Profitable Environmental Protection (Pep) Project
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Geothermal Resources in the Pacific Islands: Potential for Power Generation to Benefit Indigenous Communities
PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 GEOTHERMAL RESOURCES IN THE PACIFIC ISLANDS: THE POTENTIAL OF POWER GENERATION TO BENEFIT INDIGENOUS COMMUNITIES Alex J. McCoy-West1,2, Sarah Milicich1, Tony Robinson3, Greg Bignall1 and Colin C. Harvey1 1GNS Science, Wairakei Research Centre, Private Bag 2000, Taupo 3352, New Zealand [email protected], [email protected], [email protected] 2Research School of Earth Science, The Australian National University, Canberra, Australia [email protected] 3Ministry of Research, Science and Technology, Wellington 6145, New Zealand [email protected] ABSTRACT resource utilisation, with a prioritisation list of Papua New Guinea, Vanuatu, Samoa, Tonga and Northern The nations and territories of the southwest Pacific Mariana Islands selected for detailed investigation, depend greatly on imported fossil fuels for electricity with recommendations for future pre-feasibility generation, and have interest in utilising their geoscientific exploration, risk evaluation (i.e. for renewable energy resources (including their untapped resource capacity, hazard and financial modelling), geothermal resources) for cost effective power and assessment for small (including “off-grid”) plant production and direct-use applications. As part of the development. (Fiji, New Caledonia and Solomon international Energy Development in Island Nations Islands were identified as having high-moderate (EDIN) programme, the New Zealand Ministry of potential, but were not considered for further study). Research, Science and Technology commissioned GNS Science in 2009 to review the geothermal activity, socio-economic climate and energy demand INTRODUCTION profile of 20 selected Pacific Island nations and Geothermal energy is an under exploited resource territories, with our findings detailed in this paper. -
Can Insurance Play a Role? Volcano Risk in Vanuatu: Can Insurance Play a Role? 2 Figure 1: Maps of Ambae Disaster Response, Phases 2 and 3
MAY 2018 Mount Yasur Volcano on Tanna Island in Vanuatu Credit: Kate Humble/Red Vanuatu Volcano Risk in Vanuatu Can Insurance Play a Role? Overview of Volcanic Risk in Vanuatu Vanuatu has 83 islands, most of which are volcanic. There are total of 16 volcanoes in Vanuatu, of which six are active and ten are dormant. Since the 1600s, the major recorded eruptions resulted in substantial changes to Vanuatu’s land formation and migration. This includes fatalities and permanent resettlements either within the island or to other islands. The most recent volcanic eruptions on record since 1995 are: Manaro Voui on Ambae in 2017, 2005 and 1995; Yasur volcano on Tanna in 2016 and 1998, Benbow and Marum on Ambrym Island and Gaua in 2010 and 2009. (See Table 1) Table 1: Recent volcanic eruptions in Vanuatu (1995 – 2017) Name of Name of Alert No. of People Year Government Response / Fiscal Impact / International Aid Island Volcano Level Affected (Est.) 1995 Ambae Manaro Voui 2 French aid for scientific assesment worth US$19,000 (VT 2,000,000) n/a Ban is placed on accessing areas surrounding the volcano; communities are evacuated 1998 Tanna Yasur 3 7,000 and is funding by the government and development partners 2001 Lopevi Lopevi 3 Government provides funds for scientific assessment - US$4,703 (VT 500,000) 200 Government funds scientific assessment and expenses to distribute humanitarian 2003 Lopevi Lopevi 3 500 relief - US$47,000 (VT 5,000,000) Government funds scientific assessment and humanitarian relief for 5,000 people - 2005 Ambae Manaro Voui 3 -
Observations of Collared Petrels (Pterodroma Brevipes) on Vanua Lava, Vanuatu, and a Review of the Species’ Breeding Distribution
39 Notornis, 2012, Vol. 59: 39-48 0029-4470 © The Ornithological Society of New Zealand, Inc. Observations of collared petrels (Pterodroma brevipes) on Vanua Lava, Vanuatu, and a review of the species’ breeding distribution ALAN J.D. TENNYSON* COLIN M. MISKELLY Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand STEPHEN L. TOTTERMAN 179 Reedy Creek Rd., Empire Vale, NSW, 2478, Australia Abstract We report a polymorphic population of collared petrels (Pterodroma brevipes) apparently breeding on Vanua Lava, northern Vanuatu, in the austral autumn-winter. This is one of only 5 known extant colonies of the species. One of the 2 birds captured by us matched the description of the recently described dark plumaged Pt. b. magnificens which had never been reported caught ashore previously. However, the other bird caught was a paler individual indicating that the taxon is variable in plumage colour, like other Pt. brevipes populations. We suggest that the 2 other criteria used to define the subspecies Pt. b. magnificens (body size and breeding chronology) are also questionable and require further investigation. Tennyson, A.J.D.; Miskelly, C.M.; Totterman, S.L. 2012. Observations of collared petrels Pterodroma( brevipes) on Vanua Lava, Vanuatu, and a review of the species’ breeding distribution. Notornis 59 (1&2): 39-48 Keywords Collared petrel; Pterodroma brevipes magnificens; Vanuatu; conservation; plumage colour INTRODUCTION Vanua Levu, although there seems to be no firm Known breeding distribution evidence of this (Watling 1986, 2001). Breeding is Collared petrels (Pterodroma brevipes (Peale, 1848)) suspected on Taveuni, Koro, Moala, Totoya and are a poorly known species with breeding reported Matuku (e.g., Watling 2001; BirdLife International from only a few widespread sites. -
VANUATU the Impact of Cyclone Pam
VANUATU The impact of Cyclone Pam Cyclone Pam – considered the worst natural disaster in the history of Vanuatu and the deadliest in the South Pacific since 2012 – made landfall on the 13th of March of 2015. The islands of Erromango, Tanna and Shepherd Islands which were directly on the path of the cyclone were among the most affected. Food Security Cluster Cyclone Pam impact maps & analysis Purpose of the assessment Purpose of the assessment The current report describes the impact of Acknowledgement Cyclone Pam throughout Vanuatu. Specifically, it reports on the cyclone’s impact WFP thanks the following for making and path to recovery in the areas of: available time and rapid field assessment reports on which this analysis is based: 1) Agriculture and livelihoods 2) Food needs NDMO 3) Housing UNDAC 4) Markets Women’s business and community 5) Health representatives of Port Vila. Peace Corps The report is designed to serve as a tool to Butterfly trust enable stakeholder/expert discussion and OCHA derive a common understanding on the ADF current situation. Food Security Cluster Samaritan’s Purse The report was compiled by: Siemon Hollema, Darryl Miller and Amy Chong (WFP) 1 Penama Cyclone Pam impact Sanma Cyclone Pam is the most powerful cyclone to ever hit the Southern Pacific. It formed near the Solomon Islands on the 6 March 2015 and traversed through Malampa several other island nations, including Solomon Islands, Kiribati and Tuvalu. On 13 March 2015, it strengthened to a Category 5 storm over the y-shaped chain of islands which make up Vanuatu. Vanuatu took multiple direct hits over 13 Mar 2015 the islands of Efate (where the capital Port Vila is 270km/h winds sustained situated), Erromango and Tanna Island. -
Erromango Moet, NDMO, UNICEF, WVI CARE, WVI SAM, UNFPA
Erromango MoET, NDMO, UNICEF, WVI CARE, WVI SAM, UNFPA CARE, SAM KYS Aniwa NDMO, UNICEF CARE CARE CARE, KYS, ProMed Tanna ABM, MoET, SAM, UNICEF, VRC, WVI Futuna VRC, ACT, CARE, NDMO, UNICEF Oxfam, SAM, CARE TearFund, SAL, WVI AC & NYC Medics, MoH FMMT, HUMA, MoH, CARE Rescue Net, SAM, UNFPA, WHO, WVI KYS VWC CARE, Caritas, SAM, SAL, VRC, WVI Aneityum ADRA, ADF, BT, NDMO, SAL, UNICEF CARE, IMC, KYS, L&L, CARE, NDMO, SAM, Oxfam, ProMed, SAM, SAL SC, SAL, VRC, WVI MoH CARE, SAM Legend KYS, SAM, SC, SAL, VRC Education Food Security & Agriculture Protection Shelter WASH Lamen KYS Epi MoET, NZAID, NZDF Tongoa Oxfam, SC, WFP NZDF, UNICEF MoH, SC ACT, Is raAID, SC, SC WFP SC AC & NYC Medics, MoH, SC, UNFPA DGMWR, KYS, SC SC SC, VRC DGMWR, IsraAID, VRC Buninga Emae UNICEF UNICEF NDMO, SC SC, WFP AME, MoH, DGMWR, AC & NYC Medics, KYS, SC, VRC, WB Dragonfly, MoH, NZMAT DGMWR, KYS, SC, SC VRC, WB DGMWR, IsraAID, SC, Tongariki VRC, WB UNICEF, WVI NDMO, SC AC & NYC Medics, MoH SC VRC Makira DGMWR, KYS, VRC, UNICEF WB Legend NDMO, SC Education Mataso AC & NYC Medics, MoH Food Security & Agriculture NZDF, UNICEF VRC Protection NDMO KYS, VRC, WB VRC Shelter DGMWR, KYS, VRC, WASH WB Nguna UNICEF NDMO, SC VRC KYS, ProMed, SC, Pele VRC UNICEF NDMO, SC Moso VRC KYS, ProMed, VRC UNICEF Emau NDMO, SC UNICEF VRC, WVI NDMO, SC KYS, SC, VRC VRC IsraAID, KYS, SC, VRC Lelepa NDMO, SC VRC Efate KYS CI, L&L, MoET, SAM, SC, SAL, UNICEF, VESP, WVI GIZ, NDMO, Oxfam, SC, WFP, WVI AUSMAT, HS Ltd, HUMA, MoH, MoH, ProMed, SC, UNFPA, WHO Port Villa VWC SAL, UNICEF, VRC, -
DISASTER RECOVERY Vanuatu Case Study
DISASTER RECOVERY Vanuatu case study http://www.realclimate.org/ Yachts in Port Vila harbour. Photo courtesy UNICEF Pacific A man escapes a dangerously high wave in Port Vila . Photo CARE Australia Homes damaged during Cyclone Pam. Photo AFP Homes flattened by TC Pam. Photo Dave Hunt-Pool/Getty Images Airforce personnel unload relief supplies. Photo Dave Hunt-Pool/Getty Images • Vanuatu considered to be the world’s most vulnerable country to natural hazards. (Due to a combination of Vanuatu’s exposure to both geophysical and hydro-meteorological hazards, and its limited financial and technical capacity to prepare for and respond to the associated risks). • Vanuatu located in the Pacific Ring of Fire and at the centre of the Pacific cyclone belt. (This results in a relatively high frequency of volcanic eruptions, cyclones, earthquakes, tsunamis, storm surges, coastal and river flooding, and landslides). • Vanuatu suffers from extreme events associated with climate variability, including sea-level and temperature extremes and droughts • Consequently, Vanuatu expected to incur, on average, US$48 million per year in losses due to earthquakes and tropical cyclones. (In the next 50 years, Vanuatu has a 50% chance of experiencing a loss exceeding US$330 million, and a 10% chance of experiencing a loss exceeding US$540 million). Source: Vanuatu Post-Disaster Needs Assessment March 2015 Disaster Risk profile of Vanuatu Between March 12 & 14, TC Pam struck Vanuatu as an extremely destructive Category 5 cyclone. Estimated wind speeds of 250km/h and wind gusts peaking at 320km/h. At approximately 11 p.m. local time on Friday March 13th, the centre of the cyclone passed east of Efate Island, which is home to the capital city of Port Vila, and then continued southward, passing just west of Erromango Island and Tanna Island. -
Tafea Province
1 PROVINCIAL INVESTMENT | TAFEA TAFEA PROVINCE 1 2 PROVINCIAL INVESTMENT | TAFEA THE VISION OF TAFEA PROVINCE “Decentralization policy is implemented, the people will enjoy the developments through the people’s requests” Tafea Province has a population of 37,050.TAFEA is one of the six provinces of Vanuatu. TAFEA is the southernmost province of Vanuatu. The name is an acronym for the five islands that make up the province Tanna, Aneityum (also Anatom), Futuna, Erromango and Aniwa. Tanna is where you can walk up the most accessible Live Volcano in the world. It is also Vanuatu’s third most developed Island. Tanna's economy is based primarily on Agriculture and Tourism. Tanna's main town is Lenakel although the administrative centre is nearby Isangel. Aneityum is a tropical Island paradise and is Vanuatu's southernmost inhabited island. The interior is mountainous and covered with wet, dark forest. Along the coast, pine plantations contrast with coconut palms, white sand beaches and second largest coral reef system in Vanuatu. Aneityum is a good island for walking, not too large and with a cooler climate. Mystery Island is all beaches and reefs and a popular cruise ship destination especially large Carnival Cruise line. Futuna is an Island in the Tafea Province. It is the easternmost Island in the country. It was formed by the uplift of an underwater volcano, which last erupted at least 11,000 years ago. It reaches a height of 666 m. It is sometimes called West Futuna to distinguish it from Futuna Island, Wallis and Futuna. It is a Polynesian outlier. -
3. Quaternary Vertical Tectonics of the Central New Hebrides Island Arc1
Collot, J.-Y., Greene, H. G., Stokking, L. B., et al., 1992 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 134 3. QUATERNARY VERTICAL TECTONICS OF THE CENTRAL NEW HEBRIDES ISLAND ARC1 Frederick W. Taylor2 ABSTRACT Hundreds of meters of uplift of both the frontal arc and backarc characterize the late Quaternary vertical tectonic history of the central New Hebrides Island Arc. This vertical deformation is directly related to large, shallow earthquakes on the interplate thrust zone postulated on the basis of coral emergence data. This chapter presents evidence from the best documented and illustrated examples of uplifted coral reefs from the central New Hebrides Island Arc for the pattern and rates of vertical deformation caused by subduction of the d'Entrecasteaux Zone and the West Torres Massif over the past few 100 k.y. The pattern of vertical movement based on upper Quaternary coral reef terraces documents that the islands of Espiritu Santo, Malakula, Pentecost, and Maewo have risen hundreds of meters during the late Quaternary. This history suggests that the present pattern and rates of vertical deformation should be extrapolated back to at least 1 Ma, which would indicate that the total amount of structural and morphological modification of the arc during the present phase of deformation is more significant than previously assumed. The morphology of the central New Hebrides Island Arc may have resembled a more typical arc-trench area only 1-2 Ma. If the late Quaternary patterns and rates of vertical deformation have affected the central New Hebrides Island Arc since 1-2 Ma, then virtually all of the anomalous morphology that characterizes the central New Hebrides Island Arc can be attributed to the subduction of the d'Entrecasteaux Zone and the West Torres Massif. -
Emergency Plan of Action Final Report Vanuatu: Ambrym Volcano & Earthquake
Emergency Plan of Action Final Report Vanuatu: Ambrym Volcano & Earthquake DREF operation Operation n° MDRVU007 Date of Issue: 31 August 2019 Glide number: VO-2018-000424-VUT Date of disaster: 15 December 2019 Operation start date: 27 December 2018 Operation end date: 27 April 2019 Host National Society: Vanuatu Red Cross Society Operation budget: CHF 126,456 Number of people affected: 2,170 people with 518 Number of people assisted: 1,508 (350 households) household across all 14 communities N° of National Societies involved in the operation: Vanuatu Red Cross Society N° of other partner organizations involved in the operation: The Government of the Republic of Vanuatu through the Vanuatu National Disaster Management Office (NDMO) and Malampa Provincial Government through Provincial Disaster Committee, Area council secretary and Village Chiefs and community Leaders. International Federation of Red Cross, International Committee of the Red Cross. A. SITUATION ANALYSIS Description of the disaster The Malampa province in the archipelago of Vanuatu has a volcanic island Ambrym consists of a population of approximately 7,286 people according to the census of 2016. The volcanic major unrest continued since January 2018 which caused the raise of alert level 3 by 15 December 2018 with minor eruption confirmed by the seismic data analysis of 16 – 17 December 2018. An ongoing emission of ash or/and gas column from eruptive vents from Benbow and Marum craters with earthquake in Southern part of Ambrym activated the Emergency Operations Centre (EOC) in Malampa province. Vanuatu Metrology & Geo-hazard Department (VMGD) issued a bulletin No. 11 on 18 December 2018 regarding the expected earthquakes in Ambrym and neighboring islands. -
C. Household Living (Dwelling) Conditions
C. HOUSEHOLD LIVING (DWELLING) CONDITIONS 53 Living conditions vary considerably across Vanuatu, based in part on access to infrastructure and utilities. Those living outside urban areas and towns tend to go without electricity and often lack piped water and sewage systems. On most islands, almost all households mainly rely on wood or coconut shell for cooking – even in Port Vila almost half of households still cook using these sources. In the more urbanized parts of the country, houses have concrete or wood floors. Many households in Vanuatu live in basic conditions. For instance, even though traditional materials appear to be widely used for housing across the country, only 17% of households report living in dwellings with walls made of makeshift or improvised materials. A generally low access to electricity in Vanuatu is an area of concern. At the national level, only 38% of households report having electricity (from main grid, solar, or own generator) as a main source of lighting. Outside of the key urban areas (Port Vila and Luganville), less than 20% of households have access to the main grid, and even that number may be driven by those households that live close to provincial centers. In fact, in most ACs, less than 2% of the population has access to the main grid. Solar power has become an important source of electricity, especially in more remote locations. In some ACs, up to 50% of households report reliance on solar power as the main source of lighting. The national average for this source is 6.3% (as of 2009). Only about 2% of the population relies on small petrol generators, which could be a reflection of high costs of fuel. -
The Mosquitoes of the Banks and Torres Island Groups of the South Pacific (Diptera: Culicidae)
Vol. 17, no. 4: 511-522 28 October 1977 THE MOSQUITOES OF THE BANKS AND TORRES ISLAND GROUPS OF THE SOUTH PACIFIC (DIPTERA: CULICIDAE) By Mario Maffi1 and Brian Taylor2 Abstract: In August 1971 a total of 1003 specimens of Culicidae were collected from 2 little known island groups ofthe New Hebrides, the Banks and the Torres, 637 (39 $$, 12 S$, 148 P, 13 p, 419 L, 6 1) and 366 (46 $$, 3 $<$, 73 P, 13 p, 231 L), respectively. Of 9 species of Culicidae previously recorded, 6 are confirmed. 3 species are added: Culex (Cux.) banksensis, Culex {Cux,) sitiens, Culex (Eum.) Jemineus. The distribution (considerably wider than previously recorded) and the bionomics of the species are presented. Located at the northern end of the territory of the New Hebrides Condominium, and administratively part of it, 2 island groups, the Banks and the Torres, rise from the New- Hebrides submarine ridge and are dispersed over a wide area of the Southwest Pacific: 13°04' to 14°28' S, and 166°30' to 168°04' E. The Banks, the southern ofthe 2 groups, are more scattered and consist of 2 major islands (Gaua, Vanua Lava) and 6 minor islands (Merelava, Merig, Mo ta, Motalava, Parapara, Ro wa) with a total land area of approx imately 750 km2. The Torres group is more compact and consists of 5 small islands (Toga, Loh, Tegua, Metoma, Hiu) with less than 100km2 ofland area. There are a few off-shore islets. Except for the reef island of Rowa, the islands are of volcanic origin; however, on some of the smaller islands, particularly in the Torres, there are terraces of coral limestone. -
The December 2018 Eruption of Ambrym Volcano: Constraints on the Magma Plumbing System Through the Joint Analysis of Ground Deformation and Degassing Data
Geophysical Research Abstracts Vol. 21, EGU2019-14902, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. The December 2018 eruption of Ambrym volcano: Constraints on the magma plumbing system through the joint analysis of ground deformation and degassing data Tara Shreve (1), Raphaël Grandin (1), Abhinna Behera (2), Marie Boichu (2), Yves Moussallam (3), Francisco Delgado (1), Nial Peters (4), Talfan Barnie (5), and Esline Garaebiti (6) (1) Laboratoire de Tectonique et Mécanique de la Lithosphère, Institut de Physique du Globe de Paris, Paris, France ([email protected]), (2) Laboratoire d’Optique Atmosphérique, Université Lille 1, Lille, France ([email protected]), (3) Laboratoire Magmas et Volcans, Observatoire de Physique du Globe de Clermont-Ferrand, Clermont-Ferrand, France ([email protected]) , (4) Department of Geography, University of Cambridge, Cambridge, UK ([email protected]), (5) Icelandic Meteorological Office, Reykjavík, Iceland ([email protected]), (6) Vanuatu Meteorology and Geo-Hazards Department, Port Vila, Vanuatu ([email protected]) In the past 30 years, magmatic activity at the basaltic volcano of Ambrym (Vanuatu), which hosts a notable 12-km- diameter caldera, has been characterized by strombolian activity restricted to the two (or more) semi-permanent lava lakes. Little is known about the magma plumbing system of this volcano, due to its remote location (lack of instrumentation) and its persistent background activity (which does not provide insights into deeper magmatic processes). In the past 4 years, however, two effusive intra-caldera eruptions have allowed us to exploit ground deformation (InSAR) and degassing (satellite-based hyperspectral measurements) data.