19 6 6Apj. . .14 6. .743D the VARIABILITY of RHO PUPPIS* I. J

Total Page:16

File Type:pdf, Size:1020Kb

19 6 6Apj. . .14 6. .743D the VARIABILITY of RHO PUPPIS* I. J .743D 6. .14 THE VARIABILITY OF RHO PUPPIS* . I. J. Danziger and L. V. Kumf 6ApJ. Mount Wilson and Palomar Observatories 6 19 Carnegie Institution of Washington, California Institute of Technology Received April 30, 1966 ABSTRACT The results of simultaneous spectrophotometric and spectral observations of the short-period variable star, p Puppis, are reported. The amplitudes of radial-velocity, light, and temperature variations are 11 km/sec, 0.15 mag., and 280° K, respectively. The relative phases differ from those observed in cluster- type c variables. Estimates of the absolute luminosity and mass from the observed gravity and the Py/(p/po) — Q relationship indicate that either p Puppis is pulsating in a higher-order harmonic mode than the first or the theory of its pulsation is not understood. I. INTRODUCTION The bright star p Puppis, classified in the MKK system as type F6II, was first shown to be variable in light (period 0.141 days) by Eggen (1956) who measured a total ampli- tude of 0.15 mag. Struve, Sahade, and Zebergs (1956) showed that there is an associated variation in radial velocity with a total amplitude of 10 km/sec and that maximum brightness occurs approximately 0.02 days later than minimum radial velocity. Bappu (1959) reported that two-color measurements indicate a variation in temperature of 300° K. An intrinsic luminosity of p Puppis, MPg = +2.4, was obtained by Kinman (1959). He assumed it fitted the observed period-luminosity relation of cluster-type c variables in order to use an observed period-luminosity relation. Strömgren’s c-l sys- tem indices were measured by McNamara and Augason (1962) to derive Mpg = +1.7 and a mass 9J£ = 3.2 $)îo from the period-density law with the pulsation constant Q ~ 0-041* It is of interest to note that, although p Puppis has been classified as a ô Scuti star, none of the multiple-period characteristics associated with such stars has been found to apply to it. For example, the amplitudes of both light and radial-velocity variations remain constant, and there is no evidence for the existence of a secondary period. Rlio Puppis has the lowest temperature of all known ô Scuti stars, and a significantly greater space velocity. Greenstein’s (1948) abundance analysis of this star showed that the heavy elements are relatively more abundant than the lighter elements compared to the Sun, in the manner of Am stars. McNamara and Augason (1962) reported that the K-line (Ca n) photoelectric index is weak for its spectral type. The observations reported below were made to provide greater insight into the vari- ability and evolutionary role of such stars. II. OBSERVATIONS Simultaneous high-dispersion spectra and spectrophotometric continuum observa- tions were obtained for the duration of a complete cycle on the night of January 22-23, 1965. The continuum observations were made with the Cassegrain photoelectric spec- trum scanner (used with a refrigerated 1P21 photomultiplier) on the 60-inch reflector at Mount Wilson. The intensities at sixteen discrete wavelengths (selected by Oke [1964] * This research was supported in part by the United States Air Force under contract AF 49(638)-1323, monitored by the Air Force Office of Scientific Research of the Office of Aerospace Research. f Presently at the Berkeley Astronomical Department, University of California. 743 © American Astronomical Society • Provided by the NASA Astrophysics Data System .743D 6. 744 I. J. DANZIGER AND L. V. KUHI .14 . to be relatively free of lines) were measured with an exit slit of SO Â, and corrected for 6ApJ. atmospheric extinction by using mean extinction coefficients for Mount Wilson. A nearby 6 secondary standard, 16 Puppis, was observed intermittently during the cycle and was 19 tied to Oke’s system of absolute standards by observing € Ori and a Leo on the same night. A check on the validity of the mean extinction coefficients was also provided by the observations of 16 Pup at different zenith distances. No deviations of individual fluxes greater than 1 or 2 per cent or gross variations in extinction during the course of the observations were detected. Since the observed continuum of 16 Pup is also in good agreement with that expected from its spectral type it is reasonable to conclude that the extinction corrections are not in error. Coudé spectra of the violet and blue regions were taken on baked IlaO plates with a dispersion of 4.5 Â/mm with the 32-inch camera of the 100-inch telescope. These spectra Fig. 1.—Radial velocity, light, and temperature of p Pup plotted as a function of Pacific Standard Time. Radial velocity measurements are relative, not absolute. were used to define the radial-velocity variation of p Pup and to provide line-blanketing corrections to the continuum observations. Additional plates of the visual and far-ultra- violet regions were obtained at a few phases to complete the blanketing corrections. The uncorrected continuum fluxes expressed in magnitudes per unit frequency inter- val around the cycle are given in Table 1, together with the continuum measures of 16 Pup and the blanketing corrections which are effectively the same at all phases. The corrections, obtained by measuring the energy absorbed by the line spectrum from the smooth continuum, are similar to those in Hyades stars of the same temperature (Oke and Conti 1966). In particular, because the size of the Balmer jump is sensitive to the surface gravity, we were concerned with the corrections shortward of the Balmer jump where it is difficult to judge the position of the continuum. Because Oke and Conti obtained gravities which appeared to be reasonable for the Hyades stars, it seems likely that the gravities obtained here for p Pup are not subject to large errors. An effective temperature and gravity at each phase was obtained by fitting the continuum measures corrected for blanketing to theoretical models computed with the program of Mihalas (1965). A more detailed discussion of the method has been given by Oke (1965). In Figure 1 the radial-velocity, light, and temperature variations are plotted © American Astronomical Society • Provided by the NASA Astrophysics Data System .743D 6. t'* V© ^ !>• © i-t 04 CN CM 00 © 00 © OO CM .14 C<5 CO ^ ^ LO lO lO »O lO ^ CO ^ CO . On © ©\ ^ »O v© 00 O rt< CM co O- 6ApJ. CM CO CO ^ Tfi t^i co CO CO ^ 6 19 COrf CO^ CM r^lCO 00TfiTfiOTt<Tticococo O' © On N© w Tf ©©©©©(NCOtíHtíhiOCM'^tHCS CM CM CM CO CO CO CO CO CO CO CM CM CM ►H rjn ^rJH rf Tfi rh ^ rj< ë t'-On 00 00 rhi C<1 CM CM CM On i-i © t-h On Ph i—I i—I CM CM CO CO CO CO CO CM CM CM CM ^ Q. ë CM © CN lO NO NO LO lO lO i-H ^0 Cë tH 1-H tH i—I r—I t-H ^-H t-H ©) ^0 CD LO u w LO1—lONONCOLOt^ CO LO LO LO ioNO VO00 VO LO^ rti© TjHCM C/3Ph tn cococococococococococococo O CN th ^-h N© 00 On 00 00 vo co co i—' © P 1-Ii-HCMCMCMCMCMCMCMCMt-Hi-HtH © CM £►H cococococococococococococo ^ © H O ©LO vo© i“HCN 1—1^ i-HOn OntH C41-1 CM1-H CM© i—i00 © NO© © © CM© o H cococococococococococococo ^ © P H OnON©©i—li-Hi-H'^Hi—li-H©ON©00 On NO 00 CM Tfi ^ CM CM On i-i vo© ^1—* O CM CM co co co co co CO co co co CM co ^ © lO Tf T^H OnOnOn©©©©©©CMCMOnCMnOvOnOí^no On On On CM CM CM CO CO CO CO CO CO CO CM CM CM VO00 00 COOn On^ 00On ©©©© 1-H © On 00On 00On 00O 00 tHCM CM CM CM CM CM CO CO CO CM CM CM CM CM ^ 00 00CM 00 00 OnCM OnCM On TfOn COON OnCM 00TtH 00 00CM Oni-t ©00 CM CM CM* CM CM CM CM CM CM CM CM CM CM © VO00 00 On© On•»—i 00On 00On 00© *>»On l>*On CM CM CM CM CM CM CM CM CM CM CM CM i>.ooooooooooooooooooi>*t^NOCMCO'ON©t'’»l>.VON©©00 00 CO CM CM CM CM CM CM CM CM CM CM CM CM N iN©'» 1—1 CM vo 4>.N© !>.l>. N© !>.to vo NOOn N©On NOOn CO00 CM CM CM CM CM CM CM CM CM CM CM CM oO bo 0 v© CM © CM i-ii © 00 NO VO 1—1 CM ’rfl i-HI©©CO’^»OVO©tH©i-HIO 3a '■g ¿ CMCMCOCOCOCOCO©© (P •äl S CM CM CM CM CM CM CM CM © © © © © v© cj P Pi pq © American Astronomical Society Provided by the NASA Astrophysics Data System .743D 6. 746 I. J. DANZIGER AND L. V. KUHI Vol. 146 .14 . as a function of time. The light variations are those measured at 4566 Â. Changes in the 6ApJ. gravity are not shown since the amplitude of the expected variations is smaller than the 6 error in an individual determination, i.e., ±0.2 in the logarithm. Only relative radial 19 velocities are plotted. It can be seen that the amplitudes of the radial-velocity, light, and temperature varia- tions are 11 km/sec, 0.15 mag., and 280° K, respectively, in good agreement with previous determinations quoted above. However, the relative phases of light and radial velocity are different. Minimum light occurs approximately 0.08 P before maximum radial velocity. Minimum temperature seems to occur closer to maximum radial velocity than to minimum light, a conclusion supported by effective temperatures derived from Hy profiles, by the method of Searle and Oke (1962).
Recommended publications
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • UNSC Science and Technology Command
    UNSC Science and Technology Command Earth Survey Catalogue: Official Name/(Common) Star System Distance Coordinates Remarks/Status 18 Scorpii {TCP:p351} 18 Scorpii {Fact} 45.7 LY 16h 15m 37s Diameter: 1,654,100km (1.02R*) {Fact} -08° 22' 06" {Fact} Spectral Class: G2 Va {Fact} Surface Temp.: 5,800K {Fact} 18 Scorpii ?? (Falaknuma) 18 Scorpii {Fact} 45.7 LY 16h 15m 37s UNSC HQ base on world. UNSC {TCP:p351} {Fact} -08° 22' 06" recruitment center in the city of Halkia. {TCP:p355} Constellation: Scorpio 111 Tauri 111 Tauri {Fact} 47.8 LY 05h:24m:25.46s Diameter: 1,654,100km (1.19R*) {Fact} +17° 23' 00.72" {Fact} Spectral Class: F8 V {Fact} Surface Temp.: 6,200K {Fact} Constellation: Taurus 111 Tauri ?? (Victoria) 111 Tauri {Fact} 47.8 LY 05:24:25.4634 UNSC colony. {GoO:p31} {Fact} +17° 23' 00.72" Constellation: Taurus Location of a rebel cell at Camp New Hope in 2531. {GoO:p31} 51 Pegasi {Fact} 51 Pegasi {Fact} 50.1 LY 22h:57m:28s Diameter: 1,668,000km (1.2R*) {Fact} +20° 46' 7.8" {Fact} Spectral Class: G4 (yellow- orange) {Fact} Surface Temp.: Constellation: Pegasus 51 Pegasi-B (Bellerophon) 51 Pegasi 50.1 LY 22h:57m:28s Gas giant planet in the 51 Pegasi {Fact} +20° 46' 7.8" system informally named Bellerophon. Diameter: 196,000km. {Fact} Located on the edge of UNSC territory. {GoO:p15} Its moon, Pegasi Delta, contained a Covenant deuterium/tritium refinery destroyed by covert UNSC forces in 2545. {GoO:p13} Constellation: Pegasus 51 Pegasi-B-1 (Pegasi 51 Pegasi 50.1 LY 22h:57m:28s Moon of the gas giant planet 51 Delta) {GoO:p13} +20° 46' 7.8" Pegasi-B in the 51 Pegasi star Constellation: Pegasus system; a Covenant stronghold on the edge of UNSC territory.
    [Show full text]
  • The Electric Sun Hypothesis
    Basics of astrophysics revisited. II. Mass- luminosity- rotation relation for F, A, B, O and WR class stars Edgars Alksnis [email protected] Small volume statistics show, that luminosity of bright stars is proportional to their angular momentums of rotation when certain relation between stellar mass and stellar rotation speed is reached. Cause should be outside of standard stellar model. Concept allows strengthen hypotheses of 1) fast rotation of Wolf-Rayet stars and 2) low mass central black hole of the Milky Way. Keywords: mass-luminosity relation, stellar rotation, Wolf-Rayet stars, stellar angular momentum, Sagittarius A* mass, Sagittarius A* luminosity. In previous work (Alksnis, 2017) we have shown, that in slow rotating stars stellar luminosity is proportional to spin angular momentum of the star. This allows us to see, that there in fact are no stars outside of “main sequence” within stellar classes G, K and M. METHOD We have analyzed possible connection between stellar luminosity and stellar angular momentum in samples of most known F, A, B, O and WR class stars (tables 1-5). Stellar equatorial rotation speed (vsini) was used as main parameter of stellar rotation when possible. Several diverse data for one star were averaged. Zero stellar rotation speed was considered as an error and corresponding star has been not included in sample. RESULTS 2 F class star Relative Relative Luminosity, Relative M*R *eq mass, M radius, L rotation, L R eq HATP-6 1.29 1.46 3.55 2.950 2.28 α UMi B 1.39 1.38 3.90 38.573 26.18 Alpha Fornacis 1.33
    [Show full text]
  • The Double-Degenerate Model for the Progenitors of Type Ia Supernovae
    Mon. Not. R. Astron. Soc. 000, 1–16 (2017) Printed 12 October 2017 (MN LATEX style file v2.2) The double-degenerate model for the progenitors of type Ia supernovae D. Liu1,2,3⋆, B. Wang1,2,3†, and Z. Han1,2,3‡ 1Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatories, CAS, Kunming 650216, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Center for Astronomical Mega-Science, CAS, Beijing 100012, China ABSTRACT The double-degenerate (DD) model, involving the merging of massive double carbon-oxygen white dwarfs (CO WDs) driven by gravitational wave radia- tion, is one of the classical pathways for the formation of type Ia supernovae (SNe Ia). Recently, it has been proposed that the WD+He subgiant channel has a significant contribution to the production of massive double WDs, in which the primary WD accumulates mass by accreting He-rich matter from a He subgiant. We evolved about 1800 CO WD+He star systems and ob- tained a large and dense grid for producing SNe Ia through the DD model. We then performed a series of binary population synthesis simulations for the DD model, in which the WD+He subgiant channel is calculated by interpo- lations in this grid. According to our standard model, the Galactic birthrate of SNe Ia is about 2.4 × 10−3 yr−1 for the WD+He subgiant channel of the DD model; the total birthrate is about 3.7 × 10−3 yr−1 for all channels, repro- ducing that of observations. Previous theoretical models still have deficit with the observed SNe Ia with delay times <1 Gyr and >8 Gyr.
    [Show full text]
  • Stellar Pulsation: Challenges for Theory and Observation May 31-June 5, 2009 Poster Submissions Alphabetical
    Stellar Pulsation: Challenges for Theory and Observation May 31-June 5, 2009 Poster Submissions Alphabetical Key: 1= Sun-Tues 2 = Wed-Friday Ceph = Cepheids RRL = RR Lyrae RG = Red giant/LPV CGS = Clusters, Galaxies, and Surveys B = B stars Solar = Sun and solar-type stars DSC = delta Scuti and related stars GD = gamma Doradus stars roAp = rapidly-oscillating Ap stars Presenting Title Section 0. # Author Amado, Pedro J. Mode identification using DSC 2 1. simultaneous optical and NIR spectroscopy Antoci, Vichi et al. The delta Scuti star Rho Puppis: DSC 2 2. the perfect target to probe the theory predicting solar-like oscillations in cool delta Scuti stars Antoci, Vichi The First beta Cephei Star B 2 3. Discovered by MOST Barcza, Szabolcs Physical parameters of RR Lyrae RRL 1 4. and Benko, J.M. stars from multicolor photometry and Kurucz atmospheric models Benko, Jozsef M. An alternative mathematical RRL 1 5. treatment of the modulated RR Lyrae stars Bernard, Edouard The ACS LCID Project: Short- RRL 1 6. for the LCID Team period variables Bersier, David et A large-scale survey for variable CGS 1 7. al. stars in M33 Bouabid, Mehdi- Frequency analysis of the SISMO GD 2 8. Pierre $\gamma$Doradus star HD 49434 Bouabid, Mehdi- Hybrid GD 2 9. Pierre $\gamma$Doradus/$\delta$Scuti stars: theory versus observations Breger, M., Lenz, Is 44 Tau in the post-MS DS 2 10. Patrick, and contraction phase? Pamyatnykh, A. Cameron, Chris et Asteroseismic tuning of the roAp 2 11. al. magnetic field of the roAp star HR 1217 Cameron, Chris et Near-critical rotation offers the B 2 12.
    [Show full text]
  • Star Name Database
    Star Name Database Patrick J. Gleason April 29, 2019 Copyright © 2019 Atlanta Bible Fellowship All rights reserved. Except for brief passages quoted in a review, no part of this book may be reproduced by any mechanical, photographic, or electronic process, nor may it be stored in any information retrieval system, transmitted or otherwise copied for public or private use, without the written permission of the publisher. Requests for permission or further information should be addressed to S & R Technology Group, Suite 250, PMB 96, 15310 Amberly Drive, Tampa, Florida 33647. Star Names April 29, 2019 Patrick J. Gleason Atlanta Bible Fellowship Table of Contents 1.0 The Initiative ................................................................................................... 1 1.1 The Method ......................................................................................................... 2 2.0 Key Fields ........................................................................................................ 3 3.0 Data Fields ....................................................................................................... 7 3.1 Common_Name (Column A) ............................................................................. 7 3.2 Full_Name (Column B) ...................................................................................... 7 3.3 Language (Column C) ........................................................................................ 8 3.4 Translation (Column D)....................................................................................
    [Show full text]
  • The Astrology of Space
    The Astrology of Space 1 The Astrology of Space The Astrology Of Space By Michael Erlewine 2 The Astrology of Space An ebook from Startypes.com 315 Marion Avenue Big Rapids, Michigan 49307 Fist published 2006 © 2006 Michael Erlewine/StarTypes.com ISBN 978-0-9794970-8-7 All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher. Graphics designed by Michael Erlewine Some graphic elements © 2007JupiterImages Corp. Some Photos Courtesy of NASA/JPL-Caltech 3 The Astrology of Space This book is dedicated to Charles A. Jayne And also to: Dr. Theodor Landscheidt John D. Kraus 4 The Astrology of Space Table of Contents Table of Contents ..................................................... 5 Chapter 1: Introduction .......................................... 15 Astrophysics for Astrologers .................................. 17 Astrophysics for Astrologers .................................. 22 Interpreting Deep Space Points ............................. 25 Part II: The Radio Sky ............................................ 34 The Earth's Aura .................................................... 38 The Kinds of Celestial Light ................................... 39 The Types of Light ................................................. 41 Radio Frequencies ................................................. 43 Higher Frequencies ...............................................
    [Show full text]
  • Stellar Pulsation: Challenges for Theory and Observation May 31-June 5, 2009 Poster Submissions
    Stellar Pulsation: Challenges for Theory and Observation May 31-June 5, 2009 Poster Submissions Presenting Author Title 0. # Amado, Pedro J. Mode identification using 1. simultaneous optical and NIR spectroscopy Ando, Hiroyasu et Detection of Solar-like Oscillations 2. al. in 4 G-giants by precise radial velocity measurement and their characteristics Antoci, Vichi et al. The delta Scuti star Rho Puppis: 3. the perfect target to probe the theory predicting solar-like oscillations in cool delta Scuti stars Barcza, Szabolcs and Physical parameters of RR Lyrae 4. Benko, J.M. stars from multicolor photometry and Kurucz atmospheric models Benko, Jozsef M. An alternative mathematical 5. treatment of the modulated RR Lyrae stars Bernard, Edouard for The ACS LCID Project: Short- 6. the LCID Team period variables Bouabid, Mehdi- Frequency analysis of the SISMO 7. Pierre $\gamma$Doradus star HD 49434 Bouabid, Mehdi- Hybrid 8. Pierre $\gamma$Doradus/$\delta$Scuti stars: theory versus observations Cameron, Chris et Asteroseismic tuning of the 9. al. magnetic field of the roAp star HR 1217 Cameron, Chris et Near-critical rotation offers the 10. al. MOST asteroseismic potential Cash, Jennifer et al. A Long Term Photometric and 11. Spectroscopic Study of RV Tauri stars Chadid, Merieme et First light curves from Antarctica: 12. al. PAIX monitoring of the Blazhko stars Chavez, Joy M. et al. A Cepheid Distance to the 13. Antennae De Cat, Peter et al. Is HD147787 a double-lined 14. binary with two pulsating components? De Cat, Peter et al. Towards asteroseismology of 15. main-sequence g-mode pulsators: spectroscopic multi- site campaigns for slowly pulsating B stars and gamma Doradus stars.
    [Show full text]
  • Curriculum Vitae Date: 4/03/2013 Initials
    Curriculum Vitae Date: 4/03/2013 Initials: Gordon Arthur Hunter WALKER Born: 30 January 1936 Married: Sigrid Helene Fischer, April 1962 Children: Nicholas and Eric Languages: English, French, and German. POST-SECONDARY EDUCATION University of Edinburgh Hon.B.Sc. Natural Philosophy 1958 University of Cambridge (Caius) Ph.D. Astrophysics 1962 PROFESSIONAL EMPLOYMENT Radcliffe Observatory, Pretoria Research Assistant 1960-61 DAO, Victoria NRC Fellow 1962-63 DAO, Victoria Scientific Officer 3 1963-69 University of Texas Visiting Lecturer 1965 (Spring) University of Victoria Visiting Lecturer 1966 (Spring) UBC Associate Professor April 1, 1969 Director, Institute 1972-78 Astronomy and Space Science Professor July 1, 1974-97 Professor Emeritus July 1 1997 { HIA/NRC Guest-worker 1998 { UVic Adjunct Professor April 23 2004 { INTERNATIONAL PROJECTS Scientific Advisory Committee of the CFHT 1972-79 Project Scientist for `Starlab' an Australian, Canadian, NASA, space telescope proposal until Canada withdrew in 1984 CFHT Board of Directors 1986-91 Canadian Project Scientist (1989-90): EUVITA - far ultraviolet astronomical satellite experiment joint with USSR, Switzerland, USA. Canadian Project Scientist (1990{97): Gemini - twin 8 metre optical telescopes (1 in Hawaii, 1 in Chile) joint with USA, U.K., Chile, Australia, Argentina, Brazil. Gemini Scientific Advisory Committee 1991{97 Gemini Board of Directors 1991{97 1 MOST Science team (1997{2009): a Canadian satellite launched in 2003 for ultra-precise photom- etry of bright stars, with collaboration from Austria. Gemini/NSF Visiting Committee 2004 AURA Source Selection Board for future Gemini Instrumentation 2004 TMT - chair HROS Review Panel 2005 chair Gemini Source Selection Board for HRNIRS 2005 chair Gemini Source Selection Board for PRVS 2006 member SPIRou Preliminary Design Revue Committee 2012 - a high resolution visible/infrared spectropolarimeter proposed for CFHT RESEARCH CAREER My fascination with astronomy began at age 7 when my father explained that stars were very distant suns.
    [Show full text]
  • The March 2017
    The Volume 126 No. 3 March 2017 Bullen Monthly newsleer of the Astronomical Society of South Australia Inc Don’t miss Dr Russell Cockman at the General Meeng, on March 1: How we dodged a doomsday event in 2012 In this issue: ♦ ASSA 125th Birthday Celebraons & Awards ♦ Review - GSO RC12 truss Ritchie-Chreen astrograph ♦ Amateur astronomer helps uncover secrets of unique pulsar binary system ♦ Planetary Nebulae in Puppis Registered by Australia Post Visit us on the web: Bullen of the ASSA Inc 1 March 2017 Print Post Approved PP 100000605 www.assa.org.au In this issue: ASSA Acvies 3-4 Details of general meengs, viewing nights etc ASSA 125th birthday & award presentaons 5-6 ASTRONOMICAL SOCIETY of Member’s achievements & a celebraon SOUTH AUSTRALIA Inc Equipment Review 7-8 GPO Box 199, Adelaide SA 5001 GSO RC12 truss Ritchie-Chreen astrograph The Society (ASSA) can be contacted by post to the Astro News 9-10 address above, or by e-mail to [email protected]. Latest astronomical discoveries and reports Membership of the Society is open to all, with the only prerequisite being an interest in Astronomy. The Sky this month 11-14 Solar System, Comets, Variable Stars, Deep Sky Membership fees are: Full Member $75 ASSA Contact Informaon 15 Concessional Member $60 Subscribe e-Bullen only; discount $20 Members’ Image Gallery 16 Concession informaon and membership brochures can A gallery of members’ astrophotos be obtained from the ASSA web site at: hp://www.assa.org.au or by contacng The Secretary (see contacts page). Member Submissions Sister Society relaonships with: Submissions for inclusion in The Bullen are welcome Orange County Astronomers from all members; submissions may be held over for later edions.
    [Show full text]
  • The Universe Contents 3 HD 149026 B
    History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .
    [Show full text]
  • New Stellar Encounters Discovered in the Second Gaia Data Release?
    A&A 616, A37 (2018) https://doi.org/10.1051/0004-6361/201833456 Astronomy c ESO 2018 & Astrophysics New stellar encounters discovered in the second Gaia data release? C. A. L. Bailer-Jones, J. Rybizki, R. Andrae, and M. Fouesneau Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] Received 19 May 2018 / Accepted 19 June 2018 ABSTRACT Passing stars may play an important role in the evolution of our solar system. We search for close stellar encounters to the Sun among all 7.2 million stars in Gaia DR2 that have six-dimensional phase space data. We characterize encounters by integrating their orbits through a Galactic potential and propagating the correlated uncertainties via a Monte Carlo resampling. After filtering to remove spurious data, we find 694 stars that have median (over uncertainties) closest encounter distances within 5 pc, all occurring within 15 Myr from now. 26 of these have at least a 50% chance of coming closer than 1 pc (and 7 within 0.5 pc), all but one of which are newly discovered here. We confirm some and refute several other previously-identified encounters, confirming suspicions about their data. The closest encounter in the sample is Gl 710, which has a 95% probability of coming closer than 0.08 pc (17 000 AU). Taking mass estimates obtained from Gaia astrometry and multiband photometry for essentially all encounters, we find that Gl 710 also has the largest impulse on the Oort cloud. Using a Galaxy model, we compute the completeness of the Gaia DR2 encountering sample as a function of perihelion time and distance.
    [Show full text]