IRF4 Provides Rations for Cytotoxic CD8+ T Cell Soldiers

Total Page:16

File Type:pdf, Size:1020Kb

IRF4 Provides Rations for Cytotoxic CD8+ T Cell Soldiers View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity Previews IRF4 Provides Rations for Cytotoxic CD8+ T Cell Soldiers Magdalena Huber1 and Michael Lohoff1,* 1Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, 35043 Marburg, Germany *Correspondence: [email protected] http://dx.doi.org/10.1016/j.immuni.2013.10.008 The transcription factor IRF4 is known to be essential for differentiation of effector CD4+ T cell subsets. In this issue, Yao et al. (2013) identify IRF4 as a regulator of checkpoints in the final steps and maintenance of CD8+ T cell effector differentiation. The transcription factor IRF4 belongs to beyond normal text book knowledge and this correlated with elevated activity the family of interferon regulatory factors became obvious, because IRF4-sufficient of mTOR; conversely, inhibition of the (IRFs) consisting of nine members in Tc17 cells provided ‘‘reverse help’’ via mTOR pathway caused downregulation mice and humans that play important roles cell-associated IL-17A to CD4+ T cells for of IRF4. Because IRF4 expression has in the regulation of innate and adaptive im- Th17-cell-mediated encephalomyelitis. been shown to depend on interleukin-2 mune responses as well as in oncogenesis Three parallel papers from Yao et al. (IL-2)-inducible T cell kinase (ITK), the au- (Biswas et al., 2010). IRF4 has long been (2013) (in this issue of Immunity), our thors used inhibitors for both ITK and known to be essential for differentiation own group (Raczkowski et al., 2013), mTOR and demonstrated that these two of the effector CD4+ T helper cell subsets and the group of Kallies (Man et al., signaling pathways seemed to cooperate Th2, Th9, Th17, and Tfh (Biswas et al., 2013) now describe that IRF4 is also for IRF4 induction. The relevance of IRF4 2010; Bollig et al., 2012; Bru¨ stle et al., crucial for the sustained expansion and for CD8+ T cell function was studied in 2007; Staudt et al., 2010). This IRF4 effector function of cytotoxic CD8+ mice with conditional deletion of IRF4 in dependence is reflected by the total resis- T lymphocytes. It is current knowledge CD8+ T cells. The genetic ablation strategy tance of IRF4-deficient mice to diseases in that upon infection with intracellular caused IRF4 deletion mostly in mature which these cells are pathogenic such as pathogens, specific CD8+ T cells become CD8+ T cells and had no relevant influence allergic asthma, experimental allergic activated in peripheral lymphatic organs, on CD4+ T cells. In this system, IRF4 encephalomyelitis (EAE), and inflamma- proliferate, and differentiate into CTLs. expression in CD8+ T cells was important tory bowel disease. Along these lines, it Upon antigen encounter in peripheral tis- for clearance of influenza infection as has been shown that IRF4 cooperates sue, these effector CD8+ T cells produce well as for recovery from disease. As with BATF-JUN transcription factor heter- inflammatory cytokines and are endowed compared to WT counterparts, IRF4-defi- odimers for binding to AP-1-IRF4 com- with the property to kill infected cells. cient CTLs proliferated less, were more posite elements (AICE), as reviewed in After resolution of infection, the bulk of prone to apoptosis, and produced fewer detail in Murphy et al. (2013). Upon bind- CTLs dies; however, a small fraction effector molecules crucial for viral clear- ing, chromatin modifications occur that persists as long-lived memory cells that ance such as Granzyme B and inter- allow in a second step the access of the respond with strong proliferation and feron-g (IFN-g). Complementary to these Th17-cell-specific transcription factor rapid reconversion into effectors upon data, our group has shown in another in- RORgt. Possibly, similar modifications re-exposure to the cognate pathogen. fectious model that IRF4-deficient mice also permit binding of other subset- The phenotypic and functional changes cannot clear the intracellular bacterial specific transcription factors like GATA-3 toward effector and memory differentia- pathogen Listeria monocytogenes, also in the respective Th cell subsets. tion are regulated by gradual expression because of intrinsic defects in CD8+ Earlier this year, it was described that of several transcription factors. Whereas T cell expansion and effector function IRF4 is also required for the development Bcl6, Eomes, Id3, and TCF1 are associ- (Raczkowski et al., 2013). Lack of main- of IL-17-producing CD8+ T (Tc17) cells ated with memory cell differentiation and tained CD8+ T cell effector function in the (Huber et al., 2013). In this context, longevity of cells, T-bet, Id2, and Blimp-1 absence of IRF4 is also demonstrated in IRF4 regulated Tc17 differentiation by promote effector cell development (Kaech the third mentioned study (Man et al., increasing the amounts of transcription and Cui, 2012). 2013). factors crucial for type 17 helper cell By using low- and high-affinity peptides, To gain mechanistic insights into how differentiation (RORgt and RORa)on Yao et al. (2013) elegantly demonstrate IRF4 regulates antiviral CD8+ T cell one hand and by decreasing transcription that IRF4 expression in CD8+ T cells criti- immune responses, Yao et al. (2013) factors regulating alternative fates, like cally depended on the strength of the cocultured CD8+ T cells and dendritic cells regulatory T (Treg)-cell-specific Foxp3 T cell receptor (TCR)-ligand interaction in vitro. Similar to us, they found that early and cytotoxic T lymphocyte (CTL)-spe- and on mammalian target of rapamycin after activation, IRF4-deficient CD8+ cific eomesodermin (Eomes), on the other. (mTOR) activity. Thus, strong TCR T cells expanded and displayed normal Importantly, a function of CD8+ T cells signaling induced high IRF4 expression expression of the activation markers Immunity 39, November 14, 2013 ª2013 Elsevier Inc. 797 Immunity Previews Yao et al. (2013). When comparing the Nonproductively phenotype of BATF- and IRF4-deficient + + activated CD8 T cell Effector CD8 T cell CD8+ T cells, these authors found that IRF4 and BATF defects overlapped only IRF4lo IRF4hi partially. Obviously, survival of CD8+ lo hi Blimp-1 Strength of Blimp-1 T cells is cooperatively regulated by both Low glycolysis TCR ligation High glycolysis + + mTOR activity + ++ IRF4 and BATF, whereas in contrast the CD44 CD25 CD44 CD25 + GzmBlo IFN- hi IRF4 expression GzmBhi IFN- hi expansion of CD8 T cells seems to be mediated by IRF4 in a BATF-independent Activation Proliferation Differentiation manner. Taken together, the three recently published reports consistently show Chronic infection Pathogen clearance that expression of IRF4 in CTLs depends on the strength of TCR ligation. Although Figure 1. Relationship between Strength of TCR Ligation, IRF4 Expression, and the dispensable for early activation events as Development of Effector CD8+ T Cells measured by phenotypical changes, pro- Strong TCR ligation causes increased mTOR activity, high expression of IRF4 and Blimp-1, and highly liferation, and cytokine production, IRF4 active aerobic glycolysis in CD8+ T cells. IRF4 enables maintained expansion and differentiation into effector CD8+ T cells characterized by high expression of the surface markers CD44 and CD25 and is essential for the maintenance of CTL the effector molecules GzmB and IFN-g. These effector cells efficiently clear infections with intracellular properties and thus for establishment pathogens. In contrast, suboptimal TCR signaling causes lower mTOR activity and low IRF4 as well as of a fully functional effector and also Blimp-1 expression. Such nonproductively activated CD8+ T cells still express CD44 and CD25 but perform only limited glycolysis and fail to maintain proliferation and differentiation into effector cells. memory pool. IRF4 seems to regulate These cells express GzmB and IFN-g at low amounts, fail to clear pathogens, and enable development these functions at several levels, acting of chronic infection. as both transcriptional repressor and activator. The three studies agree that CD69 and CD25, as well as of the effector Blimp1, T-bet, and HIF1a. Furthermore, the direct positive regulation of Prdm1 molecules IFN-g and Granzyme B. How- IRF4 mediated histone modification and gene expression contributes to the IRF4 ever, maintenance of proliferation was alteration of T-bet binding to the pro- effects. The study by Yao et al. (2013) severely hampered, effector differentia- moters of the effector molecules Gzmb includes the regulation of cyclin-kinase tion failed to proceed, and cell death was and Ifng. As for the effects on the Blimp-1 inhibitors, antiapoptotic molecules, and enhanced. All these defects were rescued protein encoded by Prdm1, they were also T-bet and chromatin modifications to by overexpression of IRF4, which ex- reported by Raczkowski et al. (2013) and the spectrum of IRF4 targets in differen- cludes developmental alterations of are reminiscent to similar functions of tiating effector CD8+ T cells. The study IRF4-deficient CD8+ T cells prior to IRF4 in B and CD4+ T cells. Moreover, by Man et al. (2013) suggests an impor- effector cell differentiation. When IRF4 seems to support CD8+ T cell tant role of IRF4 in the regulation of analyzing the molecular mechanisms effector differentiation also by controlling cellular metabolic pathways. Thus, IRF4 of how IRF4 sustains the expansion of glucose metabolism and glycolysis via has central basic functions and also CD8+ T cells, Yao et al. (2013) found that the HIF complex. This is the result of the context-dependent functions, such as IRF4 repressed several cyclin-dependent third mentioned study (Man et al., 2013), during T cell subset differentiation (e.g., kinase inhibitors (such as Cdkn2a, which elegantly identifies roles of IRF4 Tc17 and Th17), which may be regulated Cdkn1a, and Cdkn1c) and directly bound not only on Hif1a and Foxo1, transcription by diverse cooperating transcription fac- to the Cdkn2a locus. As for CD8+ T cell factors regulating metabolic pathways, tors.
Recommended publications
  • Transcription Factor IRF4 Drives Dendritic Cells to Promote Th2 Differentiation
    ARTICLE Received 30 May 2013 | Accepted 21 Nov 2013 | Published 20 Dec 2013 DOI: 10.1038/ncomms3990 Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation Jesse W. Williams1, Melissa Y. Tjota2,3, Bryan S. Clay2, Bryan Vander Lugt4, Hozefa S. Bandukwala2, Cara L. Hrusch5, Donna C. Decker5, Kelly M. Blaine5, Bethany R. Fixsen5, Harinder Singh4, Roger Sciammas6 & Anne I. Sperling1,2,5 Atopic asthma is an inflammatory pulmonary disease associated with Th2 adaptive immune responses triggered by innocuous antigens. While dendritic cells (DCs) are known to shape the adaptive immune response, the mechanisms by which DCs promote Th2 differentiation remain elusive. Herein we demonstrate that Th2-promoting stimuli induce DC expression of IRF4. Mice with conditional deletion of Irf4 in DCs show a dramatic defect in Th2-type lung inflammation, yet retain the ability to elicit pulmonary Th1 antiviral responses. Using loss- and gain-of-function analysis, we demonstrate that Th2 differentiation is dependent on IRF4 expression in DCs. Finally, IRF4 directly targets and activates the Il-10 and Il-33 genes in DCs. Reconstitution with exogenous IL-10 and IL-33 recovers the ability of Irf4-deficient DCs to promote Th2 differentiation. These findings reveal a regulatory module in DCs by which IRF4 modulates IL-10 and IL-33 cytokine production to specifically promote Th2 differentiation and inflammation. 1 Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 2 Committee on Immunology, University of Chicago, 924 E. 57th Street, Chicago, Illinois 60637 USA. 3 Medical Scientist Training Program, University of Chicago, 924 E.
    [Show full text]
  • PU.1 Cooperates with IRF4 and IRF8 to Suppress Pre-B-Cell Leukemia
    Leukemia (2016) 30, 1375–1387 © 2016 Macmillan Publishers Limited All rights reserved 0887-6924/16 www.nature.com/leu ORIGINAL ARTICLE PU.1 cooperates with IRF4 and IRF8 to suppress pre-B-cell leukemia SHM Pang1,2, M Minnich3, P Gangatirkar1,2, Z Zheng1, A Ebert3, G Song4, RA Dickins1,2,5, LM Corcoran1,2, CG Mullighan4, M Busslinger3, ND Huntington1,2, SL Nutt1,2 and S Carotta1,2,6 The Ets family transcription factor PU.1 and the interferon regulatory factor (IRF)4 and IRF8 regulate gene expression by binding to composite DNA sequences known as Ets/interferon consensus elements. Although all three factors are expressed from the onset of B-cell development, single deficiency of these factors in B-cell progenitors only mildly impacts on bone marrow B lymphopoiesis. Here we tested whether PU.1 cooperates with IRF factors in regulating early B-cell development. Lack of PU.1 and IRF4 resulted in a partial block in development the pre-B-cell stage. The combined deletion of PU.1 and IRF8 reduced recirculating B-cell numbers. Strikingly, all PU.1/IRF4 and ~ 50% of PU.1/IRF8 double deficient mice developed pre-B-cell acute lymphoblastic leukemia (B-ALL) associated with reduced expression of the established B-lineage tumor suppressor genes, Ikaros and Spi-B. These genes are directly regulated by PU.1/IRF4/IRF8, and restoration of Ikaros or Spi-B expression inhibited leukemic cell growth. In summary, we demonstrate that PU.1, IRF4 and IRF8 cooperate to regulate early B-cell development and to prevent pre-B-ALL formation.
    [Show full text]
  • Phosphorylation of Microglial IRF5 and IRF4 by IRAK4 Regulates Inflammatory Responses to Ischemia
    cells Article Phosphorylation of Microglial IRF5 and IRF4 by IRAK4 Regulates Inflammatory Responses to Ischemia Conelius Ngwa, Abdullah Al Mamun, Yan Xu, Romana Sharmeen and Fudong Liu * Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; [email protected] (C.N.); [email protected] (A.A.M.); [email protected] (Y.X.); [email protected] (R.S.) * Correspondence: [email protected]; Tel.: +1-713-500-7038; Fax: +1-713-500-0660 Abstract: Background: Interferon Regulatory Factor (IRF) 5 and 4 play a determinant role in regu- lating microglial pro- and anti-inflammatory responses to cerebral ischemia. How microglial IRF5 and IRF4 signaling are activated has been elusive. We hypothesized that interleukin-1 receptor associated kinase 4 (IRAK4) phosphorylates and activates IRF5 and IRF4 in ischemic microglia. We aimed to explore the upstream signals of the two IRFs, and to determine how the IRAK4-IRF signaling regulates the expression of inflammatory mediators, and impacts neuropathology. Meth- ods: Spontaneously Immortalized Murine (SIM)-A9 microglial cell line, primary microglia and neurons from C57BL/6 WT mice were cultured and exposed to oxygen-glucose deprivation (OGD), followed by stimulation with LPS or IL-4. An IRAK4 inhibitor (ND2158) was used to examine IRAK40s effects on the phosphorylation of IRF5/IRF4 and the impacts on neuronal morphology by co-immunoprecipitation (Co-IP)/Western blot, ELISA, and immunofluorescence assays. Results: We confirmed that IRAK4 formed a Myddosome with MyD88/IRF5/IRF4, and phosphorylated both IRFs, which subsequently translocated into the nucleus.
    [Show full text]
  • Differential Expression of IFN Regulatory Factor 4 Gene in Human Monocyte-Derived Dendritic Cells and Macrophages
    Differential Expression of IFN Regulatory Factor 4 Gene in Human Monocyte-Derived Dendritic Cells and Macrophages This information is current as Anne Lehtonen, Ville Veckman, Tuomas Nikula, Riitta of September 27, 2021. Lahesmaa, Leena Kinnunen, Sampsa Matikainen and Ilkka Julkunen J Immunol 2005; 175:6570-6579; ; doi: 10.4049/jimmunol.175.10.6570 http://www.jimmunol.org/content/175/10/6570 Downloaded from References This article cites 79 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/175/10/6570.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Expression of IFN Regulatory Factor 4 Gene in Human Monocyte-Derived Dendritic Cells and Macrophages1 Anne Lehtonen,2* Ville Veckman,* Tuomas Nikula,‡ Riitta Lahesmaa,‡ Leena Kinnunen,† Sampsa Matikainen,* and Ilkka Julkunen* In vitro human monocyte differentiation to macrophages or dendritic cells (DCs) is driven by GM-CSF or GM-CSF and IL-4, respectively.
    [Show full text]
  • The Molecular Choreography of IRF4 and IRF8 with Immune System Partners
    The Molecular Choreography of IRF4 and IRF8 with Immune System Partners 1,2,4 1,3 1 HARINDER SINGH, ELKE GLASMACHER, ABRAHAM B. CHANG, 1 AND BRYAN VANDER LUGT 1Department of Discovery Immunology, Genentech Inc., South San Francisco, California 94080 4Correspondence: [email protected] The transcription factors IRF4 and IRF8 represent immune-specific members of the interferon regulatory family. They play major roles in controlling the development and functioning of innate and adaptive cells. Genes encoding these factors appear to have been coopted by the immune system via gene duplication and divergence of regulatory and protein coding sequences to enable the acquisition of unique molecular properties and functions. Unlike other members of the IRF family, IRF4 and IRF8 do not activate transcription of Type 1 interferon genes or positively regulate interferon-induced gene expression. Instead, they bind to unusual composite Ets-IRF or AP-1-IRF elements with specific Ets or AP-1 family transcription factors, respectively, and regulate the expression of diverse sets of immune response genes in innate as well as adaptive cells. The molecular cloning of interferon regulatory factor et al. 2012). Strikingly, this involves cooperative assembly 8 (IRF8) as interferon consensus sequence-binding pro- of IRF4 with AP-1 heterodimers containing a basic leucine tein (ICSBP) led to the realization that it bound inter- zipper transcription factor, AFT-like (BATF) subunit. feron response sequence elements (ISRE), albeit with This molecular property is shared by IRF8 but not by other low affinity, and antagonized ISRE-mediated gene acti- IRF family members, reminiscent of the molecular specif- vation (Driggers et al.
    [Show full text]
  • Deletion of Irf4 in T Cells Suppressed Autoimmune Uveitis and Dysregulated Transcriptional Programs Linked to CD4+ T Cell Differentiation and Metabolism
    International Journal of Molecular Sciences Article Deletion of Irf4 in T Cells Suppressed Autoimmune Uveitis and Dysregulated Transcriptional Programs Linked to CD4+ T Cell Differentiation and Metabolism Minkyung Kang 1,†, Hyun-Su Lee 1,†, Jin Kyeong Choi 1,2, Cheng-Rong Yu 1 and Charles E. Egwuagu 1,* 1 Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; [email protected] (M.K.); [email protected] (H.-S.L.); [email protected] (J.K.C.); [email protected] (C.-R.Y.) 2 Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Korea * Correspondence: [email protected]; Tel.: +301-496-0049; Fax: +301-480-3914 † These authors contributed equally. Abstract: Interferon regulatory factor-4 (IRF4) and IRF8 regulate differentiation, growth and functions of lymphoid and myeloid cells. Targeted deletion of irf8 in T cells (CD4-IRF8KO) has been shown to exacerbate colitis and experimental autoimmune uveitis (EAU), a mouse model of human uveitis. We therefore generated mice lacking irf4 in T cells (CD4-IRF4KO) and investigated whether expression of IRF4 by T cells is also required for regulating T cells that suppress autoimmune diseases. Surprisingly, we found that CD4-IRF4KO mice are resistant to EAU. Suppression of EAU derived in part from inhibiting pathogenic responses of Th17 cells while inducing expansion of regulatory lymphocytes that secrete IL-10 and/or IL-35 in the eye and peripheral lymphoid tissues. Furthermore, CD4- IRF4KO T cells exhibit alterations in cell metabolism and are defective in the expression of two Citation: Kang, M.; Lee, H.-S.; Choi, Ikaros zinc-finger (IKZF) transcription factors (Ikaros, Aiolos) that are required for lymphocyte J.K.; Yu, C.-R.; Egwuagu, C.E.
    [Show full text]
  • Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function
    REVIEW published: 10 February 2017 doi: 10.3389/fimmu.2017.00108 Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function Sophie Laffont1*, Cyril Seillet2,3 and Jean-Charles Guéry1* 1 Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France, 2 Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia, 3 Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia Autoimmunity, infectious diseases and cancer affect women and men differently. Because they tend to develop more vigorous adaptive immune responses than men, women are less susceptible to some infectious diseases but also at higher risk of autoimmunity. The regulation of immune responses by sex-dependent factors probably involves several non-redundant mechanisms. A privileged area of study, however, concerns the role of sex steroid hormones in the biology of innate immune cells, especially dendritic cells (DCs). In recent years, our understanding of the lineage origin of DC populations has expanded, Edited by: and the lineage-committing transcription factors shaping peripheral DC subsets have Manfred B. Lutz, been identified. Both progenitor cells and mature DC subsets express estrogen receptors University of Würzburg, Germany (ERs), which are ligand-dependent transcription factors. This suggests that estrogens Reviewed by: may contribute to the reported sex differences in immunity by regulating DC biology. Meredith O’Keeffe, Monash University, Australia Here, we review the recent literature and highlight evidence that estrogen-dependent Pieter J. M. Leenen, activation of ERα regulates the development or the functional responses of particular DC Erasmus University Rotterdam, + Netherlands subsets.
    [Show full text]
  • Structural Basis of STAT2 Recognition by IRF9 Reveals Molecular Insights Into
    bioRxiv preprint doi: https://doi.org/10.1101/131714; this version posted April 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Structural basis of STAT2 recognition by IRF9 reveals molecular insights into 2 ISGF3 function 3 Srinivasan Rengachari1, Silvia Groiss1, Juliette, Devos1, Elise Caron2, Nathalie Grandvaux2,3, 4 Daniel Panne1* 5 1European Molecular Biology Laboratory, 38042 Grenoble, France 6 2 CRCHUM - Research center, Centre Hospitalier de l'Université de Montréal, Montréal, 7 H2X0A9, Québec, Canada 8 3 Department of Biochemistry and Molecular Medicine, Université de Montréal; Faculty of 9 Medicine, Université de Montréal, Montréal, H3C 3J7, Qc, Canada 10 *Corresponding author: email– [email protected], tel: +33–476207925 11 12 13 1 bioRxiv preprint doi: https://doi.org/10.1101/131714; this version posted April 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 14 15 Summary 16 Cytokine signalling is mediated by the activation of distinct sets of structurally homologous JAK 17 and STAT signalling molecules, which control nuclear gene expression and cell fate. A 18 significant expansion in the gene regulatory repertoire controlled by JAK/STAT signalling has 19 arisen by the selective interaction of STATs with IRF transcription factors.
    [Show full text]
  • 1 1 EBNA3 Proteins Regulate EBNA2 Binding to Distinct RBPJ Genomic
    JVI Accepted Manuscript Posted Online 30 December 2015 J. Virol. doi:10.1128/JVI.02737-15 Copyright © 2015, American Society for Microbiology. All Rights Reserved. 1 2 EBNA3 proteins regulate EBNA2 binding to distinct RBPJ genomic sites 3 4 Anqi Wang1, Rene Welch2, Bo Zhao3, Tram Ta2, Sündüz Keleș2,4 and Eric Johannsen1, * 5 6 7 1 Department of Medicine and Oncology, McArdle Laboratory For Cancer Research, University of 8 Wisconsin, Madison, WI 53715, USA 9 2 Department of Statistics, University of Wisconsin, Madison, WI 53715, USA 10 3 The Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard 11 Medical School, Boston, MA 02115, USA. 12 4 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53715, 13 USA 14 * Corresponding author mailing address: Department of Medicine, University of Wisconsin, 1111 15 Highland Avenue, Madison, WI 53705. Phone: (608) 262-9952. E-mail: 16 [email protected] 17 18 19 Running Title: Genome-wide analysis of EBNA3 DNA binding 20 Keywords: EBNA3, EBNA2, Notch signaling, RBPJ, IRF4, transformation, 21 Word Count Abstract: 250 1 22 ABSTRACT 23 Latent infection of B lymphocytes by Epstein-Barr virus (EBV) in vitro results in their immortalization 24 into lymphoblastoid cell lines (LCLs); this latency program is controlled by the EBNA2 viral 25 transcriptional activator that targets promoters via RBPJ, a DNA binding protein in the Notch signaling 26 pathway. Three other EBNA3 proteins (EBNA3A, EBNA3B, and EBNA3C) interact with RBPJ to 27 regulate cell gene expression. The mechanism by which EBNAs regulate different genes via RBPJ 28 remains unclear.
    [Show full text]
  • IRF4 and IRF8 Act in Cd11c+ Cells to Regulate Terminal Differentiation of Lung Tissue Dendritic Cells
    IRF4 and IRF8 Act in CD11c+ Cells To Regulate Terminal Differentiation of Lung Tissue Dendritic Cells This information is current as Sandra Bajaña, Sean Turner, Jinny Paul, Erola of September 29, 2021. Ainsua-Enrich and Susan Kovats J Immunol 2016; 196:1666-1677; Prepublished online 8 January 2016; doi: 10.4049/jimmunol.1501870 http://www.jimmunol.org/content/196/4/1666 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/01/07/jimmunol.150187 Material 0.DCSupplemental http://www.jimmunol.org/ References This article cites 49 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/196/4/1666.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IRF4 and IRF8 Act in CD11c+ Cells To Regulate Terminal Differentiation of Lung Tissue Dendritic Cells Sandra Bajan˜a, Sean Turner, Jinny Paul, Erola Ainsua-Enrich, and Susan Kovats Dendritic cells (DCs) initiate immune responses in barrier tissues including lung and skin.
    [Show full text]
  • Inhibition of IRF4 in Dendritic Cells by PRR-Independent
    RESEARCH ARTICLE Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses Jihyung Lee1, Junyan Zhang1,2,3, Young-Jun Chung1,4, Jun Hwan Kim1, Chae Min Kook1, Jose´ M Gonza´ lez-Navajas3,5,6, David S Herdman1, Bernd Nu¨ rnberg7, Paul A Insel1,8, Maripat Corr1, Ji-Hun Mo4, Ailin Tao2,3, Kei Yasuda9, Ian R Rifkin9,10, David H Broide1, Roger Sciammas11, Nicholas JG Webster1,12*, Eyal Raz1,3* 1Department of Medicine, University of California San Diego, San Diego, United States; 2The Second Affiliated Hospital of Guangzhou Medical University (GMU), The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou, China; 3Center for Immunology, Inflammation and Immune-mediated disease, GMU, Guangzhou, China; 4Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Chungnam, Republic of Korea; 5Alicante Institute for Health and Biomedical Research (ISABIAL - FISABIO), Alicante, Spain; 6Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, Madrid, Spain; 7Department of Pharmacology and Experimental Therapy, University of Tu¨ bingen, Tu¨ bingen, Germany; 8Department of Pharmacology, University of California San Diego, San Diego, United States; 9Boston University School of Medicine, Boston, United States; 10VA Boston Healthcare System, Boston, United States; 11Center for Comparative Medicine, University of California, Davis, Davis, United States; 12VA San Diego Healthcare System, San Diego, United States *For correspondence: [email protected] (NJGW); [email protected] (ER) Abstract Cyclic AMP (cAMP) is involved in many biological processes but little is known Competing interests: The regarding its role in shaping immunity.
    [Show full text]
  • Estrogen Receptor Signaling Promotes Dendritic Cell Differentiation by Increasing Expression of the Transcription Factor IRF4
    From www.bloodjournal.org by guest on March 23, 2015. For personal use only. HEMATOPOIESIS AND STEM CELLS Estrogen receptor signaling promotes dendritic cell differentiation by increasing expression of the transcription factor IRF4 Esther Carreras,1 Sean Turner,1 Mark Barton Frank,1,2 Nicholas Knowlton,1,2 Jeanette Osban,1,2 Michael Centola,1 Chae Gyu Park,3 Amie Simmons,4 Jose´Alberola-Ila,4 and Susan Kovats1 1Arthritis & Immunology Program, and 2Microarray Research Facility, Oklahoma Medical Research Foundation, Oklahoma City; 3Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, NY; and 4Immunobiology & Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City During inflammation, elevated granulo- tors (MPs). We now have identified inter- the estradiol/ER␣-dependent DC popula- cyte macrophage–colony-stimulating fac- feron regulatory factor 4 (IRF4), a tran- tion, indicating that an elevated amount tor (GM-CSF) directs the development of scription factor induced by GM-CSF and of IRF4 protein substitutes for ER␣ signal- new dendritic cells (DCs). This pathway is critical for CD11b؉ DC development in ing. Thus at an early stage in the MP influenced by environmental factors, and vivo, as a target of ER␣ signaling during response to GM-CSF, ER␣ signaling in- we previously showed that physiologic this process. In MPs, ER␣ potentiates and duces an elevated amount of IRF4, which levels of estradiol, acting through estro- sustains GM-CSF induction of IRF4. Fur- leads to a developmental program under-
    [Show full text]