agronomy Article Improving Seed Retention and Germination Characteristics of North American Basin Wildrye by Marker-Assisted Gene Introgression Steven R. Larson * , Thomas A. Jones, Linnea M. Johnson and Blair L. Waldron United States Department of Agriculture, Agriculture Research Service, Forage and Range Research, Utah State University, Logan, UT 84322, USA;
[email protected] (T.A.J.);
[email protected] (L.M.J.);
[email protected] (B.L.W.) * Correspondence:
[email protected] Received: 23 September 2020; Accepted: 6 November 2020; Published: 8 November 2020 Abstract: Basin wildrye [Leymus cinereus (Scribn. and Merr.) Á. Löve] and creeping wildrye [Leymus triticoides (Buckley) Pilg.] are native perennial grasses cultivated for seed used for fire rehabilitation and revegetation in western North America. Although L. cinereus produces large spike inflorescences with many seeds, it is prone to seed shattering. Seed can be harvested before shattering, but often displays poor germination and seedling vigor. Conversely, L. triticoides has fewer seeds per spike, but relatively strong seed retention. Both species are allotetraploid (2n = 4x = 28) and form fertile hybrids used for breeding and genetic research. A dominant, major-effect seed-shattering gene (SH6) from L. cinereus was previously identified in an L. triticoides backcross population. In this study, a DNA marker was used to select the recessive L. triticoides seed-retention allele (sh6) in cycle six (C6) of a L. cinereus L. triticoides breeding population and evaluate gene harvest date effects on × × seed yield and germination characteristics in a full-sib family derived from homozygous (sh6/sh6) and heterozygous (SH6/sh6) C6 parents.