Water Quality Degradation of Cempaka Lake, Bangi, Selangor, Malaysia As an Impact of Excessive E

Total Page:16

File Type:pdf, Size:1020Kb

Water Quality Degradation of Cempaka Lake, Bangi, Selangor, Malaysia As an Impact of Excessive E Malaysian Journal of Analytical Sciences, Vol 19 No 6 (2015): 1391- 1404 MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES ISSN 1394 - 2506 Published by The Malaysian Analytical Sciences Society WATER QUALITY DEGRADATION OF CEMPAKA LAKE, BANGI, SELANGOR, MALAYSIA AS AN IMPACT OF EXCESSIVE E. COLI AND NUTRIENT CONCENTRATIONS (Degradasi Kualiti Air di Tasik Cempaka, Bangi, Selangor, Malaysia Disebabkan oleh E.Coli dan Kepekatan Nutrisi yang Berlebihan) Muhammad Barzani Gasim1*, Mohd Ekhwan Toriman1,2, Soaad Muftah1, Amal Barggig1, Nor Azlina Abd Aziz1, Fazureen Azaman1, Norsyuhada Hairoma1, Haniff Muhamad1 1East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia 2 School of Social, Development and Environmental Studies, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia *Corresponding author: [email protected] Received: 14 April 2015; Accepted: 9 July 2015 Abstract This study was carried out to determine the status of the water quality condition in Cempaka Lake, Bandar Baru Bangi, Selangor, Malaysia. Seven sampling stations were selected to represent the water quality condition of the lake. The sampling was carried out in two different times; the first sampling was in June 2010 and the second sampling in August 2010. A total of fifteen water quality parameters was selected, analyzed in-situ and ex-situ, and classified based on WQI and NWQS Classifications. Results for in-situ water quality parameters are: pH content ranged from 6.13 to 6.92; DO from 1.63 to 4.94 mg/L; temperature from 26.02 to 28.37 ºC and conductivity from 94 to 213μS/cm. For ex-situ water quality parameters are: BOD from 0.38 to 2.4 mg/L, Escherichia coli from 120x102 CFU/100mL to 403x102CFU /100mL; nitrite from 0.06 to 0.99 mg/L, nitrate from 1.0 to 1.8 mg/L; ammoniacal nitrogen from 2.00 to 2.84 mg/L; phosphate from 0.21 to 0.56 mg/L; sulphate from 21 to 35 mg/L; COD from 9.3 to 69 mg/L and TSS from 1.8 to 33.3 mg/L; oil & grease from 5.7 to 11.8 mg/L; hardness from 13.89 to 35.57 mg/L. Overall, Cempaka Lake was classified moderately polluted due to urban activities. Keywords: Cempaka Lake, water quality parameter, WQI and NWQS classifications, moderately polluted Abstrak Kajian ini telah dijalankan untuk menentukan status kualiti air di Tasik Cempaka, Bandar Baru Bangi, Selangor, Malaysia. Tujuh stesen pensampelan telah dipilih untuk mengenalpasti kualiti air tasik. Pensampelan telah dijalankan dalam dua masa yang berlainan; pensampelan pertama ialah pada bulan Jun 2010 dan persampelan kedua pada bulan Ogos 2010. 15 parameter kualiti air telah dipilih, dianalisis in-situ dan ex-situ, dan berdasarkan pengkelasan IKA dan PKAK. Keputusan untuk in-situ parameter kualiti air adalah: Kandungan pH adalah antara 6.13-6.92; DO 1.63-4.94 mg/L; suhu 26.02 – 28.37 ºC dan kekonduksian daripada 94 sehingga 213μS/cm. Bagi ex-situ parameter kualiti air adalah: BOD 0.38-2.4 mg/L, Escherichia coli dari 120x102CFU/100ml sehingga 403x102 CFU/100ml; nitrit 0.06-0.99 mg/L, nitrat 1.0-1.8 mg/L; nitrogen ammoniacal 2.00-2.84 mg/L; fosfat 0.21-0.56 mg/L; sulfat 21-35 mg/L; COD 9.3-69 mg/L dan TSS dari 1.8 sehingga 33.3 mg/L; minyak & gris 5.7- 11.8 mg/L; keliatan air 13.89-35.57 mg/L. Secara keseluruhan, Tasik Cempaka dikelaskan sebagai sederhana tercemar akibat kesan aktiviti bandar. Kata kunci: Tasik Cempaka, parameter kualiti air, pengkelasan IKA dan PKAK, sederhana tercemar 1391 Gasim et al: WATER QUALITY DEGRADATION OF CEMPAKA LAKE, BANGI, SELANGOR, MALAYSIA AS AN IMPACT OF EXCESSIVE E. COLI AND NUTRIENT CONCENTRATIONS Introduction Water is vital to the human existence. Early human civilizations were centered on spring and streams. Many civilizations that flourished after developing a reliable water supply collapsed when the supply was exhausted or its quality deteriorated [1]. The fast growth of urban areas has affected the water quality of the surface water due to over exploitation of resources and improper waste disposal practices. The catchment area is important for water resource conservation, both in terms of quality and quantity. The study of water quality aspects of the water distribution system is of great significance as it plays an important role in assuring a good quality of water to the consumer [2]. Water quality is important in drinking water supply, irrigation, fish production, recreation and other purposes to which the water must have been impounded. Water quality is determined by the physical and chemical limnology and includes all physical, chemical and biological factors of water that influence the beneficial use of the water [3]. The destruction of catchment area will lead to the deterioration in quality and quantity of the water resource further downstream [4]. In general, the status of water quality can provide useful information on land activities within the catchment area, for example, the deterioration of water quality at Tasik Chini have been raised due to their correlated with agriculture and mining activities [5]. About one third of the drinking water requirements of the world is obtained from surface sources like rivers, canals and lakes unfortunately; these sources seem to be used as the best place for waste discharge for agriculture, domestics and industries [6]. In general, the status of water quality at each of the sampling sites could provide useful information on land activities within the lake’s catchment area. It is believed that at the catchment studied, higher concentrations of the DO, for example, was triggered by intensive agriculture activities which resulted in changes to land use and land cover [7]. The water quality index is one of the most effective tools to communicate information on the quality of water to the concerned citizens and policy makers. It becomes a significant parameter for the assessment and management of surface water [1]. WQI is defined as a rating that reflects the complex influence of different water quality parameters. WQI is calculated from the point of vision of the suitability of surface water for human consumption [8]. Water quality classification in all seasons where the quality slightly differs in summer and winter compared to the post monsoon season are reasons to introduce water quality change and measures to be taken in terms of the groundwater quality management [9]. Discharge of toxic chemicals, over pumping of aquifer and contamination of water bodies with substance that promote algae growth are some of today’s major cause for the degradation of water quality. Direct contamination of surface water with metals in discharges of mining, smelting and industrial manufacturing, is a long-standing phenomenon. Today there are traces of contamination not only of surface water but also of groundwater bodies, which are susceptible to leach from waste dumps, mine tailings and industrial production sites [10]. The physical and chemical properties of water resources are driven by numerous environmental variables such as climate, wastewater effluent, and tidal effect at the estuary [11]. The main purpose of analyzing the physical, chemical and microbiological characteristics of water is to determine its nutrient status. Since the water contains both dissolved and suspended materials in various proportions, its physical and chemical characteristics differ along with its biological characteristics [12]. Cempaka Lake, Bangi is a man-made lake, located between the commercial centre and Kompleks Perbadanan Kemajuan Negeri Selangor (PKNS) Jabatan Kemajuan Bangi (Figure 1). The lake originated from a small river called Sg. Ayer Hitam. It was then up-graded into a lake which covered about 15.7 acre of land; the length of the lake from the inlet to outlet is about 700 m with maximum depth 3 meter in the middle. The lake is connected with Sungai Langat through Sg. Ramal, a shallow river that runs through Kajang and Bangi areas. Flood always occurs when there are heavy rains. Thus, Cempaka reacts as a retention pond by slowing down the water flow into Sungai Langat. Later on, the area is made into a recreational park. Today, the Cempaka Lake serves the local people 1392 Malaysian Journal of Analytical Sciences, Vol 19 No 6 (2015): 1391- 1404 recreation or as an infrastructure for social activities such as jogging, fishing, fitness training and a playground area for children. Figure1. Location map of the study area 1393 Gasim et al: WATER QUALITY DEGRADATION OF CEMPAKA LAKE, BANGI, SELANGOR, MALAYSIA AS AN IMPACT OF EXCESSIVE E. COLI AND NUTRIENT CONCENTRATIONS Materials and Methods Seven sampling stations were chosen from the surrounding the lake (station 1 to station 7) as shown in Figure 2. Station 1 was located at the inlet area of the lake, four sampling stations(station 2 to station 5) in the surroundings of the lake and Station 6 was in the centre, and the last station, Station 7 was located in the outlet of the lake. The samples were taken using polyethylene bottles, which had been soaked and cleaned before the sampling. After the collection, the samples were immediately placed into ice boxes and processed for analysis in the laboratory. The water samples were collected on a range of time, from 8:30 to 10 am. Three replications of samples were taken randomly at each station. Figure 2. Location of seven water sampling stations in the Cempake Lake The water quality analysis is divided into two measurements: In-situ measurement and in the lab measurement. Four water quality parameters (temperature, pH, dissolved oxygen and electrical conductivity) were measured in-situ using HYDROLAB meter DataSonde.
Recommended publications
  • Development of an Erosion Model for Langat River Basin, Malaysia, Adapting GIS and RS in RUSLE
    Applied Water Science (2020) 10:165 https://doi.org/10.1007/s13201-020-01185-4 ORIGINAL ARTICLE Development of an erosion model for Langat River Basin, Malaysia, adapting GIS and RS in RUSLE Md. Rabiul Islam1 · Wan Zurina Wan Jaafar2 · Lai Sai Hin2 · Normaniza Osman3 · Md. Razaul Karim2 Received: 4 April 2018 / Accepted: 30 March 2020 / Published online: 16 June 2020 © The Author(s) 2020 Abstract This study is aimed to predict potential soil erosion in the Langat River Basin, Malaysia by integrating Remote Sensing (RS) and Geographical Information System (GIS) with the Revised Universal Soil Loss Equation (RUSLE) model. In RUSLE model, parameters such as rainfall erosivity factor (R), soil erodibility factor (K), slope length and steepness factor (LS), vegetation cover and management factor (C) and support practice factor (P) are determined based on the input data followed by the spatial analysis process in the GIS platform. Rainfall data from 2008-2015 are collected from the 29 rain gauge stations located within the study area. From the analysis, the magnitude of RUSLE model obtained corresponding to the parameter R, K, LS, C and P factors is varied between 800 to 3000 MJ mm ha − 1 h− 1 yr− 1, 0.035–0.5 Mg h MJ− 1 mm− 1, 0–73.00, 0.075–0.77 and 0.2–1.00, respectively. Findings of this study indicates that based on the calculated RUSLE parameter values, about 95% of the Langat River Basin area have been classifed as a very low to a low erosion vulnerability. Findings of this study would greatly benefts a decision maker in proposing a suitable soil management and conservation practices for the river basin.
    [Show full text]
  • (Gis) Approach for Analyzing Channel Planform Change with Examples of Langat River, Malaysia
    ID:327 USE OF GEOGRAPHICAL INFORMATION SYSTEM (GIS) APPROACH FOR ANALYZING CHANNEL PLANFORM CHANGE WITH EXAMPLES OF LANGAT RIVER, MALAYSIA M.E. Toriman1; M.Mokhtar2; M.B.Gasim3; R. Elfithri2 & Nor Azlina A.B1 1School of Social, Development & Environmental Studies, FSSK, Universiti Kebangsaan Malaysia. 43600 Bangi, Selangor 2Institute of Environmental & Development (LESTARI), Universiti Kebangsaan Malaysia.43600. Bangi Selangor, Malaysia. 3School of Environmental Sciences and Natural Resources, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor Malaysia 4Fakulti Kejuruteraan Awam, Universiti Teknologi Malaysia, 81310 Universiti Teknologi Malaysia, Skudai Johor, Malaysia This article focuses on the Langat River Channel Planform changes in medium (25 to 100 years) and short time (over last few months to 25 years) scales using Geographical Information System analysis (GIS) involving the cross section and sinuosity analyses. Three sets of topographical maps for three different years (1969, 1976 and 1993) were digitized and rectified and type of changes for the non-stable reaches were defined by superimposing the digital maps of all dates. The results indicate that, middle stream is the most unstable reach followed by upstream which has a few unstable sub-reaches while the downstream shows no changes during the study period. Type of most of the lateral changes for upland reach was meander progression and for middle stream meander progression and avulsion construct most of changes. The middle stream of the channel was identified as the most unstable reach with an average 11.81% change in its sinuosity index. Meanwhile, the upland and downstream of the channel were behaving as more stable reaches with an average 6.92% and 8.47% changes in their sinuosity, respectively.
    [Show full text]
  • Amirudin Shari Said a Amirudin on Nov 30
    No let up in Services sector Keeping the travel Celebrating war with virus a rising star industry afloat the people’s monarch 5 7 10 8&9 FREE l DECEMBER 2020 EDITION l www.selangorjournal.my SELANGOR THE Selangor administration has outlined several measures to en- sure that the people have a con- tinuous supply of water. The ini- tiatives include to increase ground surveillance, use high-tech drones for monitoring difficult-to-access areas, and make amendments to the law to impose heavier penalties on offenders. Swift action by state agencies has also been instrumental in averting water cuts. Thirteen out of 21 re- ported incidents of pollution were intercepted before more damage was done. MORE ON PAGES 2to3 2 NEWS Selangor Journal l DECEMBER 2020 River diversion may be the remedy Hard to sniff out By NORRASYIDAH ARSHAD tects a pollution, we will stop the flow of the polluted river odour pollution SHAH ALAM - A pilot project to water immediately to avoid it divert river water during a pol- from entering the surface wa- lution incident is underway to ter intake of the water treat- ensure that users do not face ment plants (WTPs). water cuts. “Although the treatment State executive councillor plants are suspended, people for infrastructure and public will not have to worry because amenities Izham Hashim said this pilot project will operate water from existing reserve to keep supplying water,” he ponds will be temporarily said during a media briefing pumped to consumers while on Nov 26. the operations of water treat- Izham said the reserve ment plants are suspended.
    [Show full text]
  • Flood Risk Pattern Recognition by Using Environmetric Technique- a Case
    Jurnal Full Paper Teknologi FLOOD RISK PATTERN RECOGNITION BY USING Article history Received ENVIRONMETRIC TECHNIQUE: A CASE STUDY IN 25 February 2015 Received in revised form LANGAT RIVER BASIN 24 March 2015 Accepted Ahmad Shakir Mohd Saudia, Hafizan Juahirb*, Azman Azida, 1 October 2015 Mohd Ekhwan Torimana,c, Mohd Khairul Amri Kamarudina, Madihah Mohd Saudia,Ahmad Dasuki Mustafaa, Mohammad *Corresponding author Azizi Amrana [email protected] aEast Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300,Kuala Terengganu, Terengganu, Malaysia bFaculty Science and Technology, University Science Islam Malaysia, 71800, Nilai, Negeri Sembilan, Malaysia cSchool of Social, Development and Environmental Studies, Faculty of Social Sciences and Humanities, National University of Malaysia, 43600 Bangi, Selangor, Malaysia Graphical abstract Abstract This study looks into the downscaling of statistical model to produce and predict hydrological modelling in the study area based on secondary data derived from the Department of Drainage and Irrigation (DID) since 1982-2012. The combination of chemometric method and time series analysis in this study showed that the monsoon season and rainfall did not affect the water level, but the suspended solid, stream flow and water level that revealed high correlation in correlation test with p-value < 0.0001, which affected the water level. The Factor analysis for the variables of the stream flow, suspended solid and water level showed strong factor pattern with coefficient more than 0.7, and 0.987, 1.000 and 1.000, respectively. Based on the Statistical Process Control (SPC), the Upper Control Limit for water level, suspended solid and stream flow were 21.110 m3/s, 4624.553 tonnes/day, and 8.224 m/s, while the Lower Control Limit were 20.711 m, 2538.92 tonnes/day and 2.040 m/s.
    [Show full text]
  • Langat HELP River Basin Initiative in Malaysia
    3/29/2010 Langat HELP River Basin Initiative in Malaysia Prof. Dr. Mazlin Bin Mokhtar Dr. Rahmah Elfithri and Md. Abdullah Abraham Hossain Institute for Environment and Development (LESTARI) Universiti Kebangsaan Malaysia 43600, UKM BANGI, Selangor, Malaysia Langat River Batu 18 Kg. Pangsoon UKM Kg. Jugra Denkil 1 3/29/2010 What Makes Langat Unique? • Langat River Basin, Malaysia is recognized as one of the HELP Basins since 2004, initiated by the LESTARI, UKM. • Langat was classified as Evolving HELP Basin, out of 90 catchments from 56 countries in the world. • The selection has been made based on the international programme that is a catchment based activity which is interfacing scientific research with stakeholders needs. • Includes scientists, stakeholders, policy-makers, lawyers. • Provides options as against imposing solutions. • Providing/testing/implementing and improving solutions. • Sharing experiences across a global network of basins. • Geographical location. Integrated Water Resources Management To promote a process towards the vision of The Three Es by coordinated development and management of water, land and related resources, in order to maximize the resultant Economic and social welfare in an Equitable manner without compromising the sustainability of vital Ecosystems. The Four Dublin principles (1992) 1. Fresh water is finite and vulnerable resource 2. Participatory approach 3. Women play a central role 4. Water has economic value The Tools: The Three Pillars of management components: 1. Enabling Environment: Policy,
    [Show full text]
  • River Channel Change Assessment For
    Malaysian Journal of Civil Engineering 18(1) : 59-70 (2006) APPLICATION OF GIS FOR DETECTING CHANGES OF SUNGAI LANGAT CHANNEL Mohd Ekhwan Toriman1,*, Zulkifli Yusop2, Mazlin Mokhtar3, 4 Hafizan Juahir 1School of Social Development and Environmental Studies, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor 2Department of Hydraulic & Hydrology, Universiti Teknologi Malaysia, 81310, Skudai, Johor 3Institute for Environment and Development, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor 4Department of Environmental Science,Universiti Putra Malaysia, Serdang 43400, Selangor *Corresponding Author: [email protected] Abstract: Recent environmental developments have stimulated interests in the restoration and conservation of the Sungai Langat in Selangor both to protect against flooding and to maintain river bank stability. In order to support restoration and rehabilitation works of Sungai Langat, sufficient information on physical river characteristics are needed. The use of Geographical Information System (GIS) to map active channels and to categorised the reach according to sinuosity indices over time is encouraging. Total channel length in year 1996 reduced by about 16% from 1973. Avulsion and cut-off were observed at least at six stretches along the river. The sinuosity index (SINDX) varies from 0.61 to 2.31 in 1973 and 0.04 to 2.31 in 1996. At downstream, the channel tends to be more stable and straighter with SINDX < 2.5. This trend of river channel changes can be used as basis for evaluating river restoration works. Keywords: Restoration; Geographic Information System; Channel Changes; Sinuosity Index. Abstrak: Pembangunan alam sekitar masa kini telah menyuntik minat dalam pemulihan dan pemuliharaan Sungai Langat di Selangor khususnya dalam konteks kawalan banjir dan menstabilkan tebing sungai.
    [Show full text]
  • Map Asia 2003 Water Resources GIS Application in Evaluating Land Use
    Map Asia 2003 Water Resources GIS Application in Evaluating Land Use-Land Cover change and its Impact on Hydrological Regime in Langat River Basin, Malaysia* Noorazuan M. H School of Social, Development & Environment, UKM Bangi (now on study leave at School of Geography, University of Manchester, UK) Ruslan Rainis Geoinformatic Unit, Geography Section, School of Humanities Universiti Sains Malaysia, 11800 Penang. E-mail: [email protected] Hafizan Juahir, Sharifuddin, M.Zain Department of Chemistry, Universiti Malaya, KL Nazari Jaafar Department of Geography, Universiti Malaya, KL Abstract GIS-based multi-temporal land use data provides a historical vehicle for determining and evaluating long term changes of land use due to urbanization. Along with the concurrent daily streamflow and precipitation records, the impact of land use change on the rainfall-runoff relationships has been explored in Langat River Basin. The basin is located at southern of the heart of Malaysia i.e. Kuala Lumpur, mentioned to be the most rapid semi-urban basin that experienced land use and land cover changes due to the onslaught of development. This article will highlights the evaluation of land use change result and how this outcome could affects the rainfall-runoff relationships. The study revealed that the landscape diversity of Langat significantly change after 1980s and as the result, the changes also altered the Langat’s streamflow response. Surface runoff has increased from 20.35% in 1983-88 to about 31.4% of the 1988-94 events. Evidence from this research suggests that urbanisation and changes in urban-related landuse- landcover (LULC) could affect the streamflow behaviour or characteristics.
    [Show full text]
  • Preliminary Study of Sg Serai Hot Spring, Hulu Langat, Malaysia
    Water Conservation and (WC )1(1) (2017) 11-14 Management M Contents List available at Water Conservation and Volkson Press (WC ) Journal Homepage: https://www.watconman.org/Management M Preliminary Study of Sg Serai Hot Spring, Hulu Langat, Malaysia Alea Atiqah Bt Mahzan, Anis Syafawanie Bt Ramli, Anis Syafiqah Bt Mohd Abduh, Izulalif B. Izhar, Mohd Zarif B. Mohd Yusof Indirakumar, Amgad Abdelazim Mohamed Salih, Anas Syafiq B. Ahmad Jahri, Ong Qing Wei Department of Geology, Faculty of Science, University of Malaya 50603 Kuala Lumpur, Malaysia This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited ARTICLE DETAILS ABSTRACT Article history: The study was conducted to do preliminary review of geology & water quality at Sg Serai hot spring, Hulu Langat, Selangor, Malaysia. Langat River basin can be divided into 3 distinct zones. The first can be referred to as the Received 12 August 2016 mountainous zone of the northeast corner of Hulu Langat district. The second zone is the hilly area Accepted 12 December 2016 characterised by gentle slopes spreading widely from north to the east in the middle part of Langat basin. Available online 20 January 2017 The third zone is a relatively flat alluvial plane located in the southwest of Langat Basin. Water samples, SSP2 and SSW2 are polluted, with an anomalously high reading of fluoride. Fluorosis has been described as an Keywords: endemic disease of tropical climates, but this is not entirely the case. Waters with high fluoride concentrations occur in large and extensive geographical belts associated with a) sediments of marine origin in mountainous areas, b) Preliminary report, geology, water quality, Langat basin, flouride volcanic rocks and c) granitic and gneissic rocks; resulting the high concentration of fluoride in water samples.
    [Show full text]
  • Environmentasia
    EnvironmentAsia Available online at www.tshe.org/EA The international journal published by the Thai Society of Higher Education Institutes on Environment EnvironmentAsia 3(special issue) (2010) 20-31 Hydrological Trend Analysis Due to Land Use Changes at Langat River Basin Hafizan Juahir a, Sharifuddin M. Zain b, Ahmad Zaharin Aris a, Mohd Kamil Yusof a, Mohd Armi Abu Samah a and Mazlin Bin Mokhtar c a Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. b Department of Chemistry, Faculty of Science, Universiti Malaya, 56000 Kuala Lumpur, Malaysia. c Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia Abstract This present study was carried out to detect the spatial and temporal change (1974-2000) in hydrological trend and its relationship to land use changes in the Langat River Basin. To obtain a clear picture of the hydrological parameters during the study period, rainfall data were analyzed. With the help of GIS and non-parametric Mann-Kendall (MK) statistical test the significance of trend in hydrological and land use time series was measured. Trend analyses indicated that a relationship between hydrological parameters namely discharge and direct runoff and land use types namely agriculture, forest, urban, waterbody and others was evident. This analysis indicates that rainfall intensity does not play an important role as a pollutant contributor via the rainfall runoff process nor does it directly influence the peak discharges. Land use shows tremendous changes in trend surrounding Dengkil station compared a little changes surrounding Lui station. Mann-Kendall test of trend shows an increasing trend (p-value<0.01) of annual maximum-minimum ratio for Dengkil station, while no significant trend is observed for Lui station.
    [Show full text]
  • Urban Land Use Change and the Langat Basin Ecosystem Health
    PLANNING MALAYSIA Journal of the Malaysian Institute of Planners (2004) II, 51-68 URBAN LAND USE CHANGE AND THE LANGAT BASIN ECOSYSTEM HEALTH Shaharudin ldrus Abdul Samad Hadi Institute for Environment and Development (LESTARJ) UNIVERSITJ KEBANGSAAN MALAYSIA (UKM) Abstract The paper discusses over four decades of urban land use changes in the Langat River Basin in response to rapid development impulses that flowed from the more developed Klang Valley where Kuala Lumpur, the Malaysian capital city is situated. It proceeds to look into the impact of those changes on the ecosystem health of the basin. Federal development policies, strategies, programs and activities have transformed the basin from an industrial agricultural basin into an urbanized area. Being contiguous to the Klang Valley, the basin rose over the decades to be a choice location for not only foreign direct investment to produce manufactured products for export but also services and educational. The paper also discusses the status of the Langat Basin ecosystem health. The change to the land use has indeed impacted on the basin ecosystem health. Using ors, land use changes in the basin over the decades were analysed to reveal the persistent direction of change. It is clear that the trend of land use change in the Langat Basin is the conversion from one type of land use to developing urbanised and full urban areas. What is implied by the changes are indicators that can be derived to show the sustainability of the ecosystem in the Langat Basin such as river flood, mud flood, land slide, etc. Key words: Langat River Basin, Ecosystem Health, Land Use, ors, INTRODUCTION This paper perceives that economic, social and administrative driving forces have impacted on the Langat Basin land use.
    [Show full text]
  • Investigating the Status of Cadmium, Chromium and Lead in the Drinking Water Supply Chain to Ensure Drinking Water Quality in Malaysia
    water Article Investigating the Status of Cadmium, Chromium and Lead in the Drinking Water Supply Chain to Ensure Drinking Water Quality in Malaysia Minhaz Farid Ahmed 1,* , Mazlin Bin Mokhtar 1,*, Lubna Alam 1, Che Abd Rahim Mohamed 2 and Goh Choo Ta 1 1 Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), UKM Bangi 43600, Selangor, Malaysia; [email protected] (L.A.); [email protected] (G.C.T.) 2 School of Environmental and Natural Resource Sciences, Universiti Kebangsaan Malaysia (UKM), UKM Bangi 43600, Selangor, Malaysia; [email protected] * Correspondence: [email protected] (M.F.A.); [email protected] (M.B.M.); Tel.: +603-8921-3894 (M.F.A.); +603-8921-4149 (M.B.M.) Received: 1 August 2020; Accepted: 3 September 2020; Published: 23 September 2020 Abstract: Prolonged persistence of toxic cadmium (Cd), chromium (Cr) and lead (Pb) in the aquatic environment are due to its nonbiodegradable characteristic. A few studies have reported higher concentrations of these metals in the transboundary Langat River, Malaysia. This study determined the spatial and temporal distributions of Cd, Cr and Pb concentrations (2005–2015) in the Langat River along with assessing the status of these metals in the drinking water supply chain at the basin. Water samples were collected once in 2015 from the drinking water supply chain, i.e., from the river, treated water at plants, taps and filtration water at households. Determined mean concentrations of Cd, Cr and Pb by inductively coupled plasma mass spectrometry in the Langat River were within the drinking water quality standard of Malaysia and the WHO, except for the Pb (9.99 1.40 µg/L) ± concentration, which was at the maximum limit, 10 µg/L.
    [Show full text]
  • Environmentasia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals EnvironmentAsia Available online at www.tshe.org/EA The international journal published by the Thai Society of Higher Education Institutes on Environment EnvironmentAsia 3(special issue) (2010) 20-31 Hydrological Trend Analysis Due to Land Use Changes at Langat River Basin Hafizan Juahir a, Sharifuddin M. Zain b, Ahmad Zaharin Aris a, Mohd Kamil Yusof a, Mohd Armi Abu Samah a and Mazlin Bin Mokhtar c a Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. b Department of Chemistry, Faculty of Science, Universiti Malaya, 56000 Kuala Lumpur, Malaysia. c Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia Abstract This present study was carried out to detect the spatial and temporal change (1974-2000) in hydrological trend and its relationship to land use changes in the Langat River Basin. To obtain a clear picture of the hydrological parameters during the study period, rainfall data were analyzed. With the help of GIS and non-parametric Mann-Kendall (MK) statistical test the significance of trend in hydrological and land use time series was measured. Trend analyses indicated that a relationship between hydrological parameters namely discharge and direct runoff and land use types namely agriculture, forest, urban, waterbody and others was evident. This analysis indicates that rainfall intensity does not play an important role as a pollutant contributor via the rainfall runoff process nor does it directly influence the peak discharges.
    [Show full text]