NREL 2005 Research Review

Total Page:16

File Type:pdf, Size:1020Kb

NREL 2005 Research Review National Renewable Energy Laboratory 2005 Research Review June 2006 ISSUE 4 a publication about NREL R&D highlights CONTENTS feature 6 On the Road to Future Fuels & Vehicles America’s dependence on imported petroleum can be reduced by using clean, domestic trans- portation fuels and advanced vehicles. NREL is developing the science and technology to allow us to move from corn ethanol, biodiesel, and flexible-fuel and hybrid-electric vehicles in the near term to cellulosic ethanol, green diesel, and plug-in hybrid-electric vehicles in the mid term to renewable-source hydrogen and fuel- cell vehicles in the long term. departments articles 1 Perspective 14 High- The President has told the nation that we are Performing “…addicted to oil…[and] the best way to break Commercial this addiction is through technology.” NREL’s R&D in sustainable, domestic energy technolo- Buildings gies is leading the way to a long-term solution NREL’s R&D shows that it is possible to design to this problem. and construct attractive residential and commer- cial buildings that are much more energy efficient 2 NREL in Focus than current standard practice. Take a look at six such “high-performing” buildings. NREL has a new deputy director/chief operat- ing officer, has partnered with others to form a fuel-cell research center, has expanded its com- 18 Closing the Gaps puting capabilities beyond the 1-teraflop High-efficiency solar milestone, and is about to open a major cells are one of many new facility. The Science and Technology areas of solar research Facility will greatly facilitate the transfer of at NREL. Read about renewable energy technology to industry. the basic rationale of multijunction cells and some innovative design Awards & Honors 4 twists that are boosting During 2005, NREL received two R&D 100 their efficiencies. Awards and two technology transfer awards. In addition, several of our scientists were recognized for their special service and expertise. The National Renewable Energy Laboratory is operated by Midwest Research Institute and Battelle for the Department of Energy’s Office of Energy Efficiency and Renewable Energy. NREL is the nation’s primary national laboratory for renewable energy and energy efficiency research and development. TheResearch Review is published yearly and describes the Laboratory’s accomplishments in science and technology to a wide audience. The purpose is not simply to describe the progress being made, but also to show the promise and value of NREL’s R&D to people, industry, the nation, and the world. This year’s NREL Research Review staff includes Howard Brown, Don Gwinner, Molly Miller, and Paula Pitchford, writers, and Ray David and Al Hicks, graphic designers. i Perspective Dr. Stanley R. Bull, Associate Director, Science & Technology Securing Energy for the future directions in integrate renewable areas the President energy technologies Future Through Science and particularly noted in into these buildings. Technology his Address: biofuels PIX006943/Warren Gretz PIX006943/Warren The President’s and vehicles, energy- Science and technology. They are at Advanced Energy efficient buildings, the heart of everything we do at the Initiative will invest National Renewable Energy Laboratory, and solar energy. in renewable energy technologies that as we pursue innovative, robust, and Biofuels and Vehicles—The alternative “change how we power our homes sustainable ways to produce energy— fuels industry is helping to reduce our and offices.” In this way, we can con- and as we seek to understand and illu- dependence on imports by introducing tinue to assist the U.S. building indus- minate the physics, chemistry, biology, more domestic ethanol and biodiesel try in constructing energy-smart, and engineering behind alternative options into the transportation fuels “high-performing” buildings, like the energy technologies. market. This issue describes NREL’s con- ones described in this issue. Although our nation is learning to use tributions, which include expanding Solar Energy—As part of NREL’s energy more wisely—for example, by feedstock sources, developing meth- research and development in photo- producing and buying more energy- ods for breaking down feedstock for fur- voltaics, our scientists work closely with efficient vehicles and appliances—the ther processing, and making conversion other expert groups to investigate and demand is still great. Americans con- methods for fuels and other products improve the way in which solar cells sumed 99.7 quadrillion Btu (quads) of more efficient and cost effective. directly convert sunlight to electricity. energy in 2004; the Energy Information The President proposes to “fund addi- The President’s Solar America Initiative Administration projects that this will tional research in cutting-edge meth- will support the development of solar increase to 127 quads by 2025. ods of producing ethanol, not just from cells that convert the sunlight much more efficiently than they do now. In his 2006 State of the Union address, corn, but from wood chips and stalks, President George W. Bush noted the or switchgrass. Our goal is to make this Work in high-efficiency solar cells is one seriousness of the situation and pointed new kind of ethanol practical and com- of many relevant areas of solar research the way to a remedy. The President said, petitive within six years.” Through the conducted at NREL. In the article in this “Keeping America competitive requires Advanced Energy Initiative, we will issue, we discuss the basic rationale of affordable energy. And here we have a continue working toward this impor- multijunction cells and some innova- serious problem: America is addicted to tant goal in feedstock development and tive twists on their design that can boost oil, which is often imported from un- conversion methods. efficiencies to higher levels. stable parts of the world. The best way Buildings—Our buildings consume From NREL’s inception in 1977 to the to break this addiction is through nearly 40% of the energy Americans use present, the science and technology of technology.” each year. NREL’s buildings research alternative energy has been the core of With our emphasis on research and and development demonstrate that it is our mission. And this will continue in development in market-relevant, possible to design and construct attrac- the decades to come. The advances we domestic energy technologies, NREL is tive residential and commercial build- make in all areas of renewable energy working toward a long-term solution to ings that are much more energy efficient and energy efficiency will play a vital this problem. In this issue of the NREL than the current standard practice. role in assuring the security, strength, Research Review, we present three stories Our work also develops good ways to and competitiveness of the nation. that highlight recent advances and 1 provided $2 million in start-up fund- NREL In Focus ing, and the partners are contributing $1 million. The CFCC aims to provide state leadership in the development and application of fuel cell technol- ogies, increase the public’s under- standing of the technologies through education and outreach activities, and foster economic development through partnerships with local businesses. Bill Glover Is New NREL vision. He will also serve as a vice pres- Deputy Director and COO ident for Midwest Research Institute, The CFCC will also coordinate the which has operated and managed development of fuel cell R&D pro- On February NREL for DOE since NREL opened as grams, facilitate access to experts in 1, 2006,NREL the Solar Energy Research Institute in NREL and CSM research labs, assist in welcomed 1977. forming strategic alliances among local William (Bill) developers and university research cen- Glover as the New Colorado Research ters, and serve as an independent test- Laboratory’s ing agency. In addition, the center will new Deputy Partnership Formed to promote the development of fuel cell Director and Develop Fuel Cells PIX14712/Mike Linenberger PIX14712/Mike curriculums in colleges, universities, Chief Oper- Power generation in the 21st Century and trade schools in order to build a ating Officer. faces some tough challenges: it has technically viable labor force for this “I’m glad to to score very high in energy efficiency Deputy Director and Chief young industry. Operating Officer Bill Glover be here,” he and, at the same time, very low in envi- said. “I’m very The tremendous growth excited about the Lab’s mission and I expected in the fuel cell am looking forward to working with industry in the coming everyone at NREL.” decade will mean new high-tech jobs in R&D Bill has had more than 35 years of and in manufacturing that executive-level experience. His exten- PIX14679/Ray David PIX14679/Ray will eventually extend well sive experience with the Department beyond Colorado and the of Energy (DOE) has included senior industry itself. management responsibilities in stan- dards identification and management, At the end of two years, self-assessment and independent over- the CFCC should be sight, quality assurance, performance self-sustaining through measurement and evaluation, and research and develop- readiness reviews. He was on a head- ment contracts, consulting quarters level group overseeing the The new joint-venture Colorado Fuel Cell Center is housed agreements, and other rollout of DOE’s Standards Program, at the Colorado School of Mines a few miles away from the sources of funding. The and he led a facilities maintenance pro- NREL campus. center will then empha- gram assessment team at Los Alamos size the development National Laboratory. ronmental impacts. Right now, the fuel of the Colorado fuel cell industry as cell is one of the few technologies that it responds to national solicitations. Before joining NREL, Bill was an inde- appears to do both these things at once. For more information, contact CFCC pendent consultant, President/General Executive Director Robert J.
Recommended publications
  • Renewing Our Energy Future
    Renewing Our Energy Future September 1995 OTA-ETI-614 GPO stock #052-003-01427-1 Recommended Citation: U.S. Congress, Office of Technology Assessment, Renewing Our Energy Fulture,OTA-ETI-614 (Washington, DC: U.S. Government Printing Office, September 1995). For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16 -048237-2 Foreword arious forms of renewable energy could become important con- tributors to the U.S. energy system early in the next century. If that happens, the United States will enjoy major economic, envi- ronmental, and national security benefits. However, expediting progress will require expanding research, development, and commer- cialization programs. If budget constraints mandate cuts in programs for renewable energy, some progress can still be made if efforts are focused on the most productive areas. This study evaluates the potential for cost-effective renewable energy in the coming decades and the actions that have to be taken to achieve the potential. Some applications, especially wind and bioenergy, are already competitive with conventional technologies. Others, such as photovol- taics, have great promise, but will require significant research and devel- opment to achieve cost-competitiveness. Implementing renewable energy will be also require attention to a variety of factors that inhibit potential users. This study was requested by the House Committee on Science and its Subcommittee on Energy and Environment; Senator Charles E. Grass- ley; two Subcommittees of the House Committee on Agriculture—De- partment Operations, Nutrition and Foreign Agriculture and Resource Conservation, Research and Forestry; and the House Subcommittee on Energy and Environment of the Committee on Appropriations.
    [Show full text]
  • The Net Energy Balance of Ethanol
    Issue Brief: Net Energy Balance of Ethanol Production Fall 2004 A Publication of Ethanol Across America Study after study after study confirms that ethanol production from corn produces more energy than it takes to make it, period. End of story. So why is this still an issue? When you look at the facts, it simply isn’t. Maryland Grain Producers Energy. You need it to push, pull, lift, sink, or In the ethanol industry, the comparison has Utilization Board otherwise move something. There are a million always been seemingly straightforward and simple, www.marylandgrain.com www.burnsmdc.com www.ethanol.org different types from a million different sources, because a gallon of ethanol is similar in size, whether it is gasoline to power an automobile, weight, and application to a gallon of gasoline. the gentle breeze that moves a leaf, or the carbs People fell into the easy trap of comparing the in a breakfast bar to get you going in the morning. BTUs in a gallon of ethanol to a gallon of gas, www.cleanfuelsdc.org www.ne-ethanol.org www.nppd.com found it to be lower and declared “case closed.” In the energy industry we have traditionally Or, they looked at the energy used to make the gauged energy in terms of its ability to heat ethanol, and also deemed it inferior. “The Net Energy Balance of Ethanol Production” Issue Brief was produced and is distributed as part of something, with the resulting heat causing the Ethanol Across America education campaign. movement. That value has been measured in The reality is that it is far from straightforward, The project was sponsored by the American Coalition for Ethanol, the Clean Fuels Development Coalition, BTUs, or British Thermal Units which, among and comparisons based on raw numbers from an the Maryland Grain Producers Utilization Board, and the Nebraska Ethanol Board.
    [Show full text]
  • The Carbohydrate Economy, Biofuels and the Net Energy Debate
    The Carbohydrate Economy, Biofuels and the Net Energy Debate David Morris Institute for Local Self-Reliance August 2005 2 Other publications from the New Rules Project of the Institute for Local Self-Reliance: Who Will Own Minnesota’s Information Highways? by Becca Vargo Daggett and David Morris, June 2005 A Better Way to Get From Here to There: A Commentary on the Hydrogen Economy and a Proposal for an Alternative Strategy by David Morris, January 2004 (expanded version forthcoming, October 2005) Seeing the Light: Regaining Control of Our Electricity System by David Morris, 2001 The Home Town Advantage: How to Defend Your Main Street Against Chain Stores and Why It Matters by Stacy Mitchell, 2000 Available at www.newrules.org The Institute for Local Self-Reliance (ILSR) is a nonprofit research and educational organization that provides technical assistance and information on environmentally sound economic develop- ment strategies. Since 1974, ILSR has worked with citizen groups, governments and private businesses in developing policies that extract the maximum value from local resources. Institute for Local Self-Reliance 1313 5th Street SE Minneapolis, MN 55414 Phone: (612) 379-3815 Fax: (612) 379-3920 www.ilsr.org © 2005 by the Institute for Local Self-Reliance All Rights Reserved No part of this document may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without permission in writing from the Institute for Local Self-Reliance, Washington, DC. 3 The Carbohydrate Economy, Biofuels and the Net Energy Debate David Morris, Vice President Biomass should Institute for Local Self-Reliance be viewed not as a sil- August 2005 ver bullet, but as one of many renewable fuels we will and should rely upon.
    [Show full text]
  • The Energetic Implications of Curtailing Versus Storing Solar-And Wind
    Energy & Environmental Science View Article Online ANALYSIS View Journal | View Issue The energetic implications of curtailing versus storing solar- and wind-generated electricity† Cite this: Energy Environ. Sci., 2013, 6, 2804 Charles J. Barnhart,*a Michael Dale,a Adam R. Brandtb and Sally M. Bensonab We present a theoretical framework to calculate how storage affects the energy return on energy investment (EROI) ratios of wind and solar resources. Our methods identify conditions under which it is more energetically favorable to store energy than it is to simply curtail electricity production. Electrochemically based storage technologies result in much smaller EROI ratios than large-scale geologically based storage technologies like compressed air energy storage (CAES) and pumped hydroelectric storage (PHS). All storage technologies paired with solar photovoltaic (PV) generation yield EROI ratios that are greater than curtailment. Due to their low energy stored on electrical energy invested (ESOIe) ratios, conventional battery technologies reduce the EROI ratios of wind generation below curtailment EROI ratios. To yield a greater net energy return than curtailment, battery storage Creative Commons Attribution 3.0 Unported Licence. technologies paired with wind generation need an ESOIe > 80. We identify improvements in cycle life as the most feasible way to increase battery ESOIe. Depending upon the battery's embodied energy requirement, an increase of cycle life to 10 000–18 000 (2–20 times present values) is required for pairing with wind (assuming liberal round-trip efficiency [90%] and liberal depth-of-discharge [80%] Received 11th June 2013 values). Reducing embodied energy costs, increasing efficiency and increasing depth of discharge will Accepted 14th August 2013 also further improve the energetic performance of batteries.
    [Show full text]
  • Renewable Transitions and the Net Energy from Oil Liquids: a Scenarios Study
    Renewable Energy 116 (2018) 258 e271 Contents lists available at ScienceDirect Renewable Energy journal homepage: www.elsevier.com/locate/renene Renewable transitions and the net energy from oil liquids: A scenarios study Jordi Sol e*, Antonio García-Olivares, Antonio Turiel, Joaquim Ballabrera-Poy Institut de Ci encies del Mar (CSIC), Passeig marítim de la Barceloneta 37-49, 08003, Barcelona, Spain article info abstract Article history: We use the concept of Energy Return On energy Invested (EROI) to calculate the amount of the available Received 24 September 2016 net energy that can be reasonably expected from World oil liquids during the next decades (till 2040). Received in revised form Our results indicate a decline in the available oil liquids net energy from 2015 to 2040. Such net energy 1 June 2017 evaluation is used as a starting point to discuss the feasibility of a Renewable Transition (RT). To evaluate Accepted 10 September 2017 the maximum rate of Renewable Energy Sources (RES) development for the RT, we assume that, by 2040, Available online 13 September 2017 the RES will achieve a power of 11 TW (10 12 Watt). In this case, by 2040, between 10 and 20% of net energy from liquid hydrocarbons will be required. Taking into account the oil liquids net energy decay, Keywords: EROI we calculate the minimum annual rate of RES deployment to compensate it in different scenarios. Our Energy transition study shows that if we aim at keeping an increase of 3% of net energy per annum, an 8% annual rate of Renewable energy RES deployment is required.
    [Show full text]
  • Energizing Appalachia: Global Challenges and the Prospect of A
    ENERGIZING APPALACHIA: GLOBAL CHALLENGES AND THE PROSPECT OF A RENEWABLE FUTURE Prepared for the Appalachian Regional Commission By Dr. Amy Glasmeier, Ron Feingold, Amanda Guers, Gillian Hay, Teresa Lawler, Alissa Meyer, Ratchan Sangpenchan, Matthew Stern, Wesley Stroh, Polycarp Tam, Ricardo Torres, Romare Truly, Amy Welch. The Pennsylvania State University Department of Geography Finalized: September 2007 1 CONTENTS EXECUTIVE SUMMARY .......................................................................................................................... 3 INTRODUCTION ........................................................................................................................................ 7 RENEWABLE ENERGY INDUSTRY ANALYSES .............................................................................. 10 WIND ........................................................................................................................................................ 10 SOLAR ...................................................................................................................................................... 20 BIOMASS .................................................................................................................................................. 26 SOURCES & METHODOLOGY ............................................................................................................. 34 POTENTIAL MANUFACTURING CAPACITY IN APPALACHIA .................................................. 36 RESOURCE SECTOR
    [Show full text]
  • EROI of Global Energy Resources! Status, Trends and Social Implications
    ! EROI of Global Energy Resources! Status, Trends and Social Implications October 2013 EROI of Global Energy Resources! Status, Trends and Social Implications October 2013 PREPARED FOR THE PRINCIPAL AUTHORS United Kingdom Department! Jessica G. Lambert! for International Development ! Charles A. S. Hall! Stephen Balogh! BY THE CONTRIBUTING CASE STUDY AUTHORS SUNY - Environmental Science & Forestry ! Ajay Gupta! Next Generation Energy Initiative, Inc.! Michelle Arnold! Alexander Poisson! N OTE FROM THE AUTHORS ! All forms of economic production and exchange involve the transformation of materials, which in turn requires energy. Until recently cheap and seemingly limitless fossil energy has allowed many to ignore the important contributions from the biophysical world to the economic process and potential limits to growth. ! The report that follows, commissioned by the United Kingdom’s Department for International Development (DFID) and developed by the State University of New York College of Environmental Science and Forestry (SUNY-ESF) and Next Generation Energy Initiative (NGEI), examines the energy used by modern economies over time. This work centers on assessing the relation of energy costs of modern day society and its connection to the quality of human life. A focus of this report is energy return on investment (EROI) and some important characteristics of our major energy sources over time.! We find the EROI for each major fossil fuel resource (except coal) has declined substantially over the last century. Most renewable and non-conventional energy alternatives have substantially lower EROI values than conventional fossil fuels. Declining EROI, at the societal level, means that an increasing proportion of energy output is diverted to getting the energy needed to run an economy with few discretionary funds available for “non-essential” projects.
    [Show full text]
  • Third Generation Biofuels Implications for Wood-Derived Fuels
    THIRD GENERATION BIOFUELS IMPLICATIONS FOR WOOD-DERIVED FUELS February 2018 Jim Bowyer, Ph. D Jeff Howe, Ph. D Richard A. Levins, Ph. D. Harry Groot Kathryn Fernholz Ed Pepke, Ph. D. Chuck Henderson DOVETAIL PARTNERS, INC. Third Generation Biofuels – Implications for Wood-Derived Fuels Executive Summary Third-generation biofuels research and development is largely focused on algae as a raw material. Early research demonstrated that energy yields from a given surface area are far greater from algae than from plants currently used in producing biofuels. The great potential of algae is, however, clouded by a number of technical and economic hurdles which must be overcome before algae contributes in any significant way to providing energy for transportation. Among these are reduction of nutrient requirements in cultivation and energy requirements in processing. For the near to mid-term, at least, algae-derived biofuels are unlikely to pose competitive risks to the emerging second-generation cellulose-based biofuels industry. Introduction In 2017, Dovetail published a report on second generation biofuels1, in which we summarized the growth of second generation biofuel facilities around the world and discussed initiatives designed to stimulate further development. Therein we only briefly made reference to third generation biofuels. In this report we discuss the essential differences between first, second, and third generation biofuels, examine progress toward development of third generation fuels, and consider potential impacts of new generation biofuel development on future prospects for lignocellulosic biomass- to-liquid fuels production. We also briefly explore what are referred to as fourth generation biofuels. First to Fourth Generation Biofuels First Generation Biofuels First generation biofuels are produced from food crops such as corn and sugarcane, and soybeans and rapeseed.
    [Show full text]
  • Renewable Energyenergy Renewable Energy West National Technology Resourcesresources Support Center
    RenewableRenewable EnergyEnergy Renewable Energy West National Technology ResourcesResources Support Center National Energy Technology Development Team •To cover the basics of renewable energy for NRCS personnel. 1 US Energy Usage by Source Renewables Nonrenewables West National 3.5% Technology Support Center 2.9% .3% .2% National Energy Technology .1% Development Team Source: DOE, Energy Information Administration 2 Small Hydro Turbines West National Technology Support Center Courtesy: U.S. Department of Energy National Energy Technology Development http://www1.eere.energy.gov/windandhydro/hydro_turbine_types.html Team Considered a renewable resource, click on link if time permits. Most sites in the U. S. are used or not eligible for permitting. 3 Passive Solar Gain West National TechnologyTechnology SupportSupport CenterCenter Solar Energy- energy obtained from radiation emitted by the Sun • Building Orientation is on an East-West Axis. • South facing windows. National Energy • South facing windows. Energy National Technology Technology • ThermalWhat mass techniques considered didfor energythey use? storage. Development • Thermal mass considered for energy storage. Development Team • Natural Shading planned for summer heat. Team •If you are looking for the low cost solution to assist with heating in the winter and help with cooling in the winter then what can you do. •Thousands of years ago, the Anasazi Indians in Colorado incorporated passive solar design in their cliff dwellings. Today we use the same kinds of techniques to take advantage of the sun’s free energy. •Daylighting features include building orientation, window orientation, exterior shading, sawtooth roofs, clerestory windows, light shelves, skylights and light tubes. These features may be incorporated in existing structures but are most effective when integrated in a solar design package which accounts for factors such as glare, heat gain, heat loss and time-of-use.
    [Show full text]
  • How Much Energy Does It Take to Make a Gallon of Ethanol? David Lorenz • David Morris
    How Much Energy Does It Take to Make a Gallon of Ethanol? David Lorenz • David Morris Revised and Updated August 1995 How Much Energy Does It Take To Make A Gallon of Ethanol was originally authored by David Morris and Irshad Ahmed and published in December 1992. The Institute for Local Self-Reliance (ILSR) is a nonprofit research and educational organization that provides technical assistance and information on environmentally sound economic development strategies. Since 1974, ILSR has worked with citizen groups, governments and private businesses in developing policies that extract the maximum value from local resources. Institute for Local Self-Reliance 1313 5th Street SE, Suite 306 Minneapolis, MN 55414 Phone: (612) 379-3815 Fax: (612) 379-3920 Web Site: http://www.ilsr.org © 1992, 1995 Institute for Local Self-Reliance Reproduction permitted with acknowledgement to the Institute for Local Self-Reliance. How Much Energy Does It Take to Make a Gallon of Ethanol? One of the most controversial issues relating to ethanol is Answers to these three questions are presented in Table the question of what environmentalists call the “net energy” 1, which is divided into three sections that parallel the three of ethanol production. Simply put, is more energy used to questions: feedstock energy; processing energy; co-product grow and process the raw material into ethanol than is con- energy credits. All energy inputs and outputs in this report tained in the ethanol itself? are on a high heat value basis.1 In 1992, ILSR addressed this question. Our report, based We focus on corn because corn accounts for over 90 per- on actual energy consumption data from farmers and ethanol cent of the current feedstock for ethanol production in the plant operators, was widely disseminated and its methodol- U.S.
    [Show full text]
  • Reaching the Environmental Community: Designing an Information Program for the NREL Biofuels Program
    August 2003 • NREL/SR-510-34272 Reaching the Environmental Community: Designing an Information Program for the NREL Biofuels Program May 2002 – May 2003 J. Ames and C. Werner Environmental and Energy Study Institute Washington, D.C. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 August 2003 • NREL/SR-510-34272 Reaching the Environmental Community: Designing an Information Program for the NREL Biofuels Program May 2002 – May 2003 J. Ames and C. Werner Environmental and Energy Study Institute Washington, D.C. NREL Technical Monitor: H. Brown Prepared under Subcontract No. ACO-2-32004-01 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Searching for a Miracle: 'Net Energy'
    [ THE CONSERVATION IMPERATIVE ] SEARCHING FOR A MIRACLE by Richard Heinberg Foreword by Jerry Mander A Joint Project of the International Forum on Globalization and the Post Carbon Institute. [ False Solution Series #4 ] September 2009 SEARCHING FOR A MIRACLE ‘Net Energy’ Limits & the Fate of Industrial Society ACKNOWLEDGMENTS This document could not have been produced without the great help of several people. I particularly want to thank Prof. Charles Hall of Syracuse University, who has been a pioneer in developing the concept of “net energy,” (Energy Returned on Energy Invested) that is at the heart of this report.We also drew directly from his published research in several aspects of the document. Jerry Mander and Jack Santa Barbara of the International Forum on Globalization helped conceive of this project several years ago and stayed involved throughout, reading several drafts, and offering detailed editing, shaping and writing suggestions. Dr. David Fridley, Staff Scientist at Lawrence Berkeley National Laboratory, read a later draft and gave valuable tech- nical advice. Suzanne Doyle provided needed research and fact checking, and drafted the footnotes as well as several paragraphs.Alexis Halbert and Alina Xu of the IFG gathered many of the research materials on net energy, and engaged in some original research, and Victor Menotti of IFG offered important information on the state of climate negotiations.A special appreciation also goes to Asher Miller, my very supportive colleague, and ED of Post Carbon Institute. My profound thanks to all. Finally, I must acknowledge the pioneers who first understood the many profound dimensions of the relationships between energy and society; without their prior work this document could not even have been imagined: Frederick Soddy, Howard Odum, and M.King Hubbert.
    [Show full text]