [1]. -
OMG Systems Modeling Language (OMG Sysml™) Tutorial 25 June 2007
OMG Systems Modeling Language (OMG SysML™) Tutorial 25 June 2007 Sanford Friedenthal Alan Moore Rick Steiner (emails included in references at end) Copyright © 2006, 2007 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Status • Specification status – Adopted by OMG in May ’06 – Finalization Task Force Report in March ’07 – Available Specification v1.0 expected June ‘07 – Revision task force chartered for SysML v1.1 in March ‘07 • This tutorial is based on the OMG SysML adopted specification (ad-06-03-01) and changes proposed by the Finalization Task Force (ptc/07-03-03) • This tutorial, the specifications, papers, and vendor info can be found on the OMG SysML Website at http://www.omgsysml.org/ 7/26/2007 Copyright © 2006,2007 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should have an awareness of: • Benefits of model driven approaches for systems engineering • SysML diagrams and language concepts • How to apply SysML as part of a model based SE process • Basic considerations for transitioning to SysML This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling • Software Engineers who want to better understand how to integrate software and system models • Familiarity with UML is not required, but it helps 7/26/2007 Copyright © 2006,2007 by Object Management Group. 3 Topics • Motivation & Background • Diagram Overview and Language Concepts • SysML Modeling as Part of SE Process – Structured Analysis – Distiller Example – OOSEM – Enhanced Security System Example • SysML in a Standards Framework • Transitioning to SysML • Summary 7/26/2007 Copyright © 2006,2007 by Object Management Group. -
Multi-Level Constraints
Multi-Level Constraints Tony Clark1 and Ulrich Frank2 1 Aston University, UK, [email protected] 2 University of Duisburg-Essen, DE, [email protected] Abstract. Meta-modelling and domain-specific modelling languages are supported by multi-level modelling which liberates model-based engi- neering from the traditional two-level type-instance language architec- ture. Proponents of this approach claim that multi-level modelling in- creases the quality of the resulting systems by introducing a second ab- straction dimension and thereby allowing both intra-level abstraction via sub-typing and inter-level abstraction via meta-types. Modelling ap- proaches include constraint languages that are used to express model semantics. Traditional languages, such as OCL, support intra-level con- straints, but not inter-level constraints. This paper motivates the need for multi-level constraints, shows how to implement such a language in a reflexive language architecture and applies multi-level constraints to an example multi-level model. 1 Introduction Conceptual models aim to bridge the gap between natural languages that are required to design and use a system and implementation languages. To this end, general-purpose modelling languages (GPML) like the UML consist of concepts that represent semantic primitives such as class, attribute, etc., that, on the one hand correspond to concepts of foundational ontologies, e.g., [4], and on the other hand can be nicely mapped to corresponding elements of object-oriented programming languages. Since GPML can be used to model a wide range of systems, they promise at- tractive economies of scale. At the same time, their use suffers from the fact that they offer generic concepts only. -
Union Types for Semistructured Data
Edinburgh Research Explorer Union Types for Semistructured Data Citation for published version: Buneman, P & Pierce, B 1999, Union Types for Semistructured Data. in Union Types for Semistructured Data: 7th International Workshop on Database Programming Languages, DBPL’99 Kinloch Rannoch, UK, September 1–3,1999 Revised Papers. Lecture Notes in Computer Science, vol. 1949, Springer-Verlag GmbH, pp. 184-207. https://doi.org/10.1007/3-540-44543-9_12 Digital Object Identifier (DOI): 10.1007/3-540-44543-9_12 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Union Types for Semistructured Data General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Union Typ es for Semistructured Data Peter Buneman Benjamin Pierce University of Pennsylvania Dept of Computer Information Science South rd Street Philadelphia PA USA fpeterbcpiercegcisupenn edu Technical -
Practical Agile Requirements Engineering Presented to the 13Th Annual Systems Engineering Conference 10/25/2010 – 10/28/2010 Hyatt Regency Mission Bay, San Diego, CA
Defense, Space & Security Lean-Agile Software Practical Agile Requirements Engineering Presented to the 13th Annual Systems Engineering Conference 10/25/2010 – 10/28/2010 Hyatt Regency Mission Bay, San Diego, CA Presented by: Dick Carlson ([email protected]) Philip Matuzic ([email protected]) BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. 1 Agenda Boeing Defense, Space & Security| Lean-Agile Software . Introduction . Classic Requirements engineering challenges . How Agile techniques address these challenges . Overview / background of Agile software practices . History and evolution of Agile software Requirements Engineering . Work products and work flow of Agile Requirements Engineering . Integration of Agile software Requirements Engineering in teams using Scrum . Current status of the work and next steps Copyright © 2010 Boeing. All rights reserved. 2 Introduction Boeing Defense, Space & Security| Lean-Agile Software . A large, software-centric program applied Agile techniques to requirements definition using the Scrum approach . This presentation shows how systems engineering effectively applies Agile practices to software requirements definition and management . An experience model created from the program illustrates how failures on a large software program evolved into significant process improvements by applying specific Agile practices and principles to practical requirements engineering Copyright © 2010 Boeing. All rights reserved. 3 Requirements Reality Boeing Defense, Space & Security| Lean-Agile Software “The hardest single part of building a software system is deciding precisely what to build. No other part of the conceptual work is as difficult as establishing the detailed technical requirements, including all the interfaces to people, machines, and other software systems. No other part of the work so cripples the resulting system if done wrong. -
Pivotpoint-Sparx Partnership Promotes Model-Based Systems
PivotPoint-Sparx Partnership Promotes Model-Based Systems Engineering with SysML PivotPoint Technology and Sparx Systems today announced a technology partnership that will combine their complementary strengths in SysML training and tools for systems engineers. PivotPoint announced that its “SysML Distilled™ with Enterprise Architect™” workshop is immediately available, and will use Sparx’s new MDG Technology for SysML™ product. Fallbrook, California (PRWEB) - October 9, 2006 -- PivotPoint Technology and Sparx Systems today announced a technology partnership to promote model-based systems engineering with the Systems Modeling Language (SysML). SysML is the new domain-specific modeling language for systems engineering applications that was adopted by the Object Management Group as OMG SysML™ in July 2006, and is attracting users among systems engineers worldwide. Under the agreement, PivotPoint will be Sparx’s primary partner for training and consulting services that use Sparx’s new SysML product (MDG Technology for SysML™), which was released last week. PivotPoint showed its readiness to partner by announcing the immediate availability of a new “SysML Distilled™ with Enterprise Architect™” workshop, which combines both SysML language and tool training. SysML extends the Unified Modeling Language (UML), the industry standard for specifying software-intensive systems, so that it can also specify hardware, processes, personnel, and facilities. Systems engineers who want to follow a model-based systems engineering process gain at least two important advantages in using SysML. First, SysML is a smaller language than UML 2.0 since it has fewer diagrams and constructs, so it is easier for engineers to learn and apply. Second, SysML adds to the semantic expressiveness of UML with two new diagrams for defining requirements and parametric constraints, which systems engineers need to fully specify complex systems. -
03-01-06 BPDM RFP.Pdf
Business Process Definition Metamodel RFP Object Management Group First Needham Place 250 First Avenue, Suite 100 Needham, MA 02494 Telephone: +1-781-444-0404 Facsimile: +1-781-444-0320 Business Process Definition Metamodel Request For Proposal OMG Document: bei/2003-01-06 Letters of Intent due: June 16, 2003 Submissions due: August 18, 2003 Objective of this RFP This Request For Proposals solicits submissions that specify a business process definition metamodel, which is platform independent with respect to specific business process definition languages. This metamodel will define an abstract language for specification of executable business processes that execute within an enterprise (with or without human involvement); and may collaborate between otherwise- independent business processes executing in different business units or enterprises. The specification developed in response to this RFP is expected to achieve the following: • A common metamodel to unify the diverse business process definition graphical and textual notations that exist in the industry • A metamodel that complements existing UML metamodels so that business processes specifications can be part of complete system specifications to assure consistency and completeness bei/2003-01-06, January 31, 2003 1 Business Process Definition Metamodel RFP • The ability to integrate process models for workflow management processes, automated business processes, and collaborations between business units. • Support for the specification of choreography, describing the collaboration -
Djangoshop Release 0.11.2
djangoSHOP Release 0.11.2 Oct 27, 2017 Contents 1 Software Architecture 1 2 Unique Features of django-SHOP5 3 Upgrading 7 4 Tutorial 9 5 Reference 33 6 How To’s 125 7 Development and Community 131 8 To be written 149 9 License 155 Python Module Index 157 i ii CHAPTER 1 Software Architecture The django-SHOP framework is, as its name implies, a framework and not a software which runs out of the box. Instead, an e-commerce site built upon django-SHOP, always consists of this framework, a bunch of other Django apps and the merchant’s own implementation. While this may seem more complicate than a ready-to-use solution, it gives the programmer enormous advantages during the implementation: Not everything can be “explained” to a software system using graphical user interfaces. After reaching a certain point of complexity, it normally is easier to pour those requirements into executable code, rather than to expect yet another set of configuration buttons. When evaluating django-SHOP with other e-commerce solutions, I therefore suggest to do the following litmus test: Consider a product which shall be sold world-wide. Depending on the country’s origin of the request, use the native language and the local currency. Due to export restrictions, some products can not be sold everywhere. Moreover, in some countries the value added tax is part of the product’s price, and must be stated separately on the invoice, while in other countries, products are advertised using net prices, and tax is added later on the invoice.