ACER1 Antibody Cat

Total Page:16

File Type:pdf, Size:1020Kb

ACER1 Antibody Cat ACER1 Antibody Cat. No.: 60-034 ACER1 Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human This ACER1 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 236-263 amino acids from the C-terminal region of human ACER1. TESTED APPLICATIONS: WB APPLICATIONS: For WB starting dilution is: 1:1000 PREDICTED MOLECULAR 31 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated September 25, 2021 1 https://www.prosci-inc.com/acer1-antibody-60-034.html PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: ACER1 Alkaline ceramidase 1, AlkCDase 1, Alkaline CDase 1, Acylsphingosine deacylase 3, N- ALTERNATE NAMES: acylsphingosine amidohydrolase 3, ACER1, ASAH3 ACCESSION NO.: Q8TDN7 PROTEIN GI NO.: 74715919 GENE ID: 125981 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References Ceramides are synthesized during epidermal differentiation and accumulate within the interstices of the stratum corneum, where they represent critical components of the epidermal permeability barrier. Excess cellular ceramide can trigger antimitogenic signals and induce apoptosis, and the ceramide metabolites sphingosine and sphingosine-1- phosphate (S1P) are important bioregulatory molecules. Ceramide hydrolysis in the BACKGROUND: nucleated cell layers regulates keratinocyte proliferation and apoptosis in response to external stress. Ceramide hydrolysis also occurs at the stratum corneum, releasing free sphingoid base that functions as an endogenous antimicrobial agent. ACER1 is highly expressed in epidermis and catalyzes the hydrolysis of very long chain ceramides to generate sphingosine (Houben et al., 2006 [PubMed 16477081]; Sun et al., 2008 [PubMed 17713573]). REFERENCES: 1) Sun, W., et al. J. Invest. Dermatol. 128(2):389-397(2008) 2) Toulza, E., et al. Genome Biol.(6), R107 (2007) : 3) Houben, E., et al. J. Lipid Res. 47(5):1063-1070(2006) 4) Mao, C., et al. J. Biol. Chem. 278(33):31184-31191(2003) ANTIBODIES FOR RESEARCH USE ONLY. For additional information, visit ProSci's Terms & Conditions Page. September 25, 2021 2 https://www.prosci-inc.com/acer1-antibody-60-034.html.
Recommended publications
  • Implications in Parkinson's Disease
    Journal of Clinical Medicine Review Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson’s Disease Silvia Paciotti 1,2 , Elisabetta Albi 3 , Lucilla Parnetti 1 and Tommaso Beccari 3,* 1 Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy; [email protected] (S.P.); [email protected] (L.P.) 2 Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy 3 Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 06123 Perugia, Italy; [email protected] * Correspondence: [email protected] Received: 29 January 2020; Accepted: 20 February 2020; Published: 21 February 2020 Abstract: Ceramides are a family of bioactive lipids belonging to the class of sphingolipids. Sphingolipidoses are a group of inherited genetic diseases characterized by the unmetabolized sphingolipids and the consequent reduction of ceramide pool in lysosomes. Sphingolipidoses include several disorders as Sandhoff disease, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann Pick disease, Farber disease, and GM2 gangliosidosis. In sphingolipidosis, lysosomal lipid storage occurs in both the central nervous system and visceral tissues, and central nervous system pathology is a common hallmark for all of them. Parkinson’s disease, the most common neurodegenerative movement disorder, is characterized by the accumulation and aggregation of misfolded α-synuclein that seem associated to some lysosomal disorders, in particular Gaucher disease. This review provides evidence into the role of ceramide metabolism in the pathophysiology of lysosomes, highlighting the more recent findings on its involvement in Parkinson’s disease. Keywords: ceramide metabolism; Parkinson’s disease; α-synuclein; GBA; GLA; HEX A-B; GALC; ASAH1; SMPD1; ARSA * Correspondence [email protected] 1.
    [Show full text]
  • Understanding the Molecular Pathobiology of Acid Ceramidase Deficiency
    Understanding the Molecular Pathobiology of Acid Ceramidase Deficiency By Fabian Yu A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by Fabian PS Yu 2018 Understanding the Molecular Pathobiology of Acid Ceramidase Deficiency Fabian Yu Doctor of Philosophy Institute of Medical Science University of Toronto 2018 Abstract Farber disease (FD) is a devastating Lysosomal Storage Disorder (LSD) caused by mutations in ASAH1, resulting in acid ceramidase (ACDase) deficiency. ACDase deficiency manifests along a broad spectrum but in its classical form patients die during early childhood. Due to the scarcity of cases FD has largely been understudied. To circumvent this, our lab previously generated a mouse model that recapitulates FD. In some case reports, patients have shown signs of visceral involvement, retinopathy and respiratory distress that may lead to death. Beyond superficial descriptions in case reports, there have been no in-depth studies performed to address these conditions. To improve the understanding of FD and gain insights for evaluating future therapies, we performed comprehensive studies on the ACDase deficient mouse. In the visual system, we reported presence of progressive uveitis. Further tests revealed cellular infiltration, lipid buildup and extensive retinal pathology. Mice developed retinal dysplasia, impaired retinal response and decreased visual acuity. Within the pulmonary system, lung function tests revealed a decrease in lung compliance. Mice developed chronic lung injury that was contributed by cellular recruitment, and vascular leakage. Additionally, we report impairment to lipid homeostasis in the lungs. ii To understand the liver involvement in FD, we characterized the pathology and performed transcriptome analysis to identify gene and pathway changes.
    [Show full text]
  • Multi-Omic Analyses Characterize the Ceramide/Sphingomyelin Pathway As a Therapeutic Target in Alzheimer's Disease
    medRxiv preprint doi: https://doi.org/10.1101/2021.07.16.21260601; this version posted July 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Multi-Omic Analyses Characterize the Ceramide/Sphingomyelin Pathway as a Therapeutic Target in Alzheimer's Disease Priyanka Baloni1*, Matthias Arnold2,6*, Herman Moreno3*, Kwangsik Nho4*, Luna Buitrago3, Kevin Huynh5, Barbara Brauner2, Gregory Louie6, Alexandra Kueider- Paisley6, Karsten Suhre7, Andrew J. Saykin4, Kim Ekroos8, Peter J. Meikle5, Leroy Hood1, Nathan D. Price1, The Alzheimer’s disease Metabolomics Consortium, P. Murali Doraiswamy6, Cory C. Funk1, Gabi Kastenmüller2, Rebecca Baillie9, Xianlin Han10‡ and Rima Kaddurah-Daouk6, 11,12‡ * Equal contribution ‡ Corresponding author Author’s affiliations 1 Institute for Systems Biology, Seattle, WA, USA 2 Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany 3 Department of Neurology/Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA 4 Indiana Alzheimer Disease Center and Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA 5 Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia 6 Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA. 7 Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, PO 24144, Doha, Qatar 8 Lipidomics Consulting Ltd., Esbo, Finland 9 Rosa & Co LLC, San Carlos, CA, USA 10 University of Texas Health Science Center at San Antonio, San Antonio, TX, USA 11 Department of Medicine, Duke University, Durham, NC, USA NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And
    Table SII. Significantly differentially expressed mRNAs of GSE23558 data series with the criteria of adjusted P<0.05 and logFC>1.5. Probe ID Adjusted P-value logFC Gene symbol Gene title A_23_P157793 1.52x10-5 6.91 CA9 carbonic anhydrase 9 A_23_P161698 1.14x10-4 5.86 MMP3 matrix metallopeptidase 3 A_23_P25150 1.49x10-9 5.67 HOXC9 homeobox C9 A_23_P13094 3.26x10-4 5.56 MMP10 matrix metallopeptidase 10 A_23_P48570 2.36x10-5 5.48 DHRS2 dehydrogenase A_23_P125278 3.03x10-3 5.40 CXCL11 C-X-C motif chemokine ligand 11 A_23_P321501 1.63x10-5 5.38 DHRS2 dehydrogenase A_23_P431388 2.27x10-6 5.33 SPOCD1 SPOC domain containing 1 A_24_P20607 5.13x10-4 5.32 CXCL11 C-X-C motif chemokine ligand 11 A_24_P11061 3.70x10-3 5.30 CSAG1 chondrosarcoma associated gene 1 A_23_P87700 1.03x10-4 5.25 MFAP5 microfibrillar associated protein 5 A_23_P150979 1.81x10-2 5.25 MUCL1 mucin like 1 A_23_P1691 2.71x10-8 5.12 MMP1 matrix metallopeptidase 1 A_23_P350005 2.53x10-4 5.12 TRIML2 tripartite motif family like 2 A_24_P303091 1.23x10-3 4.99 CXCL10 C-X-C motif chemokine ligand 10 A_24_P923612 1.60x10-5 4.95 PTHLH parathyroid hormone like hormone A_23_P7313 6.03x10-5 4.94 SPP1 secreted phosphoprotein 1 A_23_P122924 2.45x10-8 4.93 INHBA inhibin A subunit A_32_P155460 6.56x10-3 4.91 PICSAR P38 inhibited cutaneous squamous cell carcinoma associated lincRNA A_24_P686965 8.75x10-7 4.82 SH2D5 SH2 domain containing 5 A_23_P105475 7.74x10-3 4.70 SLCO1B3 solute carrier organic anion transporter family member 1B3 A_24_P85099 4.82x10-5 4.67 HMGA2 high mobility group AT-hook 2 A_24_P101651
    [Show full text]
  • Generation of Sphingosine-1-Phosphate Is Enhanced in Biliary Tract Cancer Patients and Is Associated with Lymphatic Metastasis
    www.nature.com/scientificreports OPEN Generation of sphingosine- 1-phosphate is enhanced in biliary tract cancer patients and Received: 5 April 2018 Accepted: 4 July 2018 is associated with lymphatic Published: xx xx xxxx metastasis Yuki Hirose1, Masayuki Nagahashi1, Eriko Katsuta2, Kizuki Yuza1, Kohei Miura1, Jun Sakata1, Takashi Kobayashi1, Hiroshi Ichikawa1, Yoshifumi Shimada1, Hitoshi Kameyama1, Kerry-Ann McDonald2, Kazuaki Takabe 1,2,3,4,5 & Toshifumi Wakai1 Lymphatic metastasis is known to contribute to worse prognosis of biliary tract cancer (BTC). Recently, sphingosine-1-phosphate (S1P), a bioactive lipid mediator generated by sphingosine kinase 1 (SPHK1), has been shown to play an important role in lymphangiogenesis and lymph node metastasis in several types of cancer. However, the role of the lipid mediator in BTC has never been examined. Here we found that S1P is elevated in BTC with the activation of ceramide-synthetic pathways, suggesting that BTC utilizes SPHK1 to promote lymphatic metastasis. We found that S1P, sphingosine and ceramide precursors such as monohexosyl-ceramide and sphingomyelin, but not ceramide, were signifcantly increased in BTC compared to normal biliary tract tissue using LC-ESI-MS/MS. Utilizing The Cancer Genome Atlas cohort, we demonstrated that S1P in BTC is generated via de novo pathway and exported via ABCC1. Further, we found that SPHK1 expression positively correlated with factors related to lymphatic metastasis in BTC. Finally, immunohistochemical examination revealed that gallbladder cancer with lymph node metastasis had signifcantly higher expression of phospho-SPHK1 than that without. Taken together, our data suggest that S1P generated in BTC contributes to lymphatic metastasis. Biliary tract cancer (BTC), the malignancy of the bile ducts and gallbladder, is a highly lethal disease in which a strong prognostic predictor is lymph node metastasis1–5.
    [Show full text]
  • Biological Functions of Sphingomyelin Synthase Related Protein and Ceramide Synthase 4 Investigated with Transgenic Mouse Mutants
    Biological functions of Sphingomyelin synthase related protein and Ceramide synthase 4 investigated with transgenic mouse mutants Dissertation Zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Andreas Bickert aus Neuwied Bonn, 2016 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Erstgutachter: Prof. Dr. Klaus Willecke Zweitgutachter: Prof. Dr. Michael Hoch Tag der Promotion: 25.10.2016 Erscheinungsjahr: 2017 Table of Contents Table of Contents 1 Introduction.................................................................................................. 1 1.1 Biological lipids ............................................................................................ 1 1.2 Eucaryotic membranes ................................................................................ 3 1.3 Sphingolipids ............................................................................................... 5 1.3.1 Sphingolipid metabolic pathway ................................................................. 6 1.3.1.1 De novo sphingolipid biosynthesis .......................................................... 8 1.3.1.2 The ceramide transfer protein ................................................................. 8 1.3.1.3 Biosynthesis of complex sphingolipids .................................................... 9 1.3.1.4 Sphingolipid degradation and the salvage
    [Show full text]
  • Adipocyte-Specific Deficiency of De Novo Sphingolipid Biosynthesis Leads to Lipodystrophy and Insulin Resistance
    2596 Diabetes Volume 66, October 2017 Adipocyte-SpecificDeficiency of De Novo Sphingolipid Biosynthesis Leads to Lipodystrophy and Insulin Resistance Su-Yeon Lee,1 Hui-Young Lee,2 Jae-Hwi Song,1 Goon-Tae Kim,1 Suwon Jeon,1 Yoo-Jeong Song,1 Jae Sung Lee,2 Jang-Ho Hur,2 Hyun Hee Oh,2 Shi-Young Park,2 Soon-Mi Shim,3 Hyun Joo Yoo,4 Byung Cheon Lee,5 Xian-Cheng Jiang,6 Cheol Soo Choi,2,7 and Tae-Sik Park1 Diabetes 2017;66:2596–2609 | https://doi.org/10.2337/db16-1232 Sphingolipids have been implicated in the etiology of as insulin resistance and cardiovascular diseases (1–3). chronic metabolic diseases. Here, we investigated whether White adipose tissue (WAT) stores lipids, and the spillover sphingolipid biosynthesis is associated with the develop- of excess fat from the WAT elevates plasma fatty acids (FA). ment of adipose tissues and metabolic diseases. SPTLC2, a As a result, ectopic lipids accumulated in peripheral organs subunit of serine palmitoyltransferase, was transcriptionally including liver cause steatosis and insulin resistance (4). upregulated in the adipose tissues of obese mice and In various reports of obese human and animal models, fi in differentiating adipocytes. Adipocyte-speci c SPTLC2- hepatosteatosis and insulin resistance have been found con- fi de cient (aSPTLC2 KO) mice had markedly reduced adipose comitantly, and altered fat distribution between adipose tissue mass. Fatty acids that were destined for the adi- tissues and peripheral organs has been suggested as a major pose tissue were instead shunted to liver and caused cause for development of metabolic dysfunction (5–7).
    [Show full text]
  • Transcriptome Profiling Analyses in Psoriasis
    G C A T T A C G G C A T genes Review Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis Geneviève Rioux 1,2, Zainab Ridha 1,Mélissa Simard 1,2, Florence Turgeon 1,2, Sylvain L. Guérin 1,3,4 and Roxane Pouliot 1,2,* 1 Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Québec, QC G1J 1Z4, Canada; [email protected] (G.R.); [email protected] (Z.R.); [email protected] (M.S.); fl[email protected] (F.T.); [email protected] (S.L.G.) 2 Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada 3 Centre Universitaire d’Ophtalmologie-Recherche, Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1S 4L8, Canada 4 Faculté de Médecine, Département d’Ophtalmologie, Université Laval, Québec, QC G1V 0A6, Canada * Correspondence: [email protected]; Tel.: +1-418-525-4444 (ext. 61706) Received: 9 September 2020; Accepted: 29 September 2020; Published: 30 September 2020 Abstract: Psoriasis is an immune-mediated inflammatory skin disease with a complex etiology involving environmental and genetic factors. A better insight into related genomic alteration helps design precise therapies leading to better treatment outcome. Gene expression in psoriasis can provide relevant information about the altered expression of mRNA transcripts, thus giving new insights into the disease onset. Techniques for transcriptome analyses, such as microarray and RNA sequencing (RNA-seq), are relevant tools for the discovery of new biomarkers as well as new therapeutic targets.
    [Show full text]
  • Molecular Basis of Acid Ceramidase Deficiency in a Neonatal Form of Farber Disease” in Molecular Genetics and Metabolism
    MARIANA ISABEL QUARESMA DA ROCHA ALVES MOLECULAR PATHOPHYSIOLOGY UNDERLYING THE NEONATAL FORM OF FARBER DISEASE Tese de Candidatura ao grau de Doutor em Ciências Biomédicas submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto Orientadora - Doutora Maria Gil Roseira Ribeiro Categoria - Professor Associado Afiliação - Faculdade de Ciências da Saúde, Universidade Fernando Pessoa. Co-oritentador - Doutor Vítor Manuel Viera da Costa Categoria - Professor Associado Afiliação - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto. À minha Mãe… Legal issues Preceitos legais In accord with the 2nd of the 8th article of Decreto-lei nº388/70, part of the results presented in this dissertation were published in the following paper: De acordo com o n° 2 do Artigo 8° do Decreto-Lei n° 388/70, parte dos resultados apresentados nesta dissertação encontram-se publicados no seguinte artigo: Alves Mariana Q, Emmanuelle Le Tribnnaire, Ribeiro Isaura, Klaus Harzer, Levade Thierry, Ribeiro M Gil. (2013) “Molecular basis of acid ceramidase deficiency in a neonatal form of Farber disease” in Molecular Genetics and Metabolism. 109, 276-81. The author of this dissertation declares her participation in the outlining and execution of the experimental work, as well as in the interpretation, discussion and drafting of the results. O autor desta dissertação declara que interveio na concepção e execução do trabalho experimental, assim como na interpretação, discussão e redação dos resultados. This work was financially supported by the doctoral fellowship SFRH/BD/41759/2007 from Fundação para a Ciência e a Tecnologia (FCT). Este trabalho foi financiado por uma bolsa de doutoramento SFRH/BD/41759/2007 atribuída pela Fundação para a Ciência e Tecnologia (FCT).
    [Show full text]
  • Macaque Gene Symbols Were Mapped to Human Gene Symbols on June 2011
    This document is a guide for cross referencing human gene symbols to macaque gene symbols. Note: macaque gene symbols were mapped to human gene symbols on June 2011. Macaque transcript accession number was used to obtain macaque transcript sequence. Then, the macaque transcript sequence was blasted against human refseq. Highest scoring blast match with a minimum bit score cutoff of 200 was selected. Resulting human gene symbol was then mapped to the corresponding macaque gene symbol. An Excel file of this document is available for downloading at http://download.alleninstitute.org:80/nhp/ Macaque Macaque Human Human Gene Symbol Entrez Id Gene Symbol Entrez ID A1BG 712737 A1BG 1 A1CF 703806 A1CF 29974 A1CF 703806 A1CF 29974 LOC708209 708209 A2BP1 54715 LOC713147 713147 A2BP1 54715 LOC706006 706006 A2LD1 87769 LOC706006 706006 A2LD1 87769 A2M 716834 A2M 2 LOC722289 722289 A2M 2 A2ML1 716616 A2ML1 144568 A4GALT 710998 A4GALT 53947 A4GALT 710998 A4GALT 53947 A4GALT 710998 A4GALT 53947 A4GNT 716512 A4GNT 51146 LOC699771 699771 AAAS 8086 LOC719095 719095 AAAS 8086 AACS 707015 AACS 65985 LOC100427856 100427856 AACSL 729522 AADAC 709031 AADAC 13 AADACL2 709222 AADACL2 344752 AADACL2 709222 AADACL2 344752 LOC711944 711944 AADACL2 344752 LOC722778 722778 AADACL3 126767 AADACL4 715600 AADACL4 343066 AADAT 695264 AADAT 51166 LOC711436 711436 AAGAB 79719 LOC701067 701067 AAK1 22848 LOC100429994 100429994 AAK1 22848 LOC100430095 100430095 AAK1 22848 LOC100430344 100430344 AAK1 22848 AAMP 700763 AAMP 14 AANAT 706924 AANAT 15 AARS 709492 AARS 16 AARS2
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]
  • STAT3 Targets Suggest Mechanisms of Aggressive Tumorigenesis in Diffuse Large B Cell Lymphoma
    STAT3 Targets Suggest Mechanisms of Aggressive Tumorigenesis in Diffuse Large B Cell Lymphoma Jennifer Hardee*,§, Zhengqing Ouyang*,1,2,3, Yuping Zhang*,4 , Anshul Kundaje*,†, Philippe Lacroute*, Michael Snyder*,5 *Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305; §Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520; and †Department of Computer Science, Stanford University School of Engineering, Stanford, CA 94305 1The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030 2Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269 3Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030 4Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06520 5Corresponding author: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305. Email: [email protected] DOI: 10.1534/g3.113.007674 Figure S1 STAT3 immunoblotting and immunoprecipitation with sc-482. Western blot and IPs show a band consistent with expected size (88 kDa) of STAT3. (A) Western blot using antibody sc-482 versus nuclear lysates. Lanes contain (from left to right) lysate from K562 cells, GM12878 cells, HeLa S3 cells, and HepG2 cells. (B) IP of STAT3 using sc-482 in HeLa S3 cells. Lane 1: input nuclear lysate; lane 2: unbound material from IP with sc-482; lane 3: material IP’d with sc-482; lane 4: material IP’d using control rabbit IgG. Arrow indicates the band of interest. (C) IP of STAT3 using sc-482 in K562 cells. Lane 1: input nuclear lysate; lane 2: material IP’d using control rabbit IgG; lane 3: material IP’d with sc-482.
    [Show full text]