Chapter 7 – Kinetic Energy, Potential Energy, Work I

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7 – Kinetic Energy, Potential Energy, Work I Chapter 7 – Kinetic energy, potential energy, work I. Kinetic energy. II. Work. III. Work - Kinetic energy theorem. IV. Work done by a constant force: Gravitational force V. Work done by a variable force. - Spring force. - General: 1D, 3D, Work-Kinetic Energy Theorem VI. Power VII. Potential energy Energy of configuration VIII. Work and potential energy IX. Conservative / Non-conservative forces X. Determining potential energy values: gravitational potential energy, elastic potential energy Energy: scalar quantity associated with a state (or condition) of one or more objects. I. Kinetic energy 1 Energy associated with the state of motion of an object. K mv2 (7.1) 2 Units: 1 Joule = 1J = 1 kgm2/s2 = N m II. Work Energy transferred “to” or “from” an object by means of a force acting on the object. To +W From -W - Constant force: Fx max v2 v2 v2 v2 2a d a 0 0 x x 2d 1 1 1 F ma m(v2 v2 ) ma d m(v2 v2 ) x x 2 0 d x 2 0 1 Work done by the force = Energy m(v2 v2 ) K K F d W F d 2 0 f i x x transfer due to the force. - To calculate the work done on an object by a force during a displacement, we use only the force component along the object’s displacement. The force component perpendicular to the displacement does zero work. F cos φ W Fxd F cos d F d (7.3) d - Assumptions: 1) F=cte, 2) Object particle-like. 90 W 180 90 W Units: 1 Joule = 1J = 1 kgm2/s2 90 0 A force does +W when it has a vector component in the same direction as the displacement, and –W when it has a vector component in the opposite direction. W=0 when it has no such vector component. Net work done by several forces = Sum of works done by individual forces. Calculation: 1) Wnet= W1+W2+W3+… 2) Fnet Wnet=Fnet d II. Work-Kinetic Energy Theorem K K f Ki W (7.4) Change in the kinetic energy of the particle = Net work done on the particle III. Work done by a constant force - Gravitational force: W F d mgd cos (7.5) Rising object: W= mgd cos180º = -mgd Fg transfers mgd energy from the object’s kinetic energy. Falling object: W= mgd cos 0º = +mgd Fg transfers mgd energy to the object’s kinetic energy. - External applied force + Gravitational force: K K f Ki Wa Wg (7.6) Object stationary before and after the lift: Wa+Wg=0 The applied force transfers the same amount of energy to the object as the gravitational force transfers from the object. IV. Work done by a variable force - Spring force: F kd (7.7) Hooke’s law k = spring constant measures spring’s stiffness. Units: N/m Hooke’s law 1D Fx kx Work done by a spring force: - Assumptions: • Spring is massless mspring << mblock • Ideal spring obeys Hooke’s law exactly. • Contact between the block and floor is frictionless. • Block is particle-like. Fx - Calculation: xi ∆x x f x 1) The block displacement must be divided into Fj many segments of infinitesimal width, ∆x. 2) F(x) ≈ cte within each short ∆x segment. x f x f Ws Fjx x 0 Ws F dx (kx) dx xi xi x f 1 2 x f 1 2 2 WS k x dx k x x k (x f xi ) x i i 2 2 1 2 1 2 W =0 If Block ends up at x =x . W k x k x s f i s 2 i 2 f 1 W k x2 if x 0 s 2 f i Work done by an applied force + spring force: K K f Ki Wa Ws Block stationary before and after the displacement: ∆K=0 Wa=-Ws The work done by the applied force displacing the block is the negative of the work done by the spring force. Work done by a general variable force: 1D-Analysis Wj Fj,avg x W Wj Fj,avg x better approximation more x, x 0 x f W F x W F(x)dx (7.10) lim j,avg x0 xi Geometrically: Work is the area between the curve F(x) and the x-axis. 3D-Analysis ˆ ˆ ˆ F Fxi Fy j Fzk ; Fx F(x), Fy F(y), Fz F(z) dr dx iˆ dy ˆj dz kˆ r x y z f f f f dW F dr Fxdx Fydy Fzdz W dW Fxdx Fydy Fzdz ri xi yi zi Work-Kinetic Energy Theorem - Variable force x f x f W F(x)dx ma dx xi xi dv dv ma dx m dx m v dx mvdv dt dx dv dv dx dv v dt dx dt dx v f v f 1 2 1 2 W mv dv m v dv mv f mvi K f Ki K 2 2 vi vi V. Power Time rate at which the applied force does work. - Average power: amount of work done in an amount of time ∆t by a force. W P (7.12) avg t - Instantaneous power: instantaneous time rate of doing work. dW P (7.13) F dt φ x dW F cos dx dx P F cos Fv cos F v (7.14) dt dt dt Units: 1Watt=1W=1J/s 1 kilowatt-hour = 1 kW·h = 3.60 x 106 J=3.6MJ 54. In the figure (a) below a 2N force is applied to a 4kg block at a downward angle θ as the block moves rightward through 1m across a frictionless floor. Find an expression for the speed vf at the end of that distance if the block’s initial velocity is: (a) 0 and (b) 1m/s to the right. (c) The situation in (b) is similar in that the block is initially moving at 1m/s to the right, but now the 2N force is directed downward to the left. Find an expression for the speed of the block at the end of the 1m distance. W F d (F cos )d N F 2 2 x N W K 0.5m(v f v0 ) Fx 2 (a) v0 0 K 0.5mv f mg mg F Fy y 2 (2N)cos 0.5(4kg)v f v f cos m / s 2 2 2 (b) v0 1m / s K 0.5mv f 0.5(4kg)(1m / s) (c) v0 1m / s K 0.5mv f 2J 2 2 (2N)cos 0.5(4kg)v f 2J (2N)cos 0.5(4kg)v f 2J v 1 cos m / s f v f 1 cos m / s 18. In the figure below a horizontal force Fa of magnitude 20N is applied to a 3kg psychology book, as the book slides a distance of d=0.5m up a frictionless ramp. (a) During the displacement, what is the net work done on the book by Fa,the gravitational force on the book and the normal force on the book? (b) If the book has zero kinetic energy at the start of the displacement, what is the speed at the end of the displacement? N d W 0 y Only F , F do work x gx ax N (a) W WFa WFg or Wnet Fnet d Fgx x x F mg gy Fnet Fax Fg x 20cos30 mg sin 30 Wnet (17.32N 14.7N)0.5m 1.31J (b) K0 0 W K K f 2 W 1.31J 0.5mv f v f 0.93m / s 55. A 2kg lunchbox is sent sliding over a frictionless surface, in the positive direction of an x axis along the surface. Beginning at t=0, a steady wind pushes on the lunchbox in the negative direction of x, Fig. below. Estimate the kinetic energy of the lunchbox at (a) t=1s, (b) t=5s. (c) How much work does the force from the wind do on the lunch box from t=1s to t=5s? Motion concave downward parabola 1 x t(10 t) 10 dx 2 v 1 t dt 10 dv 2 a 0.2m / s2 dt 10 F cte ma (2kg)(0.2m / s2 ) 0.4N (b) t 5s v f 0 W F x (0.4N)(t 0.1t 2 ) K f 0J (a) t 1s v f 0.8m / s (c) W K K f (5s) K f (1s) K 0.5(2kg)(0.8m / s)2 0.64J f W 0 0.64 0.64J 74. (a) Find the work done on the particle by the force represented in the graph below as the particle moves from x=1 to x=3m. (b) The curve is given by F=a/x2, with a=9Nm2. Calculate the work using integration (a) W Area under curve W (11.5squares)(0.5m)(1N) 5.75J 3 3 9 1 1 (b) W dx 9 9( 1) 6J 2 1 x x1 3 73. An elevator has a mass of 4500kg and can carry a maximum load of 1800kg. If the cab is moving upward at full load at 3.8m/s, what power is required of the force moving the cab to maintain that speed? F m 4500kg 1800kg 6300kg a total P F v (61.74kN)(3.8m / s) Fa mg Fnet 0 Fa Fg 0 P 234.61kW 2 Fa mg (6300kg)(9.8m / s ) 61.74kN mg A single force acts on a body that moves along an x-axis.
Recommended publications
  • Potential Energyenergy Isis Storedstored Energyenergy Duedue Toto Anan Objectobject Location.Location
    TypesTypes ofof EnergyEnergy && EnergyEnergy TransferTransfer HeatHeat (Thermal)(Thermal) EnergyEnergy HeatHeat (Thermal)(Thermal) EnergyEnergy . HeatHeat energyenergy isis thethe transfertransfer ofof thermalthermal energy.energy. AsAs heatheat energyenergy isis addedadded toto aa substances,substances, thethe temperaturetemperature goesgoes up.up. MaterialMaterial thatthat isis burning,burning, thethe Sun,Sun, andand electricityelectricity areare sourcessources ofof heatheat energy.energy. HeatHeat (Thermal)(Thermal) EnergyEnergy Thermal Energy Explained - Study.com SolarSolar EnergyEnergy SolarSolar EnergyEnergy . SolarSolar energyenergy isis thethe energyenergy fromfrom thethe Sun,Sun, whichwhich providesprovides heatheat andand lightlight energyenergy forfor Earth.Earth. SolarSolar cellscells cancan bebe usedused toto convertconvert solarsolar energyenergy toto electricalelectrical energy.energy. GreenGreen plantsplants useuse solarsolar energyenergy duringduring photosynthesis.photosynthesis. MostMost ofof thethe energyenergy onon thethe EarthEarth camecame fromfrom thethe Sun.Sun. SolarSolar EnergyEnergy Solar Energy - Defined and Explained - Study.com ChemicalChemical (Potential)(Potential) EnergyEnergy ChemicalChemical (Potential)(Potential) EnergyEnergy . ChemicalChemical energyenergy isis energyenergy storedstored inin mattermatter inin chemicalchemical bonds.bonds. ChemicalChemical energyenergy cancan bebe released,released, forfor example,example, inin batteriesbatteries oror food.food. ChemicalChemical (Potential)(Potential)
    [Show full text]
  • An Overview on Principles for Energy Efficient Robot Locomotion
    REVIEW published: 11 December 2018 doi: 10.3389/frobt.2018.00129 An Overview on Principles for Energy Efficient Robot Locomotion Navvab Kashiri 1*, Andy Abate 2, Sabrina J. Abram 3, Alin Albu-Schaffer 4, Patrick J. Clary 2, Monica Daley 5, Salman Faraji 6, Raphael Furnemont 7, Manolo Garabini 8, Hartmut Geyer 9, Alena M. Grabowski 10, Jonathan Hurst 2, Jorn Malzahn 1, Glenn Mathijssen 7, David Remy 11, Wesley Roozing 1, Mohammad Shahbazi 1, Surabhi N. Simha 3, Jae-Bok Song 12, Nils Smit-Anseeuw 11, Stefano Stramigioli 13, Bram Vanderborght 7, Yevgeniy Yesilevskiy 11 and Nikos Tsagarakis 1 1 Humanoids and Human Centred Mechatronics Lab, Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genova, Italy, 2 Dynamic Robotics Laboratory, School of MIME, Oregon State University, Corvallis, OR, United States, 3 Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada, 4 Robotics and Mechatronics Center, German Aerospace Center, Oberpfaffenhofen, Germany, 5 Structure and Motion Laboratory, Royal Veterinary College, Hertfordshire, United Kingdom, 6 Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 7 Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium, 8 Centro di Ricerca “Enrico Piaggio”, University of Pisa, Pisa, Italy, 9 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States, 10 Applied Biomechanics Lab, Department of Integrative Physiology,
    [Show full text]
  • UNIVERSITY of CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION of MICROSCALE THERMOELECTRIC EFFECTS a Dissert
    UNIVERSITY OF CALIFONIA SANTA CRUZ HIGH TEMPERATURE EXPERIMENTAL CHARACTERIZATION OF MICROSCALE THERMOELECTRIC EFFECTS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL ENGINEERING by Tela Favaloro September 2014 The Dissertation of Tela Favaloro is approved: Professor Ali Shakouri, Chair Professor Joel Kubby Professor Nobuhiko Kobayashi Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Tela Favaloro 2014 This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License Table of Contents List of Figures ............................................................................................................................ vi List of Tables ........................................................................................................................... xiv Nomenclature .......................................................................................................................... xv Abstract ................................................................................................................................. xviii Acknowledgements and Collaborations ................................................................................. xxi Chapter 1 Introduction .......................................................................................................... 1 1.1 Applications of thermoelectric devices for energy conversion ................................... 1
    [Show full text]
  • Estimation of the Dissipation Rate of Turbulent Kinetic Energy: a Review
    Chemical Engineering Science 229 (2021) 116133 Contents lists available at ScienceDirect Chemical Engineering Science journal homepage: www.elsevier.com/locate/ces Review Estimation of the dissipation rate of turbulent kinetic energy: A review ⇑ Guichao Wang a, , Fan Yang a,KeWua, Yongfeng Ma b, Cheng Peng c, Tianshu Liu d, ⇑ Lian-Ping Wang b,c, a SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, PR China b Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China c Department of Mechanical Engineering, 126 Spencer Laboratory, University of Delaware, Newark, DE 19716-3140, USA d Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI 49008, USA highlights Estimate of turbulent dissipation rate is reviewed. Experimental works are summarized in highlight of spatial/temporal resolution. Data processing methods are compared. Future directions in estimating turbulent dissipation rate are discussed. article info abstract Article history: A comprehensive literature review on the estimation of the dissipation rate of turbulent kinetic energy is Received 8 July 2020 presented to assess the current state of knowledge available in this area. Experimental techniques (hot Received in revised form 27 August 2020 wires, LDV, PIV and PTV) reported on the measurements of turbulent dissipation rate have been critically Accepted 8 September 2020 analyzed with respect to the velocity processing methods. Traditional hot wires and LDV are both a point- Available online 12 September 2020 based measurement technique with high temporal resolution and Taylor’s frozen hypothesis is generally required to transfer temporal velocity fluctuations into spatial velocity fluctuations in turbulent flows.
    [Show full text]
  • Turbulence Kinetic Energy Budgets and Dissipation Rates in Disturbed Stable Boundary Layers
    4.9 TURBULENCE KINETIC ENERGY BUDGETS AND DISSIPATION RATES IN DISTURBED STABLE BOUNDARY LAYERS Julie K. Lundquist*1, Mark Piper2, and Branko Kosovi1 1Atmospheric Science Division Lawrence Livermore National Laboratory, Livermore, CA, 94550 2Program in Atmospheric and Oceanic Science, University of Colorado at Boulder 1. INTRODUCTION situated in gently rolling farmland in eastern Kansas, with a homogeneous fetch to the An important parameter in the numerical northwest. The ASTER facility, operated by the simulation of atmospheric boundary layers is the National Center for Atmospheric Research (NCAR) dissipation length scale, lε. It is especially Atmospheric Technology Division, was deployed to important in weakly to moderately stable collect turbulence data. The ASTER sonic conditions, in which a tenuous balance between anemometers were used to compute turbulence shear production of turbulence, buoyant statistics for the three velocity components and destruction of turbulence, and turbulent dissipation used to estimate dissipation rate. is maintained. In large-scale models, the A dry Arctic cold front passed the dissipation rate is often parameterized using a MICROFRONTS site at approximately 0237 UTC diagnostic equation based on the production of (2037 LST) 20 March 1995, two hours after local turbulent kinetic energy (TKE) and an estimate of sunset at 1839 LST. Time series spanning the the dissipation length scale. Proper period 0000-0600 UTC are shown in Figure 1.The parameterization of the dissipation length scale 6-hr time period was chosen because it allows from experimental data requires accurate time for the front to completely pass the estimation of the rate of dissipation of TKE from instrumented tower, with time on either side to experimental data.
    [Show full text]
  • Energetics of a Turbulent Ocean
    Energetics of a Turbulent Ocean Raffaele Ferrari January 12, 2009 1 Energetics of a Turbulent Ocean One of the earliest theoretical investigations of ocean circulation was by Count Rumford. He proposed that the meridional overturning circulation was driven by temperature gradients. The ocean cools at the poles and is heated in the tropics, so Rumford speculated that large scale convection was responsible for the ocean currents. This idea was the precursor of the thermohaline circulation, which postulates that the evaporation of water and the subsequent increase in salinity also helps drive the circulation. These theories compare the oceans to a heat engine whose energy is derived from solar radiation through some convective process. In the 1800s James Croll noted that the currents in the Atlantic ocean had a tendency to be in the same direction as the prevailing winds. For example the trade winds blow westward across the mid-Atlantic and drive the Gulf Stream. Croll believed that the surface winds were responsible for mechanically driving the ocean currents, in contrast to convection. Although both Croll and Rumford used simple theories of fluid dynamics to develop their ideas, important qualitative features of their work are present in modern theories of ocean circulation. Modern physical oceanography has developed a far more sophisticated picture of the physics of ocean circulation, and modern theories include the effects of phenomena on a wide range of length scales. Scientists are interested in understanding the forces governing the ocean circulation, and one way to do this is to derive energy constraints on the differ- ent processes in the ocean.
    [Show full text]
  • Work and Energy Summary Sheet Chapter 6
    Work and Energy Summary Sheet Chapter 6 Work: work is done when a force is applied to a mass through a displacement or W=Fd. The force and the displacement must be parallel to one another in order for work to be done. F (N) W =(Fcosθ)d F If the force is not parallel to The area of a force vs. the displacement, then the displacement graph + W component of the force that represents the work θ d (m) is parallel must be found. done by the varying - W d force. Signs and Units for Work Work is a scalar but it can be positive or negative. Units of Work F d W = + (Ex: pitcher throwing ball) 1 N•m = 1 J (Joule) F d W = - (Ex. catcher catching ball) Note: N = kg m/s2 • Work – Energy Principle Hooke’s Law x The work done on an object is equal to its change F = kx in kinetic energy. F F is the applied force. 2 2 x W = ΔEk = ½ mvf – ½ mvi x is the change in length. k is the spring constant. F Energy Defined Units Energy is the ability to do work. Same as work: 1 N•m = 1 J (Joule) Kinetic Energy Potential Energy Potential energy is stored energy due to a system’s shape, position, or Kinetic energy is the energy of state. motion. If a mass has velocity, Gravitational PE Elastic (Spring) PE then it has KE 2 Mass with height Stretch/compress elastic material Ek = ½ mv 2 EG = mgh EE = ½ kx To measure the change in KE Change in E use: G Change in ES 2 2 2 2 ΔEk = ½ mvf – ½ mvi ΔEG = mghf – mghi ΔEE = ½ kxf – ½ kxi Conservation of Energy “The total energy is neither increased nor decreased in any process.
    [Show full text]
  • Innovation Insights Brief | 2020
    FIVE STEPS TO ENERGY STORAGE Innovation Insights Brief | 2020 In collaboration with the California Independent System Operator (CAISO) ABOUT THE WORLD ENERGY COUNCIL ABOUT THIS INSIGHTS BRIEF The World Energy Council is the principal impartial This Innovation Insights brief on energy storage is part network of energy leaders and practitioners promoting of a series of publications by the World Energy Council an affordable, stable and environmentally sensitive focused on Innovation. In a fast-paced era of disruptive energy system for the greatest benefit of all. changes, this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the Formed in 1923, the Council is the premiere global other energy stakeholders and policy shapers. energy body, representing the entire energy spectrum, with over 3,000 member organisations in over 90 countries, drawn from governments, private and state corporations, academia, NGOs and energy stakeholders. We inform global, regional and national energy strategies by hosting high-level events including the World Energy Congress and publishing authoritative studies, and work through our extensive member network to facilitate the world’s energy policy dialogue. Further details at www.worldenergy.org and @WECouncil Published by the World Energy Council 2020 Copyright © 2020 World Energy Council. All rights reserved. All or part of this publication may be used or reproduced as long as the following citation is included on each copy or transmission: ‘Used by permission of the World
    [Show full text]
  • Middle School Physical Science: Kinetic Energy and Potential Energy
    MIDDLE SCHOOL PHYSICAL SCIENCE: KINETIC ENERGY AND POTENTIAL ENERGY Standards Bundle Standards are listed within the bundle. Bundles are created with potential instructional use in mind, based upon potential for related phenomena that can be used throughout a unit. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.] MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.] MS-PS3-5. Engage in argument from evidence to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • The Mechanical Equivalent of Heat
    THE MECHANICAL EQUIVALENT OF HEAT INTRODUCTION This is the classic experiment, first performed in 1847 by James Joule, which led to our modern view that mechanical work and heat are but different aspects of the same quantity: energy. The classic experiment related the two concepts and provided a connection between the Joule, defined in terms of mechanical variables (work, kinetic energy, potential energy. etc.) and the calorie, defined as the amount of heat that raises the temperature of 1 gram of water by 1 degree Celsius. Contemporary SI units do not distinguish between heat energy and mechanical energy, so that heat is also measured in Joules. In this experiment, work is done by rubbing two metal cones, which raises the temperature of a known amount of water (along with the cones, stirrer, thermometer, etc,). The ratio of the mechanical work done (W) to the heat which has passed to the water plus parts (Q), determines the constant J (J = W/Q). THE EXPERIMENT CAUTION: The apparatus must not be operated without oil between the cones. The cones have to be cleaned and a tiny drop of oil put between the rubbing surfaces (caution! too much oil will reduce the friction excessively and make the experiment impossible). The apparatus is shown in Figure 1. The heat generated in the system is absorbed by different parts: the water, the inner and outer cones, the stirrer and the immersed part of the temperature probe. The total increase in heat, including all these contributions, is therefore: Q = (MCw + M′Cbr + v Cth) ∆T = constant1 × ∆T (1) -1 -1 Cw = specific heat of water = 1.00 cal g C (by definition of the calorie) -1 ° -1 Cbr = specific heat of brass (cones and stirrer) = 0.089 cal g C -3 ° -1 Cth = heat capacity per unit volume of temperature probe = 0.013 cal cm C M = mass of water (in g) M′ = mass of cones and stirrer (in g) v = volume of the immersed part of the temperature probe (in cm3).
    [Show full text]
  • Hydropower Technologies Program — Harnessing America’S Abundant Natural Resources for Clean Power Generation
    U.S. Department of Energy — Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program — Harnessing America’s abundant natural resources for clean power generation. Contents Hydropower Today ......................................... 1 Enhancing Generation and Environmental Performance ......... 6 Large Turbine Field-Testing ............................... 9 Providing Safe Passage for Fish ........................... 9 Improving Mitigation Practices .......................... 11 From the Laboratories to the Hydropower Communities ..... 12 Hydropower Tomorrow .................................... 14 Developing the Next Generation of Hydropower ............ 15 Integrating Wind and Hydropower Technologies ............ 16 Optimizing Project Operations ........................... 17 The Federal Wind and Hydropower Technologies Program ..... 19 Mission and Goals ...................................... 20 2003 Hydropower Research Highlights Alden Research Center completes prototype turbine tests at their facility in Holden, MA . 9 Laboratories form partnerships to develop and test new sensor arrays and computer models . 10 DOE hosts Workshop on Turbulence at Hydroelectric Power Plants in Atlanta . 11 New retrofit aeration system designed to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri . 11 Low head/low power resource assessments completed for conventional turbines, unconventional systems, and micro hydropower . 15 Wind and hydropower integration activities in 2003 aim to identify potential sites and partners . 17 Cover photo: To harness undeveloped hydropower resources without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this stream in West Virginia. ii HYDROPOWER TODAY Water power — it can cut deep canyons, chisel majestic mountains, quench parched lands, and transport tons — and it can generate enough electricity to light up millions of homes and businesses around the world.
    [Show full text]