Download PCN-Morton Ulmus.Pdf
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Richard Chinn Environmental Training, Inc. Info
Scientific Name Common Name Region 6 Habit Scientific Name Common Name Region 6 Habit Abies balsamea FIR,BALSAM FACW NT Amaranthus californicus AMARANTH,CALIFORNIA NI ANF Abutilon theophrasti VELVET-LEAF NI AIF Amaranthus crassipes AMARANTH,TROPICAL FAC+ AIF Acacia greggii ACACIA,CATCLAW UPL NST Amaranthus greggii AMARANTH,GREGGIS FAC ANF Acacia smallii HUISACHE FACU NTS Amaranthus obcordatus AMARANTH,TRANS PECOS NI ANF Acalypha rhomboidea COPPER-LEAF,COMMON UPL* ANF Amaranthus palmeri AMARANTH,PALMER'S FACU- ANF Acalypha virginica MERCURY,THREE-SEEDED UPL* ANF Amaranthus retroflexus AMARANTH,RED-ROOT FACU- ANF Acer negundo BOX-ELDER FACW- NT Amaranthus rudis AMARANTH,TALL FAC ANF Acer rubrum MAPLE,DRUMMOND RED FACW NT Amaranthus spinosus AMARANTH,SPINY FACU- ANF Acer rubrum MAPLE,TRIDENT RED NI NT Amaranthus tuberculatus AMARANTH,ROUGH-FRUIT NI ANF Acer rubrum MAPLE,RED FAC NT Ambrosia artemisiifolia RAGWEED,ANNUAL FACU- ANF Acer saccharinum MAPLE,SILVER FAC NT Ambrosia grayi BURSAGE,WOOLLY-LEAF FACW PNF Acer saccharum MAPLE,SUGAR UPL NT Ambrosia psilostachya RAGWEED,NAKED-SPIKE FAC- PNF Achillea millefolium YARROW,COMMON FACU PNF Ambrosia trifida RAGWEED,GREAT FAC ANF Acorus calamus SWEETFLAG OBL PIEF Amelanchier alnifolia SERVICE-BERRY,SASKATOON FAC- NS Adiantum capillus-veneris FERN,SOUTHERN MAIDEN-HAIR FACW+ PNF3 Amelanchier arborea SERVICE-BERRY,DOWNY FACU NT Adiantum pedatum FERN,NORTHERN MAIDEN-HAIR FAC PNF3 Amianthium muscaetoxicum FLYPOISON FAC PNF Adiantum tricholepis FERN,HAIRY MAIDEN-HAIR FAC PNF3 Ammannia auriculata AMMANNIA,RED-STEM -
Stegophora Ulmea
EuropeanBlackwell Publishing, Ltd. and Mediterranean Plant Protection Organization Organisation Européenne et Méditerranéenne pour la Protection des Plantes Data sheets on quarantine pests Fiches informatives sur les organismes de quarantaine Stegophora ulmea widespread from the Great Plains to the Atlantic Ocean. Sydow Identity (1936) reported a foliar disease of Ulmus davidiana caused by Name: Stegophora ulmea (Fries) Sydow & Sydow Stegophora aemula in China stating that the pathogen differs Synonyms: Gnomonia ulmea (Fries) Thümen, Sphaeria ulmea from ‘the closely related Gnomonia ulmea’ by the ‘mode of Fries, Dothidella ulmea (Fries) Ellis & Everhart, Lambro ulmea growth’ on elm. Since, 1999, S. ulmea has repeatedly been (Fries) E. Müller detected in consignments of bonsais from China, in UK and the Taxonomic position: Fungi: Ascomycetes: Diaporthales Netherlands, suggesting that the pathogen probably occurs in Notes on taxonomy and nomenclature: the anamorph is of China. In Europe, there is a doubtful record of ‘G. ulmicolum’ acervular type, containing both macroconidia, of ‘Gloeosporium’ on leaves and fruits of elm in Romania (Georgescu & Petrescu, type, and microconidia, of ‘Cylindrosporella’ type. Various cited by Peace (1962)), which has not been confirmed since. In anamorph names in different form-genera have been the Netherlands, S. ulmea was introduced into a glasshouse in used (‘Gloeosporium’ ulmeum ‘Gloeosporium’ ulmicolum, 2000, on ornamental bonsais, but was successfully eradicated Cylindrosporella ulmea, Asteroma ulmeum), -
Some Native Hill Country Trees Other Than Oaks
Some Native Hill Country Trees Other Than Oaks Several weeks ago I wrote about the Hill Country oaks in this column. There are, however a number of common, large, native trees that are not oaks. Here are some of them. Bald cypress ( Taxodium distichum ) is common along the banks of the Guadalupe and its tributaries as well as many other streams in the Hill Country. It is unusual for a conifer (cone-bearing) tree to be deciduous (loses its leaves in the winter) which is why it is called a bald cypress. These trees were highly prized for the durability of the wood for making shingles, which led to the settlement of Kerrville. They are fast growing, and generally the largest trees in the Hill Country. Cedar elm ( Ulmus crassifolia ) is an elm with very small, stiff, rough leaves. It is common throughout the Hill Country where it appears to be equally at home on limestone soils or acidic soils. It flowers and sets seed in late summer, which is unusual, and, because not much is blooming then, it attracts many native bees when flowering. Its leaves turn yellow in the fall. Two other species of elms grow in the Hill Country, although they are not nearly as common as cedar elms. American elm ( Ulmus americana ) and Slippery elm ( Ulmus rubra ) are both large trees with large leaves and are usually found in riparian areas. Escarpment black cherry ( Prunus serotina var. eximia ) is a Hill Country native cherry with thin, soft leaves that turn yellow in the fall. The tiny white flowers are produced on stalks in the spring, followed by tiny cherries for the birds. -
Lacebark Elm Cultivars Ulmus Parvifolia
Lacebark Elm Cultivars Ulmus parvifolia P O Box 189 | Boring OR 97009 | 800-825-8202 | www.jfschmidt.com Ulmus parvifolia ‘Emer II’ PP 7552 Tall, upright and arching, this cultivar’s growth habit is unique Allee® Elm among U. parvifolia cultivars, Zone: 5 | Height: 50' | Spread: 35' being reminiscent of the grand Shape: Upright vase, arching American Elm. Its exfoliating Foliage: Medium green, glossy bark creates a mosaic of orange, Fall Color: Yellow-orange to rust red tan and gray, a beautiful sight on a mature tree. Discovered by DISEASE TOLERANCE: Dr. Michael Dirr of University of Dutch Elm Disease and phloem Georgia, Athens. necrosis Ulmus parvifolia ‘Emer I’ Bark of a mature tree is a mosaic of orange, tan, and gray patches, Athena® Classic Elm giving it as much interest in winter Zone: 5 | Height: 30' | Spread: 35' as in summer. The canopy is tightly Shape: Broadly rounded formed. Discovered by Dr. Michael Foliage: Medium green, glossy Dirr of University of Georgia, Fall Color: Yellowish Athens. DISEASE TOLERANCE: Dutch Elm Disease and phloem necrosis Ulmus parvifolia ‘UPMTF’ PP 11295 Bosque® is well shaped for plant- ing on city streets and in restricted Bosque® Elm spaces, thanks to its upright Zone: 6 | Height: 45' | Spread: 30' growth habit and narrow crown. Shape: Upright pyramidal to Fine textured and glossy, its dark broadly oval green foliage is complemented by Foliage: Dark green, glossy multi-colored exfoliating bark. Fall Color: Yellow-orange DISEASE TOLERANCE: Dutch Elm Disease and phloem necrosis Ulmus parvifolia ‘Dynasty’ A broadly rounded tree with fine textured foliage and good Dynasty Elm environ mental tolerance. -
On the Species Status of the Root-Knot Nematode Meloidogyne Ulmi Palmisano & Ambrogioni, 2000 (Nematoda: Meloidogynidae)
GHENT UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF BIOLOGY ACADEMIC YEAR 2012-2013 On the Species Status of the Root-Knot Nematode Meloidogyne ulmi Palmisano & Ambrogioni, 2000 (Nematoda: Meloidogynidae) AHMED MOHAMMED European Master of Science in Nematology (EUMAINE) PROMOTER: PROF. DR. GERRIT KARSSEN Thesis submitted in partial fulfilment of the degree of PLANT PROTECTION SERVICE European Master of Science WAGENINGEN in Nematology On the species status of the root–knot nematode Meloidogyne ulmi Palmisano and Ambrogioni, 2000 (Nematoda: Meloidogynidae) Mohammed AHMED 1, 2, * 1Ghent University, Department of Biology, Ledeganckstraat 35, 9000 Ghent, Belgium 2 Plant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The Netherlands *Corresponding author, e–mail: [email protected] M. Ahmed Summary The root–knot nematode Meloidogyne ulmi is synonymised with Meloidogyne mali based on morphological and morphometric similarities, common hosts, as well as biochemical similarities at both protein and DNA levels. M. mali was first described in Japan on Malus prunifolia Borkh.; and M. ulmi in Italy on Ulmus chenmoui Cheng. Morphological and morphometric studies of their holo- and paratypes revealed some important similarities in certain characters as well as some general variability in some others. Host test also showed that besides the two species being able to parasitize the type hosts of the other, they share some other common hosts. Our study of the esterase and malate dehydrogenase isozyme phenotypes of some M. ulmi population gave a perfectly comparable result to that already known for M. mali. Finally, phylogenetic study of their SSU and LSU rDNA sequence data revealed that the two are not distinguishable at DNA level. -
Appendix 2: Plant Lists
Appendix 2: Plant Lists Master List and Section Lists Mahlon Dickerson Reservation Botanical Survey and Stewardship Assessment Wild Ridge Plants, LLC 2015 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Acalypha rhomboidea Native 1 Forb 9 Acer palmatum Invasive 0 Tree 1 Acer pensylvanicum Native 7 Tree 2 Acer platanoides Invasive 0 Tree 4 Acer rubrum Native 3 Tree 27 Acer saccharum Native 5 Tree 24 Achillea millefolium Native 0 Forb 18 Acorus calamus Alien 0 Forb 1 Actaea pachypoda Native 5 Forb 10 Adiantum pedatum Native 7 Fern 7 Ageratina altissima v. altissima Native 3 Forb 23 Agrimonia gryposepala Native 4 Forb 4 Agrostis canina Alien 0 Graminoid 2 Agrostis gigantea Alien 0 Graminoid 8 Agrostis hyemalis Native 2 Graminoid 3 Agrostis perennans Native 5 Graminoid 18 Agrostis stolonifera Invasive 0 Graminoid 3 Ailanthus altissima Invasive 0 Tree 8 Ajuga reptans Invasive 0 Forb 3 Alisma subcordatum Native 3 Forb 3 Alliaria petiolata Invasive 0 Forb 17 Allium tricoccum Native 8 Forb 3 Allium vineale Alien 0 Forb 2 Alnus incana ssp rugosa Native 6 Shrub 5 Alnus serrulata Native 4 Shrub 3 Ambrosia artemisiifolia Native 0 Forb 14 Amelanchier arborea Native 7 Tree 26 Amphicarpaea bracteata Native 4 Vine, herbaceous 18 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Anagallis arvensis Alien 0 Forb 4 Anaphalis margaritacea Native 2 Forb 3 Andropogon gerardii Native 4 Graminoid 1 Andropogon virginicus Native 2 Graminoid 1 Anemone americana Native 9 Forb 6 Anemone quinquefolia Native 7 Forb 13 Anemone virginiana Native 4 Forb 5 Antennaria neglecta Native 2 Forb 2 Antennaria neodioica ssp. -
Discovery Elm Ulmus Davidiana
DiscoveryDiscovery ElmElm UlmusUlmus davidianadavidiana var.var. JaponicaJaponica ‘Discovery’‘Discovery’ • ResistantResistant toto DEDDED • VaVa s s e e--shaped,shaped, uprightupright crowncrown NORTHERNNORTHERN GARDENGARDEN COLLECTIONCOLLECTION © Jeffries Nurseries Ltd., 2004 Discovery Elm Ulmus davidiana var. Japonica ‘Discovery’ A new and exciting introduction with improved crown form and excellent resistance to Dutch Elm Disease, leaf aphids and elm leaf beetle. __________________________________________________________________ Botanical Name: Ulmus davidiana var. Japonica ‘Discovery’ __________________________________________________________________ Family: Ulmaceae __________________________________________________________________ Common Name: Discovery Elm __________________________________________________________________ Origin: A clonal selection from a seedling population. The seedling source was an open pollinated cross of Japanese Elm trees from a Manchurian source, growing at the Morden Research Station. Developed by Rick Durand of Portage la Prairie, MB. __________________________________________________________________ Hardiness: Zone 3 (Canadian and USDA) __________________________________________________________________ Growth Rate: Medium to fast. __________________________________________________________________ Description: Discovery Elm is similar in shape to the American Elm but is approximately 30% smaller. The crown form of Discovery Elm is unique for Japanese Elm. Instead of the irregular and broad-shaped crown -
Lacebark Elm Scientific Name: Ulmus Parvifolia Order
Common Name: Lacebark Elm Scientific Name: Ulmus parvifolia Order: Urticales Family: Ulmaceae Description The leaf arrangement of the lacebark elm (also known as Chinese elm) is alternate. Each leaf is oval with a serrate margin. Typical leaf coloration is leathery green, with purple, red, and yellow in the fall. The tree grows to a height of 40 to 50 feet with a spread of 35 to 50 feet. The bark is thin, thus giving rise to its common name as the lacebark elm. The tree produces a hard and dry fruit that brown and typically less than .5 inches in length. The root system contains a number of large-diameter members located close to the surface, and can grow for a long distance from the trunk. Growth Habit Lacebark elm is deciduous, but has been known to be evergreen in the southern extent of its range. The trees typically have a single trunk, although some have split trunks. They typically grow to a mature height of over 10 – 12 feet. It produces a bloom from late summer to fall which is yellow to green in color. A fruit is set in the fall. Hardiness Zone(s) The USDA hardiness zones for this plant are 5B through 10A. Culture Lacebark elm has no demanding culture for its habitat, and is considered to be quite hardy. It grows well in part shade as well as full sun, and has a high drought tolerance. For habitats near ocean, it has a moderate air-borne salt tolerance. For soils, it tolerates nearly all types, from clay, to sand, to loam. -
Intervascular Pit Membranes with a Torus Was Investigated in Steven Jansen Juvenile Wood Samples of 19 Species of Ulmus and Seven Related Genera
Research IntervascularBlackwell Publishing, Ltd. pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera Steven Jansen1, Brendan Choat2, Stefan Vinckier1, Frederic Lens1, Peter Schols1 and Erik Smets1 1Laboratory of Plant Systematics, K.U.Leuven, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium; 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA Summary Author for correspondence: • The distribution of intervascular pit membranes with a torus was investigated in Steven Jansen juvenile wood samples of 19 species of Ulmus and seven related genera. Tel: +32 16 321539 •A staining solution of safranin and alcian blue (35 : 65) was recommended to Fax: +32 16 321968 Email: [email protected] distinguish torus-bearing pit membranes using light microscopy. • Intervascular pit membranes connecting relatively wide vessel elements resembled Received: 19 January 2004 those of most angiosperms, as they were of uniform thickness. By contrast, bordered Accepted: 15 March 2004 pit pairs with round to oval pit apertures and indistinct pit canals that connected doi: 10.1111/j.1469-8137.2004.01097.x narrow (incomplete) vessel elements or vascular tracheids with distinct helical thick- enings were frequently characterized by a torus in ring-porous wood samples of Ulmus and Zelkova. Tori were lacking in diffuse-porous species of Ampelocera, Aphananthe, Gironniera, Holoptelea, Phyllostylon, Trema and Ulmus. • Our observations suggest that tori are more common in cold temperate climates than in warm (sub)tropical environments. This may indicate that narrow tracheary elements with torus-bearing pit membranes provide an auxiliary conducting system which is of low conductivity, but offers greater resistance to freezing-induced cavitation. -
AHP-Slippery
American Herbal Pharmacopoeia ® and herapeutic Compendium Slippery Elm Inner Bark Ulmus rubra Muhl. Standards of Analysis, Quality Control, and Therapeutics Editor Roy Upton RH DAyu Associate Editor Pavel Axentiev MS Research Associate Diana Swisher MA Authors Elan Sudberg Linda Haugen Final Reviewers Alkemists Laboratories Forest Health Protection, State and Costa Mesa, CA Private Forestry Karen Clarke History ® US Forest Service THAYERS Natural Remedies Josef Brinckmann Valeria Widmer Westport, CT CAMAG St. Paul, MN Traditional Medicinals Aviva Romm MD CPM RH (AHG) Sebastopol, CA Muttenz, Switzerland Allen Lockard American Botanicals American Herbalists Guild Roy Upton RH DAyu Therapeutics and Safety Eolia, MO Cheshire, CT ® American Herbal Pharmacopoeia James Snow RH (AHG) Scotts Valley, CA Francis Brinker ND Barry Meltzer Eclectic Institute, Inc. San Francisco Herbs & Natural Herbal Medicine Program Tai Sophia Institute Botanical Identification Program in Integrative Medicine Foods Co. University of Arizona Fremont, CA Laurel, MD Wendy Applequist PhD Tucson, AZ Andrew Weil MD Missouri Botanical Gardens Malcolm O’Neill Traditional Indications Complex Carbohydrate Research University of Arizona St. Louis, MO Tucson, AZ Roy Upton RH DAyu Center Macroscopic Identification American Herbal Pharmacopoeia University of Georgia Athens, GA Lynette Casper BA Scotts Valley, CA Planetary Herbals Art Presser PharmD Scotts Valley, CA International Status Huntington College of Health Josef Brinckmann Sciences Microscopic Identification Traditional -
The History of Elm Breeding L
Invest Agrar: Sist Recur For (2004) 13 (1), 161-177 The history of elm breeding L. Mittempergher and A. Santini* Istituto per la Protezione delle Piante. Consiglio Nazionale delle Ricerche. Piazzale delle Cascine, 28. 50144 Firenze. Italy Abstract Breeding elms resistant to Dutch elm disease (DED) started in the Netherlands in the year 1928 on the initiative of a group of women scientists. They were active until 1954, when Hans Heybroek took over at the Dorschkamp Rese- arch Institute and carried on until his retirement in 1992. Two more programmes were initiated in Europe, in Italy and Spain, in 1978 and 1993 respectively, under the impulse of Dutch breeding activities. Elm breeding in America began in 1937 in the USDA-Agricultural Research Service Laboratories and is still being pursued under the leadership of Alden Townsend. Another programme was set up at the University of Wisconsin in 1958, led by Eugene Smalley and was closed after his retirement and death in 2002. A third programme found birth at the Morton Arboretum, Chicago, in 1972 where activities are still carried out by George Ware since his retirement. The number of resistant elm clones released on the market and the scientific progress fostered by breeding activities indicate that the long work needed to carry them on is a positive one. Among the key points considered are: elm germplasm collection, elm species cros- sability, inoculation system and disease evaluation, building up of resistance, and the possible consequences from in- troducing foreign species and hybrids to native elms. Because of shortage of funding long-term research and the per- ception that biotechnology will provide rapid solutions to long-term problems, traditional elm breeding activities seem now to be in difficulty. -
Srp770 1996 Woody Ornamental Evaluations
This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. 1996 WOODY ORNAMENTAL EVALUATIONS 25th Year Edition Report of Progress 770 Wichita Horticulture Research Center Agricultural Experiment Station Kansas State University, Manhattan Marc A. Johnson, Director This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. TABLE OF CONTENTS SPECIES AND CULTIVAR TRIALS Page New Plant Introductions . 1 Effect of Landscape Exposure on Taxus and Buxus Cultivars . 2 Crape Myrtle Evaluations . 4 Hardy Evergreen Azalea Evaluations . 6 Fruit Thinning of Crabapple by Florel® . 9 Evaluation of Maple Species and Cultivars . 11 Shantung Maple Performance . 13 Hardiness of Lacebark Elm Selections . 15 PRODUCTION AND PROPAGATION TRIALS Selection of Improved Osage Orange Cultivars . 16 Evaluation of Cottonwood and Hybrid Poplars . 17 Effect of SPIN OUT™ on Container Plants . 19 WEATHER SUMMARY . 21 ACKNOWLEDGEMENTS . 22 The Horticulture Research Center was areas are devoted to orchard and vegetable crops. established in 1970 on a 40-acre tract of land at 95th and South Hydraulic, Wichita, KS and Research in ornamentals emphasizes evaluations expanded to 80 acres in 1991 for the purpose of of plants for hardiness to Zone 6a-USDA. evaluating horticultural plants for south central Additional research includes selection of Kansas, including turf, ornamentals, fruit, and improved cultivars, propagation and exposure vegetable crops. The soil is a deep alluvial studies, plus field and container production deposit of Canadian fine sandy loam and Elandco evaluations for the Kansas nursery industry.