Renewing Our Energy Future

Total Page:16

File Type:pdf, Size:1020Kb

Renewing Our Energy Future Renewing Our Energy Future September 1995 OTA-ETI-614 GPO stock #052-003-01427-1 Recommended Citation: U.S. Congress, Office of Technology Assessment, Renewing Our Energy Fulture,OTA-ETI-614 (Washington, DC: U.S. Government Printing Office, September 1995). For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16 -048237-2 Foreword arious forms of renewable energy could become important con- tributors to the U.S. energy system early in the next century. If that happens, the United States will enjoy major economic, envi- ronmental, and national security benefits. However, expediting progress will require expanding research, development, and commer- cialization programs. If budget constraints mandate cuts in programs for renewable energy, some progress can still be made if efforts are focused on the most productive areas. This study evaluates the potential for cost-effective renewable energy in the coming decades and the actions that have to be taken to achieve the potential. Some applications, especially wind and bioenergy, are already competitive with conventional technologies. Others, such as photovol- taics, have great promise, but will require significant research and devel- opment to achieve cost-competitiveness. Implementing renewable energy will be also require attention to a variety of factors that inhibit potential users. This study was requested by the House Committee on Science and its Subcommittee on Energy and Environment; Senator Charles E. Grass- ley; two Subcommittees of the House Committee on Agriculture—De- partment Operations, Nutrition and Foreign Agriculture and Resource Conservation, Research and Forestry; and the House Subcommittee on Energy and Environment of the Committee on Appropriations. OTA appreciates the invaluable advice and assistance of the many people who contributed to this project, including the advisory panel, contractors. and reviewers. ROGER C. HERDMAN Director . Ill Advisory Panel Robert W. Fri David Kearney Scott Sklar Chairman President Executive Director President Keamey and Associates Solar Energy Industries Resources for the Future Association John Kennedy Jim Batchelor Product General Manager Carl Weinberg Vice President, Technical Services Space Systems and Advanced Weinberg Associates SF Services, Inc. Applications Allied-Signal Aerospace Robert H. Williams Art Brooks Senior Research Scientist President Alden Meyer Center for Energy and Sun Earth, Inc. Director, Climate Change and Environmental Studies Energy Program Princeton University Edward J. Carlough Union of Concerned Scientists General President Kurt E. Yeager Sheet Metal Workers Roberta Nichols Senior Vice President, International Association Manager, Electric Vehicle Technical Operations Strategy and Planning Electric Power Research Institute John Corsi Car Product Development Solarex Ford Motor Co. INVITED OBSERVERS Robert San Martin J. Michael Davis Mike Nicklas Deputy Assistant Secretary Director, Sales and Marketing President Office of Utility Technologies Golden Technologies Co., Inc. Innovative Design U.S. Department of Energy David Dawson Dale Osborn William G. Rosenberg Forest Policy Consultant Vice President Assistant Administrator Kenetec/U.S. Windpower, Inc. Elizabeth Paine Hughes Office of Air and Radiation Commissioner U.S. Environmental Protection Bruce Pasternack Agency State of Maine Senior Vice President Booz Allen and Hamilton W. Densmore Hunter Thomas D. Bath Director, Analytic Studies Division Department Manager, Maria Richter Process R&D National Renewable Energy Principal Laboratory Weyerhauser Co. Morgan Stanley & Co., Inc. Renz D. Jennings Victor Shaio Commissioner President Arizona Corporation Commission New Energy Corporation of Indiana Note: OTA appreciates and is grateful for the valuable assistance and thoughtful critiques provided by the advisory panel members. The panel does not, however, necessarily approve, disapprove, or endorse this report. OTA assumes full responsibility for the report and the accuracy of its contents. iv Preject Staff Peter D. Blair PRINCIPAL STAFF International Activities: Assistant Director Samuel F. Baldwinl Ted Kennedy Industry, Commerce, and Project Director Christine Egan International Security Division Meridian Corp. Alan Crane2 Transport: Emilia L. Govan Project Director Program Director Mark Delucchi Energy, Transportation, and University of California, Davis Matthew Weinberg Infrastructure Program Analyst Eric Larson Princeton University ADMINISTRATIVE STAFF Joan Ogden CONTRACTORS Lillian Chapman Princeton University Buildings: Division Administrator Helen English PUBLISHING STAFF Passive Solar Industries Council Marsha Fenn Mary Lou Higgs John Evans Editor Manager Consultant Gay Jackson Economic Impacts of Denise Felix PC Specialist Energy Crops: Production Editor K. Shaine Tyson Tina Aikens Randall A. Reese Dorinda Edmondson Administrative Secretary Windy Peaks Associates Electronic Publishing Specialist Electricity: Chris Onrubia Dallas Burtraw Senior Graphic Designer Pallavi R. Shah Resources for the Future Susan Hoffmeyer Paul Maycock Graphic Designer Photovoltaic Energy Systems, Inc. Frances Wood Michael Cranna I ~rough February 1995. AES Corp. 2 As of March 1995. v Reviewers Donald Aitken Lynn Coles Harry Gordon Donald Aitken Associates National Renewable Energy Burt, Hill, Kosar & Rittlemann Laboratory Jonathan Atkin Philip J. Haley Daimler-Benz Janet Cushman Allison Gas Engine Oak Ridge National Laboratory Simon Awerbuch Dan Hines University of Massachusetts, John DeCicco American Corn Growers Lowell American Council for an Energy Association Efficient Economy J. Douglas Balcomb Robert Hirsch National Renewable Energy Mark Delucchi Electric Power Research Institute Laboratory University of California at Davis Tom Houlihan Jan Beyea Ed DeMeo Office of Science and National Audubon Society Electric Power Research Institute Technology Policy Jim Birk Christian Demeter Mary-Margaret Jenior Electric Power Research Institute Antares Group, Inc. U.S. Department of Energy Linda Branstetter Reid Detchon Alec Jenkins Sandia National Laboratory Podesta Associates California Energy Commission John Brogan Joy Dunkerley Ed Kahn U.S. Department of Energy Office of Technology Assessment Lawrence Berkeley Laboratory Dallas Burtraw Helen English Mark Kelley Resources for the Future Passive Solar Industries Council Building Science Engineering Anthony Catalano Greg Eyring Paul Komor National Renewable Energy Office of Technology Assessment Office of Technology Assessment Laboratory John Ferrell Keith Kozloff U.S. Department of Energy World Resources Institute Tom Kroll Mike Phillips Randy Swisher Minnesota Department of Office of Technology Assessment American Wind Energy National Resources Association Steve Plotkin A. Lannus Office of Technology Assessment Roger Taylor Electric Power Research Institute National Renewable Energy Jim Porterfield Laboratory Tom Lareau American Farm Bureau American Petroleum Institute Federation Michael Totten Center for Renewable Energy Karen Larsen Jack Ranney Office of Technology Assessment Joint Institute for Energy and Adrian Tuluca Environment Steven Winter Associates, Inc. Ron Larson Larson Consulting Don Rice Anthony Turhollow James River Corp. Oak Ridge National Laboratory Robert T. Lorand Science Applications International Theryl Robertson Jane Turnbuli Corp. Soil Conservation Service Electric Power Research Institute U.S. Department of Agriculture Al Miller S.R. Venkateswaran National Renewable Energy Robin Roy Energetic, Inc. Laboratory Office of Technology Assessment Yih-huei Wan Paul J. Miller J. Ray Smith National Renewable Energy W. Alton Jones Foundation, Inc. Lawrence Livermore National Laboratory Laboratory Ralph Overend Tom Williams National Renewable Energy Rodney Sobin National Renewable Energy Laboratory Office of Technology Assessment Laboratory Brian Parsons National Renewable Energy Laboratory vii contributors Donald Aitken Gregory Franta Donald Prowler Donald Aitken Associates ENSAR Group Don Prowler and Associates Bruce Anderson Harry Gordon Rick Schwolsky Earthday USA Burt, Hill, Kosar & Rittlemann Builder Magazine Steve Andrews Robert Groberg Steve Selkowitz Solar Spectra U.S. Department of Housing and Lawrence Berkeley Laboratory Urban Development J. Douglas Balcomb Scott Sklar National Renewable Energy Bruce Hunn Solar Energy Industries Laboratory University of Texas at Austin Association Jim Barron Doug Kelbaugh Harvey Serum New York State Energy Research University of Washington Atlas Energy Products and Development Authority Mark Kelley Stephen Szoke Jeff Cook Building Science Engineering National Concrete Masonry Arizona State University Associates Edward Mazria Gerald Eid Mazria Associates. Inc. Sim Van der Ryn Eid-Co Buildings, Inc. Van der Ryn & Associates Mike Nicklas Charles Eley Innovative Design Eley Associates .,, Vlll c ontents 1 Overview 1 Renewable Energy Resources and Technologies 2 Policy Options 15 Conclusion 23 Appendix l-A: National Energy Use and Renewable Energy 27 2 Agricultural Energy Crops 33 Bioenergy Supplies 36 Potential Environmental Impacts 40 Economic Impacts 45 RD&D and Commercialization 49 Policy Options 60 Crosscutting Issues 64 Conclusion 65 3 Residential and Commercial Buildings 67 Introduction 69 Renewable Energy Technologies 71 Policy Options 98 Crosscutting Issues 101 Conclusion 101 4 Transport 103 What Has Changed in Transport Fuels? 103 Renewable Energy Paths for Transport 108 A Renewable
Recommended publications
  • NVM Express and the PCI Express* SSD Revolution SSDS003
    NVM Express and the PCI Express* SSD Revolution Danny Cobb, CTO Flash Memory Business Unit, EMC Amber Huffman, Sr. Principal Engineer, Intel SSDS003 Agenda • NVM Express (NVMe) Overview • New NVMe Features in Enterprise & Client • Driver Ecosystem for NVMe • NVMe Interoperability and Plugfest Plans • EMC’s Perspective: NVMe Use Cases and Proof Points The PDF for this Session presentation is available from our Technical Session Catalog at the end of the day at: intel.com/go/idfsessions URL is on top of Session Agenda Pages in Pocket Guide 2 Agenda • NVM Express (NVMe) Overview • New NVMe Features in Enterprise & Client • Driver Ecosystem for NVMe • NVMe Interoperability and Plugfest Plans • EMC’s Perspective: NVMe Use Cases and Proof Points 3 NVM Express (NVMe) Overview • NVM Express is a scalable host controller interface designed for Enterprise and client systems that use PCI Express* SSDs • NVMe was developed by industry consortium of 80+ members and is directed by a 13-company Promoter Group • NVMe 1.0 was published March 1, 2011 • Product introductions later this year, first in Enterprise 4 Technical Basics • The focus of the effort is efficiency, scalability and performance – All parameters for 4KB command in single 64B DMA fetch – Supports deep queues (64K commands per Q, up to 64K queues) – Supports MSI-X and interrupt steering – Streamlined command set optimized for NVM (6 I/O commands) – Enterprise: Support for end-to-end data protection (i.e., DIF/DIX) – NVM technology agnostic 5 NVMe = NVM Express NVMe Command Execution 7 1
    [Show full text]
  • The Net Energy Balance of Ethanol
    Issue Brief: Net Energy Balance of Ethanol Production Fall 2004 A Publication of Ethanol Across America Study after study after study confirms that ethanol production from corn produces more energy than it takes to make it, period. End of story. So why is this still an issue? When you look at the facts, it simply isn’t. Maryland Grain Producers Energy. You need it to push, pull, lift, sink, or In the ethanol industry, the comparison has Utilization Board otherwise move something. There are a million always been seemingly straightforward and simple, www.marylandgrain.com www.burnsmdc.com www.ethanol.org different types from a million different sources, because a gallon of ethanol is similar in size, whether it is gasoline to power an automobile, weight, and application to a gallon of gasoline. the gentle breeze that moves a leaf, or the carbs People fell into the easy trap of comparing the in a breakfast bar to get you going in the morning. BTUs in a gallon of ethanol to a gallon of gas, www.cleanfuelsdc.org www.ne-ethanol.org www.nppd.com found it to be lower and declared “case closed.” In the energy industry we have traditionally Or, they looked at the energy used to make the gauged energy in terms of its ability to heat ethanol, and also deemed it inferior. “The Net Energy Balance of Ethanol Production” Issue Brief was produced and is distributed as part of something, with the resulting heat causing the Ethanol Across America education campaign. movement. That value has been measured in The reality is that it is far from straightforward, The project was sponsored by the American Coalition for Ethanol, the Clean Fuels Development Coalition, BTUs, or British Thermal Units which, among and comparisons based on raw numbers from an the Maryland Grain Producers Utilization Board, and the Nebraska Ethanol Board.
    [Show full text]
  • The Carbohydrate Economy, Biofuels and the Net Energy Debate
    The Carbohydrate Economy, Biofuels and the Net Energy Debate David Morris Institute for Local Self-Reliance August 2005 2 Other publications from the New Rules Project of the Institute for Local Self-Reliance: Who Will Own Minnesota’s Information Highways? by Becca Vargo Daggett and David Morris, June 2005 A Better Way to Get From Here to There: A Commentary on the Hydrogen Economy and a Proposal for an Alternative Strategy by David Morris, January 2004 (expanded version forthcoming, October 2005) Seeing the Light: Regaining Control of Our Electricity System by David Morris, 2001 The Home Town Advantage: How to Defend Your Main Street Against Chain Stores and Why It Matters by Stacy Mitchell, 2000 Available at www.newrules.org The Institute for Local Self-Reliance (ILSR) is a nonprofit research and educational organization that provides technical assistance and information on environmentally sound economic develop- ment strategies. Since 1974, ILSR has worked with citizen groups, governments and private businesses in developing policies that extract the maximum value from local resources. Institute for Local Self-Reliance 1313 5th Street SE Minneapolis, MN 55414 Phone: (612) 379-3815 Fax: (612) 379-3920 www.ilsr.org © 2005 by the Institute for Local Self-Reliance All Rights Reserved No part of this document may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without permission in writing from the Institute for Local Self-Reliance, Washington, DC. 3 The Carbohydrate Economy, Biofuels and the Net Energy Debate David Morris, Vice President Biomass should Institute for Local Self-Reliance be viewed not as a sil- August 2005 ver bullet, but as one of many renewable fuels we will and should rely upon.
    [Show full text]
  • Intel® Optane™ Storage Performance and Implications on Testing Methodology October 27, 2017 Version 1.0
    Intel® Optane™ Storage Performance and Implications on Testing Methodology October 27, 2017 Version 1.0 Executive Summary Since the unveiling in 2015, 3D XPoint™ Memory has shown itself to be the disruptive storage technology of the decade. Branded as Intel® Optane™ when packaged together with Intel’s storage controller and software, this new transistor-less solid-state ‘storage class memory’ technology promises lower latencies and increased system responsiveness previously unattainable from a non-volatile memory product. When coupled with NVMe and ever faster interfaces, Intel® Optane™ seeks to bridge the gap between slower storage and faster system RAM. Intel® Optane™ and 3D XPoint™ Technology 3D XPoint™ represents a radical departure from conventional non-volatile memory technologies. NAND flash memory stores bits by trapping an electrical charge within an insulated cell. Efficient use of die space mandates that programming be done by page and erasures by block. These limitations lead to a phenomenon called write amplification, where an SSD must manipulate relatively large chunks of data to achieve a given small random write operation, negatively impacting both performance and endurance. 3D XPoint™ is free of the block erase, page, and write amplification limitations inherent with NAND flash and can be in-place overwritten at the bit/byte/word level with no need for over- provisioning to maintain high random performance and consistency. 3D XPoint™ data access is more akin to that of RAM, and thanks to the significant reduction in write-related overhead compared to NAND, read responsiveness can be maintained even in the face of increased system write pressure. A deeper dive of how 3D XPoint™ Memory works is beyond the scope of this paper but can be found elsewhere on the web.
    [Show full text]
  • The Energetic Implications of Curtailing Versus Storing Solar-And Wind
    Energy & Environmental Science View Article Online ANALYSIS View Journal | View Issue The energetic implications of curtailing versus storing solar- and wind-generated electricity† Cite this: Energy Environ. Sci., 2013, 6, 2804 Charles J. Barnhart,*a Michael Dale,a Adam R. Brandtb and Sally M. Bensonab We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage Creative Commons Attribution 3.0 Unported Licence. technologies paired with wind generation need an ESOIe > 80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery's embodied energy requirement, an increase of cycle life to 10 000–18 000 (2–20 times present values) is required for pairing with wind (assuming liberal round-trip efficiency [90%] and liberal depth-of-discharge [80%] Received 11th June 2013 values). Reducing embodied energy costs, increasing efficiency and increasing depth of discharge will Accepted 14th August 2013 also further improve the energetic performance of batteries.
    [Show full text]
  • Intel SSD 750 Series Evaluation Guide
    Intel® Solid State Drive 750 Series Evaluation Guide September 2016 Order Number: 332075-002US Intel® Solid State Drive 750 Series Ordering Information Contact your local Intel sales representative for ordering information. Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. All documented performance test results are obtained in compliance with JESD218 Standards; refer to individual sub-sections within this document for specific methodologies. See www.jedec.org for detailed definitions of JESD218 Standards. Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.
    [Show full text]
  • Renewable Transitions and the Net Energy from Oil Liquids: a Scenarios Study
    Renewable Energy 116 (2018) 258 e271 Contents lists available at ScienceDirect Renewable Energy journal homepage: www.elsevier.com/locate/renene Renewable transitions and the net energy from oil liquids: A scenarios study Jordi Sol e*, Antonio García-Olivares, Antonio Turiel, Joaquim Ballabrera-Poy Institut de Ci encies del Mar (CSIC), Passeig marítim de la Barceloneta 37-49, 08003, Barcelona, Spain article info abstract Article history: We use the concept of Energy Return On energy Invested (EROI) to calculate the amount of the available Received 24 September 2016 net energy that can be reasonably expected from World oil liquids during the next decades (till 2040). Received in revised form Our results indicate a decline in the available oil liquids net energy from 2015 to 2040. Such net energy 1 June 2017 evaluation is used as a starting point to discuss the feasibility of a Renewable Transition (RT). To evaluate Accepted 10 September 2017 the maximum rate of Renewable Energy Sources (RES) development for the RT, we assume that, by 2040, Available online 13 September 2017 the RES will achieve a power of 11 TW (10 12 Watt). In this case, by 2040, between 10 and 20% of net energy from liquid hydrocarbons will be required. Taking into account the oil liquids net energy decay, Keywords: EROI we calculate the minimum annual rate of RES deployment to compensate it in different scenarios. Our Energy transition study shows that if we aim at keeping an increase of 3% of net energy per annum, an 8% annual rate of Renewable energy RES deployment is required.
    [Show full text]
  • X-Series Hyperconverged Nodes Powered by Acuity 2.3 Setup & User Guide
    X-Series Hyperconverged Nodes Powered by Acuity 2.3 Setup & User Guide Document Version 1.0 January 15, 2018 X-Series Hyperconverged Nodes Powered by Acuity Setup & User Guide, v1.0 Purpose This edition applies to Pivot3’s X-Series Hyperconverged Nodes powered by the Acuity software platform (Version 2.3.1 and above) and to any subsequent releases until otherwise indicated in new editions. Specific documentation on other Pivot3 offerings are available in the Pivot3 documentation repository. This document contains information proprietary to Pivot3, Inc. and shall not be reproduced or transferred to other documents or used for any purpose other than that for which it was obtained without the express written consent of Pivot3, Inc. How to Contact Pivot3 Pivot3, Inc. General Information: [email protected] 221 West 6th St., Suite 750 Sales: [email protected] Austin, TX 78701 Tech Support: [email protected] Tel: +1 512-807-2666 Website: www.pivot3.com Fax: +1 512-807-2669 Online Support: support.pivot3.com About This Guide This document provides procedures for: • Connecting X-Series Hyperconverged Nodes powered by Acuity to the VMware and ESXi management networks • Combining nodes to create an Acuity vPG This guide is written for Service Engineers and System Administrators configuring a Pivot3 X-Series Solution. The Pivot3 nodes should be set up as described in the appropriate hardware setup guide, and the procedures in this document require an understanding of the following: • The operating systems installed on the application servers connected to the Acuity vPG • Communication protocols installed on local application servers • vSphere Client for access to VMware ESXi hosts or vCenter © Copyright 2018 Pivot3, Inc.
    [Show full text]
  • Energizing Appalachia: Global Challenges and the Prospect of A
    ENERGIZING APPALACHIA: GLOBAL CHALLENGES AND THE PROSPECT OF A RENEWABLE FUTURE Prepared for the Appalachian Regional Commission By Dr. Amy Glasmeier, Ron Feingold, Amanda Guers, Gillian Hay, Teresa Lawler, Alissa Meyer, Ratchan Sangpenchan, Matthew Stern, Wesley Stroh, Polycarp Tam, Ricardo Torres, Romare Truly, Amy Welch. The Pennsylvania State University Department of Geography Finalized: September 2007 1 CONTENTS EXECUTIVE SUMMARY .......................................................................................................................... 3 INTRODUCTION ........................................................................................................................................ 7 RENEWABLE ENERGY INDUSTRY ANALYSES .............................................................................. 10 WIND ........................................................................................................................................................ 10 SOLAR ...................................................................................................................................................... 20 BIOMASS .................................................................................................................................................. 26 SOURCES & METHODOLOGY ............................................................................................................. 34 POTENTIAL MANUFACTURING CAPACITY IN APPALACHIA .................................................. 36 RESOURCE SECTOR
    [Show full text]
  • NREL 2005 Research Review
    National Renewable Energy Laboratory 2005 Research Review June 2006 ISSUE 4 a publication about NREL R&D highlights CONTENTS feature 6 On the Road to Future Fuels & Vehicles America’s dependence on imported petroleum can be reduced by using clean, domestic trans- portation fuels and advanced vehicles. NREL is developing the science and technology to allow us to move from corn ethanol, biodiesel, and flexible-fuel and hybrid-electric vehicles in the near term to cellulosic ethanol, green diesel, and plug-in hybrid-electric vehicles in the mid term to renewable-source hydrogen and fuel- cell vehicles in the long term. departments articles 1 Perspective 14 High- The President has told the nation that we are Performing “…addicted to oil…[and] the best way to break Commercial this addiction is through technology.” NREL’s R&D in sustainable, domestic energy technolo- Buildings gies is leading the way to a long-term solution NREL’s R&D shows that it is possible to design to this problem. and construct attractive residential and commer- cial buildings that are much more energy efficient 2 NREL in Focus than current standard practice. Take a look at six such “high-performing” buildings. NREL has a new deputy director/chief operat- ing officer, has partnered with others to form a fuel-cell research center, has expanded its com- 18 Closing the Gaps puting capabilities beyond the 1-teraflop High-efficiency solar milestone, and is about to open a major cells are one of many new facility. The Science and Technology areas of solar research Facility will greatly facilitate the transfer of at NREL.
    [Show full text]
  • Selected Project Reports, Spring 2005 Advanced OS & Distributed Systems
    Selected Project Reports, Spring 2005 Advanced OS & Distributed Systems (15-712) edited by Garth A. Gibson and Hyang-Ah Kim Jangwoo Kim††, Eriko Nurvitadhi††, Eric Chung††; Alex Nizhner†, Andrew Biggadike†, Jad Chamcham†; Srinath Sridhar∗, Jeffrey Stylos∗, Noam Zeilberger∗; Gregg Economou∗, Raja R. Sambasivan∗, Terrence Wong∗; Elaine Shi∗, Yong Lu∗, Matt Reid††; Amber Palekar†, Rahul Iyer† May 2005 CMU-CS-05-138 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 †Information Networking Institute ∗Department of Computer Science ††Department of Electrical and Computer Engineering Abstract This technical report contains six final project reports contributed by participants in CMU’s Spring 2005 Advanced Operating Systems and Distributed Systems course (15-712) offered by professor Garth Gibson. This course examines the design and analysis of various aspects of operating systems and distributed systems through a series of background lectures, paper readings, and group projects. Projects were done in groups of two or three, required some kind of implementation and evalution pertaining to the classrom material, but with the topic of these projects left up to each group. Final reports were held to the standard of a systems conference paper submission; a standard well met by the majority of completed projects. Some of the projects will be extended for future submissions to major system conferences. The reports that follow cover a broad range of topics. These reports present a characterization of synchronization behavior
    [Show full text]
  • HP MP9 G2 Retail System
    QuickSpecs HP MP9 G2 Retail System Overview HP MP9 G2 Retail System FRONT/PORTS 1. Headphone Connector 4. USB 3.0 (charging) 2. Microphone or Headphone Connector 5. USB 3.0 (software selectable, default mode is microphone) 3. USB 3.0 Type-CTM 6. HDD indicator 7. Dual-State Power Button c04785658 — DA – 15369 Worldwide — Version 9 — January 2, 2017 Page 1 QuickSpecs HP MP9 G2 Retail System Overview REAR/PORTS 1. External antenna connector (antenna optional) 8. VGA monitor connector 2. Thumbscrew 9. DisplayPort (default, shown) or optional HDMI or serial 3. Padlock loop 10. (2) USB 3.0 ports (blue) 4. HP Keyed Cable Lock 11. (2) USB 3.0 ports (blue) allows for wake from S4/S5 with 5. External antenna connector (antenna optional) keyboard/mouse when connected and enabled in BIOS 6. Antenna cover 12. RJ-45 network connector 7. DisplayPort monitor connector 13. Power connector AT A GLANCE c04785658 — DA – 15369 Worldwide — Version 9 — January 2, 2017 Page 2 QuickSpecs HP MP9 G2 Retail System Overview Windows 10 IoT Enterprise for Retail (64-bit), Windows 10 Pro (64-bit), Windows Embedded 8.1 Industry Pro Retail (64- bit), Windows 8.1 Pro (64-bit), Windows Embedded Standard 7 (64-bit), Windows 7 Pro (32 & 64-bit), Windows Embedded POS Ready 7 (32 & 64-bit), FreeDOS UEFI BIOS developed and engineered by HP for better security, manageability and software image stability Intel® Q170 chipset Intel® 6th generation Core™ processors Intel® vPro™ Technology available with select processors Integrated Intel® HD Graphics Integrated Intel® i219LM
    [Show full text]