Object Index

Total Page:16

File Type:pdf, Size:1020Kb

Object Index Cambridge University Press 978-0-521-79134-2 - From Luminous Hot Stars to Starburst Galaxies Peter S. Conti, Paul A. Crowther and Claus Leitherer Index More information Object index 2S 0114 + 065, 141 Circinus (ESO 097–G 013), 263 4U 1700–37 (HD 153919), 140, 141 Crab Pulsar (PSR B0521 + 21), 116 4U 1907 + 097, 141 CXO J164710.2-455216, 126, 142 9 Sgr (HD 188001), 37 Cyg X-1, 141 10 Lac (HD 214680), 51, 52 Cyg X-3, 143–146 30 Doradus, see LMC Deneb (α Cyg, HD 197345), 25 α Cam (HD 30614), 63, 139 β Cep (HD 205021), 97 G5.89–0.39, 158 γ Vel (HD 68273, WR11), 18, 32, 62, 65, 132, 147, G10.30–0.15, 161 149, 151 G29.96–0.02, 157–160 ζ Oph (HD 149757), 19 G49.49–0.37 (W51A), 157 ζ Ori (HD 37742), 48 G70.29 + 1.60 (K3–50A), 163 ζ Pup (HD 66811), 18, 19, 56, 63, 83, 91–93, 139 G75.78 + 0.34, 156, 158 ζ 1 Sco (HD 152236), 64 GG Car (HD 94878), 29 η Car, see Carina nebula GRB 970228, 287 θ1 Ori C, see Orion nebula GRB 050509B, 293 µ Cep (HD 206936), 27, 29 GRB 050709, 293 ρ Cas (HD 224014), 27, 29 GRB 050904, 293 ρ Oph cluster, 165 GRB 060614, 291 τ Sco (HD 149438), 19, 46 GRO J1655–40, 139, 140 ω Cen, 248 Gum nebula, 184 GX 301–2, 140, 141 AF star, 44 AG Car (HD 94910), 25–27, 59, 64, 192, 193 Haro 11 (ESO 350–IG 038), 227, 228 Antares (α Sco, HD 148478), 29 HD 16523 (WR4), 66 Antennae galaxies (NGC4038/9), 167, 175, 176, 179 HD 45677, 28 Arches cluster, 166, 174, 175, 247 HD 50896 (WR6), 48, 75 HD 64760, 90 ◦ BD + 40 4220, 130 HD 93129A, see Carina nebula Betelgeuse (α Ori, HD 39801), 29, 58–61 HD 96548 (WR40), 56 Bubble nebula (NGC 7635), 191–192 HD 152408, 44 ◦ BD + 60 2522, 191–192 HD 160529, 27 HD 164270 (WR103), 56, 57, 66 Carina nebula (NGC 3372), 170, 198, 199 HD 165763 (WR111), 31, 87 η Car (HD 93308), 6, 26, 28, 58, 192, 193 HD 168625, 193 Collinder 228, 129 HD 188001 (9 Sgr), 37 HD 92740 (WR22), 132 HD 191765 (WR134), 41, 42, 97 HD 93129A, 37, 130 HD 192103 (WR135), 41, 97 HD 93131 (WR24), 42 HD 192163, see NGC 6888 Homunculus, 26, 192 HD 192641 (WR137), 41 Trumpler 14, 129, 170, 174, 232–233 HD 193793 (WR140), 149, 152 Trumpler 16, 129, 170, 174, 232–233 HDE 316285, 28 Cen X-3, 141 HE 0107–5240, 269, 270 311 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-79134-2 - From Luminous Hot Stars to Starburst Galaxies Peter S. Conti, Paul A. Crowther and Claus Leitherer Index More information 312 Object index HE 1327–2326, 269, 270 M82F, 176, 178 He 2-10 (ESO 495-G 021), 224, 225 M82 MGG-11, 177 He 3-519, 78, 193 M83 (NGC 5236), 33, 245, 246 Homunculus, see Carina nebula M101 (NGC 5457) HR Car (HD 90177), 25–27, 193 NGC 5455, 199 HR 8752 (HD 217476), 29 NGC 5461, 199 NGC 5471, 199 IC 10, 22, 33 M1-67, 195, 196 IC 10 X-1, 143 WR124 (BAC 209), 196 IC 1613, 22 Melnick 42, see LMC IC 1805, 129 Milky Way, 4, 11, 12, 22 IC 2944, 129 MS 1512-cB58, 253, 275–278, 280–283 IRC + 10420, 27, 29 I Zw 18, 113, 114, 219, 220, 236, 239 NGC 253, 251, 252, 263 NGC 300, 25, 33, 62 Large Magellanic Cloud (LMC), 22, 23, 33, 181, 182, NGC 300 X-1, 143 201, 202 NGC 604, see M33 30 Doradus (NGC 2070, Tarantula nebula), 13, 24, NGC 1068, 257, 263 185, 197, 199, 200–208, 210, 219, 235, 239, NGC 1313, 33 263 NGC 1569, 236, 237 HD 32125 (BAT99-9), 65 NGC 1569–A, 176, 207 HDE 269698, 52, 53 NGC 1705, 226, 227, 253, 254 Hen S134, 28 NGC 1705–1, 176, 207, 226 Hodge 301, 203 NGC 1741, 224–226, 236, 239, 260 LMC X–1, 141 NGC 1741–B1, 207, 226 LMC X–4, 141 NGC 1818, 107 Melnick 42 (BAT99-105), 42, 44 NGC 2244, 129 R71 (HDE 269006), 27 NGC 2264, 165 R110 (HDE 269662), 27 NGC 2366, 208, 209 R127 (HDE 269858), 25–27, 45, 64, 193 NGC 2363-V1, 58 R136 (HD 38268), 24, 131, 165, 174, 176, 202–207, NGC 2366A, 199 235, 236, 240 NGC 2403 R143 (HDE 269929), 27 NGC 2403A, 199 S119 (HDE 269687), 143 SN 1954J, 28 S Dor (HD 35343), 25–26 NGC 3049, 246 ◦ Sk-69 202, 120, 136, 137 NGC 3125, 211 SN 1987A, 27, 120–122, 125, 136–138 NGC 3603, 24, 170, 174, 175, 198, 199, 244, 245 Sher 25, 138 M13 (NGC 6205), 248 NGC 3621, 62 M16 (NGC 6611, Eagle nebula), 129, 165, 170 NGC 4214, 208, 209, 227 M17 (NGC 6618, Omega nebula), 171, 173 NGC 4214-1, 207 M31 (NGC 224, Andromeda), 22, 33 NGC 4569, 261 M31A, B, C, 199 NGC 5253, 236–239 M33 (NGC 598, Triangulum), 22, 33, 178 NGC 6181, 214, 215 NGC 592, 199 NGC 6231, 129 NGC 595, 199 NGC 6822, 22, 33 NGC 604, 197–200, 208, 219 NGC 6822A, B, C,199 M51 (NGC 5194, Whirlpool) 178 NGC 6888 (Crescent nebula), 194, 195 SN 1994I, 125 HD 192163 (WR136), 194, 195 M74 (NGC 628) NGC 7130, 260 SN 2002ap, 123 NGC 7714, 208, 229–231, 244 SN 2003gd, 122–123 M81 (NGC 3031) Orion nebula (M42, NGC 1976), 24, 184–186, M81A, 199 208 M82 (NGC 3034), 230, 231, 236, 237, 251, 252, 257, θ1 Ori C (HD 37022), 24, 48, 184 263 Orion nebula cluster (ONC, Trapezium cluster), 10, M82A, B, 199 13, 165, 170, 175, 179 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-79134-2 - From Luminous Hot Stars to Starburst Galaxies Peter S. Conti, Paul A. Crowther and Claus Leitherer Index More information Object index 313 P Cygni (HD 193237), 28, 76, 81, 110, 193 SN 1954J, see NGC 2403 Pegasus, 22 SN 1987A, see LMC Phoenix, 22 SN 1994I, see M51 Pinwheel nebulae, 152, 153, 176 SN 1994W, 125 WR104 (Ve 2-45), 150–153, 196 SN 1998bw ( = GRB 980425), 119, 125, 127, Pistol star, 26, 58, 176 288, 289 PSR J0537-6910, 116 SN 1998dh, 125 PSR B0540-690, 116 SN 1999em, 125 PSR B1509-58, 116 SN 2002ap, see M74 PSR 1916 + 13, 143 SN 2002ic, 125 SN 2003dh ( = GRB 030329), 119, 127, 289 Q1307–BM1163, 282, 283 SN 2003gd, see M74 Quintuplet cluster, 175, 176, 247 SN 2005gj, 125 SN 2006aj ( = XRF 060218), 290 R136, see LMC SN 2006gy, 124, 125 Rigel (β Ori, HD 34085), 25 SN 2008D, 119 RX J185635–3754, 125 Tau-Aur cluster, 165 S119, see LMC Trapezium cluster, see Orion S Dor, see LMC SBS 0335–052, 113, 219 V444 Cyg (HD 193576), 94, 148 SGR 0526–66, 125 Vel X-1 ( = HD 77581), 140, 141, 143 SGR 1806–20, 125, 126, 142, 293 VX Sgr (HD 165674), 27 SGR 1900 + 14, 125, 142 VY CMa (HD 58061), 27 Sher 25, see NGC 3603 Small Magellanic Cloud (SMC, NGC 292), 22, 23, 33, W31 (G10.2–0.3), 171, 172 178, 181, 182 W43 (G30.8–0.2), 171, 174, 175 HD 5980 (AB5), 58 W49, 171, 172, 198, 199 Hen S65, 28 WR20a, see Westerlund 2 N19, 199 WR104, see Pinwheel nebulae NGC 330, 112 WR147 (StRS 378), 149–151 NGC 346 (N66), 21, 60, 199 Westerlund 1, 29, 30, 126, 176 R4, 29 Westerlund 2 R40 (HD 6884), 27 WR20a (SMSP2), 132 SMC X–1, 141 WLM, 22 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-79134-2 - From Luminous Hot Stars to Starburst Galaxies Peter S. Conti, Paul A. Crowther and Claus Leitherer Index More information Subject index abundances, 5, 62–64, 283–289 luminosity active galactic nuclei, 257–268 stellar, 18, 53, 54, 57–59, 74 atmospheres luminous blue variables, 6, 25–28 LTE, 49, 50 non-LTE, 50–59 magnetar, 143 magnetic fields, 47, 48, 116, 127 B[e] supergiants, 28, 29 magnitudes, absolute, 17, 18, 20, Be stars, 28, 38, 47, 98, 141 74, 119 binaries mass high mass X-ray, 140–144 stellar, 62, 131–133, 164, 166 interacting, 134, 135, 137–140 mass-loss rates, 58, 74, 81, 84–86 statistics, 130, 131 clumping, 93–96 blue supergiants, 21, 24, 25, 35–38, 40 IR/radio, 81, 83 bolometric correction, 18, 19, 61 optical, 82–84 bubbles (wind blown), 188–190, 192 UV, 89, 90, 93 convection, 105, 106 Population III stars, 15, 242, 269, 270, distances, 19–21 272–275 dust, extinction, 181–185 pulsar, 125, 127, 141–143, 146 dust formation pulsation, 26, 90, 92, 98, 106 supernovae, 122, 123 W-R stars, 150–154 radiation pressure, 2, 68 red supergiants, 29, 30, 58, 59, 61, 90 Eddington limit, 58, 69, 88, 96 runaways, 140 galaxies star clusters, 11, 166–168, 171–180, HII, 221–229 209, 235 Lyman-break, 15, 16, 275–283 superbubbles, 252 starburst, 231–233, 239, 243–251, 275, 279, supernovae, 117–121, 192, 220, 281, 282, 281 290, 291, 294, 297 ultraluminous infrared, 268 electron capture, 108 gamma ray bursts, 16, 128, 146, 147, 289–297 pair-production, 124, 125, 128, 274 gravity progenitors, 123, 124 flux weighted, 62 superwinds, 252–255, 257 surface, 61, 62, 69 HII regions, 157, 185–187, 201, 210 temperature, effective, 2, 18, 54, 56, 57, 61, 69, giant, 199–210 86, 87 ultracompact, 156–164 H-R diagram, 1, 2 velocity escape, 72, 76 initial mass function, 11, 164–166, 233, 234, 236–239, rotation, 45, 96–99, 112, 294 241–243 terminal wind, 38, 72, 74–77, 81 314 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-79134-2 - From Luminous Hot Stars to Starburst Galaxies Peter S.
Recommended publications
  • Arxiv:1612.03165V3 [Astro-Ph.HE] 12 Sep 2017 – 2 –
    The second catalog of flaring gamma-ray sources from the Fermi All-sky Variability Analysis S. Abdollahi1, M. Ackermann2, M. Ajello3;4, A. Albert5, L. Baldini6, J. Ballet7, G. Barbiellini8;9, D. Bastieri10;11, J. Becerra Gonzalez12;13, R. Bellazzini14, E. Bissaldi15, R. D. Blandford16, E. D. Bloom16, R. Bonino17;18, E. Bottacini16, J. Bregeon19, P. Bruel20, R. Buehler2;21, S. Buson12;22, R. A. Cameron16, M. Caragiulo23;15, P. A. Caraveo24, E. Cavazzuti25, C. Cecchi26;27, A. Chekhtman28, C. C. Cheung29, G. Chiaro11, S. Ciprini25;26, J. Conrad30;31;32, D. Costantin11, F. Costanza15, S. Cutini25;26, F. D'Ammando33;34, F. de Palma15;35, A. Desai3, R. Desiante17;36, S. W. Digel16, N. Di Lalla6, M. Di Mauro16, L. Di Venere23;15, B. Donaggio10, P. S. Drell16, C. Favuzzi23;15, S. J. Fegan20, E. C. Ferrara12, W. B. Focke16, A. Franckowiak2, Y. Fukazawa1, S. Funk37, P. Fusco23;15, F. Gargano15, D. Gasparrini25;26, N. Giglietto23;15, M. Giomi2;59, F. Giordano23;15, M. Giroletti33, T. Glanzman16, D. Green13;12, I. A. Grenier7, J. E. Grove29, L. Guillemot38;39, S. Guiriec12;22, E. Hays12, D. Horan20, T. Jogler40, G. J´ohannesson41, A. S. Johnson16, D. Kocevski12;42, M. Kuss14, G. La Mura11, S. Larsson43;31, L. Latronico17, J. Li44, F. Longo8;9, F. Loparco23;15, M. N. Lovellette29, P. Lubrano26, J. D. Magill13, S. Maldera17, A. Manfreda6, M. Mayer2, M. N. Mazziotta15, P. F. Michelson16, W. Mitthumsiri45, T. Mizuno46, M. E. Monzani16, A. Morselli47, I. V. Moskalenko16, M. Negro17;18, E. Nuss19, T. Ohsugi46, N. Omodei16, M. Orienti33, E.
    [Show full text]
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • The Rotationally Modulated Polarization of Ξ Boo A
    MNRAS 000,1–8 (2018) Preprint 12 February 2019 Compiled using MNRAS LATEX style file v3.0 The Rotationally Modulated Polarization of ξ Boo A Daniel V. Cotton1;2?, Dag Evensberget3, Stephen C. Marsden3, Jeremy Bailey1;2, Jinglin Zhao1, Lucyna Kedziora-Chudczer1;2, Bradley D. Carter3, Kimberly Bott4;5, Aline A. Vidotto6, Pascal Petit7;8, Julien Morin9 and Sandra V. Jeffers10. 1School of Physics, UNSW Sydney, NSW 2052, Australia. 2Australian Centre for Astrobiology, UNSW Sydney, NSW 2052, Australia. 3University of Southern Queensland, Centre for Astrophysics, Springfield, Qld. 4300/Toowoomba, Qld. 4350, Australia. 4University of Washington Astronomy Department, Box 351580, UW Seattle, WA 98195, USA. 5NExSS Virtual Planetary Laboratory, Box 351580, UW Seattle, WA 98195, USA. 6School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland. 7Université de Toulouse, UPS-OMP, IRAP, Toulouse, France. 8CNRS, Institut de Recherche en Astrophysique et Planetologie, 14, avenue Edouard Belin, F-31400 Toulouse, France. 9LUPM-UMR 5299, CNRS & Université Montpellier, place Eugène Bataillon, 34095 Montpellier Cedex 05, France. 10Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, 37077, Goettingen, Germany. Accepted . Received ; in original form ABSTRACT We have observed the active star ξ Boo A (HD 131156A) with high precision broad- band linear polarimetry contemporaneously with circular spectropolarimetry. We find both signals are modulated by the 6.43 day rotation period of ξ Boo A. The signals from the two techniques are 0.25 out of phase, consistent with the broadband linear po- larization resulting from differential saturation of spectral lines in the global transverse magnetic field. The mean magnitude of the linear polarization signal is ∼4 ppm/G but its structure is complex and the amplitude of the variations suppressed relative to the longitudinal magnetic field.
    [Show full text]
  • Metallicity Relation in the Magellanic Clouds Clusters,,
    A&A 554, A16 (2013) Astronomy DOI: 10.1051/0004-6361/201220926 & c ESO 2013 Astrophysics Age – metallicity relation in the Magellanic Clouds clusters,, E. Livanou1, A. Dapergolas2,M.Kontizas1,B.Nordström3, E. Kontizas2,J.Andersen3,5, B. Dirsch4, and A. Karampelas1 1 Section of Astrophysics Astronomy & Mechanics, Department of Physics, University of Athens, 15783 Athens, Greece e-mail: [email protected] 2 Institute of Astronomy and Astrophysics, National Observatory of Athens, PO Box 20048, 11810 Athens, Greece 3 Niels Bohr Institute Copenhagen University, Astronomical Observatory, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 4 Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, B1900 FWA La Plata Buenos Aires, Argentina 5 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain Received 14 December 2012 / Accepted 2 March 2013 ABSTRACT Aims. We study small open star clusters, using Strömgren photometry to investigate a possible dependence between age and metallicity in the Magellanic Clouds (MCs). Our goals are to trace evidence of an age metallicity relation (AMR) and correlate it with the mutual interactions of the two MCs and to correlate the AMR with the spatial distribution of the clusters. In the Large Magellanic Cloud (LMC), the majority of the selected clusters are young (up to 1 Gyr), and we search for an AMR at this epoch, which has not been much studied. Methods. We report results for 15 LMC and 8 Small Magellanic Cloud (SMC) clusters, scattered all over the area of these galaxies, to cover a wide spatial distribution and metallicity range. The selected LMC clusters were observed with the 1.54 m Danish Telescope in Chile, using the Danish Faint Object Spectrograph and Camera (DFOSC) with a single 2k × 2k CCD.
    [Show full text]
  • Rosette Nebula and Monoceros Loop
    Oshkosh Scholar Page 43 Studying Complex Star-Forming Fields: Rosette Nebula and Monoceros Loop Chris Hathaway and Anthony Kuchera, co-authors Dr. Nadia Kaltcheva, Physics and Astronomy, faculty adviser Christopher Hathaway obtained a B.S. in physics in 2007 and is currently pursuing his masters in physics education at UW Oshkosh. He collaborated with Dr. Nadia Kaltcheva on his senior research project and presented their findings at theAmerican Astronomical Society meeting (2008), the Celebration of Scholarship at UW Oshkosh (2009), and the National Conference on Undergraduate Research in La Crosse, Wisconsin (2009). Anthony Kuchera graduated from UW Oshkosh in May 2008 with a B.S. in physics. He collaborated with Dr. Kaltcheva from fall 2006 through graduation. He presented his astronomy-related research at Posters in the Rotunda (2007 and 2008), the Wisconsin Space Conference (2007), the UW System Symposium for Undergraduate Research and Creative Activity (2007 and 2008), and the American Astronomical Society’s 211th meeting (2008). In December 2009 he earned an M.S. in physics from Florida State University where he is currently working toward a Ph.D. in experimental nuclear physics. Dr. Nadia Kaltcheva is a professor of physics and astronomy. She received her Ph.D. from the University of Sofia in Bulgaria. She joined the UW Oshkosh Physics and Astronomy Department in 2001. Her research interests are in the field of stellar photometry and its application to the study of Galactic star-forming fields and the spiral structure of the Milky Way. Abstract An investigation that presents a new analysis of the structure of the Northern Monoceros field was recently completed at the Department of Physics andAstronomy at UW Oshkosh.
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • Spatial and Kinematic Structure of Monoceros Star-Forming Region
    MNRAS 476, 3160–3168 (2018) doi:10.1093/mnras/sty447 Advance Access publication 2018 February 22 Spatial and kinematic structure of Monoceros star-forming region M. T. Costado1‹ and E. J. Alfaro2 1Departamento de Didactica,´ Universidad de Cadiz,´ E-11519 Puerto Real, Cadiz,´ Spain. Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/3160/4898067 by Universidad de Granada - Biblioteca user on 13 April 2020 2Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apdo 3004, E-18080 Granada, Spain Accepted 2018 February 9. Received 2018 February 8; in original form 2017 December 14 ABSTRACT The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively. Key words: techniques: radial velocities – astronomical data bases: miscellaneous – parallaxes – stars: formation – stars: kinematics and dynamics – open clusters and associations: general. Hoogerwerf & De Bruijne 1999;Lee&Chen2005; Lombardi, 1 INTRODUCTION Alves & Lada 2011).
    [Show full text]
  • 1 NASA Goddard Space Flight Center
    Source of Acquisition 1 NASA Goddard Space Flight Center \> SN 1987A AFTER 18 YEARS: MID-INFRARED GEMINI and SPITZER OBSERVATIONS OF THE REMNANT Patrice Bouchet1,2, Eli Dwek3, John Danziger4, Richard G. Arendt 5, I. James M. De Buizer', Sangwook Park7, Nicholas B. SuntzefF2, Robert P. Kirshners, and Peter Challis ABSTRACT We present high resolution 11.7 and 18.3 pm mid-IR images of SN 1987A obtained on day 6526 since the explosion with the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope. The 11.7 pm flux has increased significantly since our last observations on day 6067. The images clearly show that all the emission arises from the equatorial ring (ER). Nearly contemporaneous spectra obtained on day 6184 with the MIPS at 24 pm, on day 6130 with the IRAC in 3.6- 8 pm region, and on day 6190 with the IRS in the 12-37 ,urn instruments on board the Spitzer Space Telescope's show that the emission consists of thermal emission from silicate dust that condensed out in the red giant wind of the progenitor star. The dust temperature is 1662:; K, and the emitting dust mass is (2.6:;;:) x MB.Lines of [Ne 111 12.82 pm and [Ne 1111 15.56 pm are clearly present in the Spitzer spectrum, as well as a weak [Si 113 34.8 pm line. We also detect two lines near 26 pm which we tentatively ascribe to [Fe 117 25.99 pm and [0 IV] 25.91 pm. Comparison of the mid-IR Gemini 11.7 pm image with X-ray images obtained by Chandra, UV- optical images obtained by HST, and radio synchrotron images obtained by the ATCA show generally good correlation of the images across all wavelengths.
    [Show full text]
  • RATIOS and STAR FORMATION EFFICIENCIES in SUPERGIANT H Ii REGIONS
    The Astrophysical Journal, 788:167 (7pp), 2014 June 20 doi:10.1088/0004-637X/788/2/167 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ENHANCEMENT OF CO(3–2)/CO(1–0) RATIOS AND STAR FORMATION EFFICIENCIES IN SUPERGIANT H ii REGIONS Rie E. Miura1,2, Kotaro Kohno3,4, Tomoka Tosaki5, Daniel Espada1,6,7, Akihiko Hirota8, Shinya Komugi1, Sachiko K. Okumura9, Nario Kuno7,8, Kazuyuki Muraoka10, Sachiko Onodera10, Kouichiro Nakanishi1,6,7, Tsuyoshi Sawada1,6, Hiroyuki Kaneko11, Tetsuhiro Minamidani8, Kosuke Fujii1,2, and Ryohei Kawabe1,6 1 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan; [email protected] 2 Department of Astronomy, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 133-0033, Japan 3 Institute of Astronomy, School of Science, The University of Tokyo, Osawa, Mitaka, Tokyo 181-0015, Japan 4 Research Center for Early Universe, School of Science, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan 5 Joetsu University of Education, Yamayashiki-machi, Joetsu, Niigata 943-8512, Japan 6 Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura 763-0355, Santiago, Chile 7 Department of Astronomical Science, The Graduate University for Advanced Studies (Sokendai), 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan 8 Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1805, Japan 9 Department of Mathematical and Physical Sciences, Faculty of Science, Japan Woman’s University, Mejirodai 2-8-1, Bunkyo, Tokyo 112-8681, Japan 10 Osaka Prefecture University,
    [Show full text]
  • From Luminous Hot Stars to Starburst Galaxies
    9780521791342pre CUP/CONT July 9, 2008 11:48 Page-i FROM LUMINOUS HOT STARS TO STARBURST GALAXIES Luminous hot stars represent the extreme upper mass end of normal stellar evolution. Before exploding as supernovae, they live out their lives of only a few million years with prodigious outputs of radiation and stellar winds which dramatically affect both their evolution and environments. A detailed introduction to the topic, this book connects the astrophysics of mas- sive stars with the extremes of galaxy evolution represented by starburst phenomena. A thorough discussion of the physical and wind parameters of massive stars is pre- sented, together with considerations of their birth, evolution, and death. Hll galaxies, their connection to starburst galaxies, and the contribution of starburst phenomena to galaxy evolution through superwinds, are explored. The book concludes with the wider cosmological implications, including Population III stars, Lyman break galaxies, and gamma-ray bursts, for each of which massive stars are believed to play a crucial role. This book is ideal for graduate students and researchers in astrophysics who are interested in massive stars and their role in the evolution of galaxies. Peter S. Conti is an Emeritus Professor at the Joint Institute for Laboratory Astro- physics (JILA) and theAstrophysics and Planetary Sciences Department at the University of Colorado. Paul A. Crowther is a Professor of Astrophysics in the Department of Physics and Astronomy at the University of Sheffield. Claus Leitherer is an Astronomer with the Space Telescope Science Institute, Baltimore. 9780521791342pre CUP/CONT July 9, 2008 11:48 Page-ii Cambridge Astrophysics Series Series editors: Andrew King, Douglas Lin, Stephen Maran, Jim Pringle and Martin Ward Titles available in the series 10.
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]
  • The Hubble Tarantula Treasury Project
    Mem. S.A.It. Vol. 89, 95 c SAIt 2018 Memorie della The Hubble Tarantula Treasury Project E. Sabbi and the HTTP Team Space Telescope Science Institute – 3700 San Martin Dr. 21218, Baltimore, MD USA e-mail: [email protected] Abstract. We present results from the Hubble Tarantula Treasury Project (HTTP), a Hubble Space Telescope panchromatic survey (from the near UV to the near IR) of the entire 30 Doradus region down to the sub-solar (∼ 0:5 M ) mass regime. The survey was done using the Wide Field Camera 3 and the Advanced Camera for Surveys in parallel. HTTP provides the first rich and statistically significant sample of intermediate- and low-mass pre-main se- quence candidates and allows us to trace how star formation has been developing through the region. We used synthetic color-magnitude diagrams (CMDs) to infer the star formation his- tory of the main clusters in the Tarantula Nebula, while the analysis of the pre-main sequence spatial distribution highlights the dual role of stellar feedback in quenching and triggering star formation on the giant Hii region scale. Key words. galaxies: star clusters: individual (30 Doradus, NGC2070, NGC2060, Hodge 301) – Magellanic Clouds – stars: formation – stars: massive – stars: pre-main sequence stars: evo- lution - stars: massive - stars: pre-main sequence 1. Introduction 1:3 × 10−8 erg cm−2 s−1, Kennicutt & Hodge 1986). Located in the Large Magellanic Cloud The Tarantula Nebula (also known as 30 (LMC), 30 Dor is the closest extragalactic gi- Doradus, hereafter ”30 Dor”) is one of the ant Hii region, and is comparable in size (∼ most famous objects in astronomy.
    [Show full text]