Map 3096 U.S
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
DATING the RESURFACING EVENTS of the HARMAKHIS VALLIS SOURCE REGIONS, MARS: PRELIMINARY RESULTS. S. Kukkonen and V.-P
44th Lunar and Planetary Science Conference (2013) 2140.pdf DATING THE RESURFACING EVENTS OF THE HARMAKHIS VALLIS SOURCE REGIONS, MARS: PRELIMINARY RESULTS. S. Kukkonen and V.-P. Kostama, Astronomy, Department of Physics, P.O. Box 3000, FI-90014 University of Oulu, Finland ([email protected]). Introduction: Harmakhis Vallis is one of the four [e.g., 15–17]. Usually they have been excluded from major outflow channel systems that cut the eastern Hel- the crater counts because of the uncertainty of their las rim region of Mars (Fig. 1). It is ~800 km long and origin (primary vs. secondary crater). However, small located ~450 km south of Hadriaca Patera starting craters accumulate to the surface more quickly than close to the end of another valley, Reull Vallis. Due to larger ones, and thus the high spatial resolution is nec- the close position to the volcanic features, the channels essary in dating younger surfaces or small units where are suggested to have been formed by the mobilization there are only few large craters. In the case of Harma- and release of subsurface volatiles by volcanic heat [1– khis Vallis, the region has experienced significant re- 5]. Because Harmakhis Vallis cuts the surrounding cent modification and degradation, and thus, we can massifs of the cratered terrains, it is clearly one of the assume that the small crater population mostly post- youngest features in the region [6, 7]. dates the secondary craters forming larger impacts lo- cated in the older regions. Therefore, only the obvious clusters of secondary craters were excluded from the counts. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
PLANETARIAN Journal of the International Planetarium Society Vol
PLANETARIAN Journal of the International Planetarium Society Vol. 26, No.3, September 1997 Articles 5 Projections from Gallatin .................................................... Gary Likert 10 How Thinking Goes Wrong ....................................... Michael Shermer 17 Astronomy Link - A Beginning ........................................ Jim Manning 21 14th International Planetarium Conference ................................ IPS'98 Features 26 Opening the Dome .............................................................. Jon U. Bell 29 Planetarium Memories .........., .................................. Kenneth E. Perkins 31 Planetechnica: Shoestring Wire Management ......... Richard McColman 34 Forum ................................................................................. Steve Tidey 39 Book Reviews .................................................................. April S. Whitt 45 Mobile News Network ...................................................... Sue Reynolds 47 ',X/hat's New ...................................................................... Jim Manning 51 Gibbous Gazette ......................................................... Christine Shupla 53 Regional Roundup ............................................................ Lars Broman 58 President's Message ....................................................... Thomas Kraupe 62 Jane's Corner .................................................................... Jane Hastings " l1,c ZKPJ ;'\' jalltastic ... It IJrojec/x Ih e 11/ 0 0 1/ phases wilh (l -
In Pdf Format
lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te . -
USGS Open-File Report 2006-1263
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Nampa, Idaho 2006 Edited By Tracy K.P. Gregg,1 Kenneth L. Tanaka,2 and R. Stephen Saunders3 Open-File Report 2006-1263 2006 Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 1 The State University of New York at Buffalo, Department of Geology, 710 Natural Sciences Complex, Buffalo, NY 14260-3050. 2 U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001. 3 NASA Headquarters, Office of Space Science, 300 E. Street SW, Washington, DC 20546. Report of the Annual Mappers Meeting Northwest Nazarene University Nampa, Idaho June 30 – July 2, 2006 Approximately 18 people attended this year’s mappers meeting, and many more submitted abstracts and maps in absentia. The meeting was held on the campus of Northwest Nazarene University (NNU), and was graciously hosted by NNU’s School of Health and Science. Planetary mapper Dr. Jim Zimbelman is an alumnus of NNU, and he was pivotal in organizing the meeting at this location. Oral and poster presentations were given on Friday, June 30. Drs. Bill Bonnichsen and Marty Godchaux led field excursions on July 1 and 2. USGS Astrogeology Team Chief Scientist Lisa Gaddis led the meeting with a brief discussion of the status of the planetary mapping program at USGS, and a more detailed description of the Lunar Mapping Program. She indicated that there is now a functioning website (http://astrogeology.usgs.gov/Projects/PlanetaryMapping/Lunar/) which shows which lunar quadrangles are available to be mapped. -
The Surface of Mars Michael H. Carr Index More Information
Cambridge University Press 978-0-521-87201-0 - The Surface of Mars Michael H. Carr Index More information Index Accretion 277 Areocentric longitude Sun 2, 3 Acheron Fossae 167 Ares Vallis 114, 116, 117, 231 Acid fogs 237 Argyre 5, 27, 159, 160, 181 Acidalia Planitia 116 floor elevation 158 part of low around Tharsis 85 floor Hesperian in age 158 Admittance 84 lake 156–8 African Rift Valleys 95 Arsia Mons 46–9, 188 Ages absolute 15, 23 summit caldera 46 Ages, relative, by remote sensing 14, 23 Dikes 47 Alases 176 magma supply rate 51 Alba Patera 2, 17, 48, 54–7, 92, 132, 136 Arsinoes Chaos 115, 117 low slopes 54 Ascreus Mons 46, 49, 51 flank fractures 54 summit caldera 49 fracture ring 54 flank vents 49 dikes 55 rounded terraces 50 pit craters 55, 56, 88 Asteroids 24 sheet flows 55, 56 Astronomical unit 1, 2 Tube-fed flows 55, 56 Athabasca Vallis 59, 65, 122, 125, 126 lava ridges 55 Atlantis Chaos 151 dilatational faults 55 Atmosphere collapse 262 channels 56, 57 Atmosphere, chemical composition 17 pyroclastic deposits 56 circulation 8 graben 56, 84, 86 convective boundary layer 9 profile 54 CO2 retention 260 Albedo 1, 9, 193 early Mars 263, 271 Albor Tholus 60 eddies 8 ALH84001 20, 21, 78, 267, 273–4, 277 isotopic composition 17 Alpha Particle X-ray Spectrometer 232 mass 16 Alpha Proton-ray Spectrometer 231 meridional flow 1 Alpheus Colles 160 pressure variations and range 5, 16 AlQahira 122 temperatures 6–8 Amazonian 277 scale height 5, 16 Amazonis Planitia 45, 64, 161, 195 water content 11 flows 66, 68 column water abundance 174 low -
35247, and –40247 Quadrangles, Reull Vallis Region of Mars by Scott C
Prepared for the National Aeronautics and Space Administration Geologic Map of MTM –30247, –35247, and –40247 Quadrangles, Reull Vallis Region of Mars By Scott C. Mest and David A. Crown Pamphlet to accompany Scientific Investigations Map 3245 65° 65° MC-01 MC-05 MC-07 30° MC-06 30° MC-12 MC-15 MC-13 MC-14 0° 45° 90° 135° 180° 0° 0° MC-21 MC-22 MC-20 MC-23 SIM 3245 -30° MC-28 -30° MC-27 MC-29 MC-30 -65° -65° 2014 U.S. Department of the Interior U.S. Geological Survey Contents Introduction.....................................................................................................................................................1 Physiographic Setting ...................................................................................................................................1 Data .............................................................................................................................................................2 Contact Types .................................................................................................................................................2 Fluvial Features ..............................................................................................................................................2 Waikato Vallis ........................................................................................................................................3 Eridania Planitia ....................................................................................................................................4 -
A Human Exploration Zone on the East Rim of Hellas Basin, Mars: Mesopotamia
First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1035.pdf A HUMAN EXPLORATION ZONE ON THE EAST RIM OF HELLAS BASIN, MARS: MESOPOTAMIA. Z. E. Gallegos1 and H. E. Newsom1,2, 1University of New Mexico (Institute of Meteoritics, MSC03 2050, 1 University of New Mexico, 87131; [email protected]), 2ChemCam (Mars Science Laboratory). Introduction: The exploration zone concept for Geologic units (Figure 2). The oldest geologic unit in the human exploration of Mars provides the the area (eNhm - grey) is the Early Noachian highland opportunity to consider many new scientifically massif unit, and is the result of uplift from the Hellas compelling areas for future human missions. These impact. It comprises high-relief massifs separated by exploration zones (EZ) offer a wide variety of broad troughs and valleys. The next oldest unit (eHv - scientific value from astrobiology to geochronology dark purple) is an Early Hesperian volcanic unit. and direct new attention at the potential for resources, Superposed on this unit is a Late Hesperian volcanic including access to useful materials and H2O in the unit (IHv - light purple). Hadriacus Mons (Hve - red) is form of ice or mineralogically bound H2O. a volcanic edifice in close proximity to the EZ. The Astrobiology investigations may answer some of Amazonian and Hesperian impact unit (AHi - yellow) humanity’s deepest scientific and philosophical is also represented within the EZ. The youngest unit is questions. Currently, one of NASA’s highest priorities an Amazonian and Noachian apron unit (ANa - light is understanding if life ever arose, or even still exists, brown); the unit comprises primitive Noachian crustal on Mars. -
Exobiology in the Solar System & the Search for Life on Mars
SP-1231 SP-1231 October 1999 Exobiology in the Solar System & The Search for Life on Mars for The Search Exobiology in the Solar System & Exobiology in the Solar System & The Search for Life on Mars Report from the ESA Exobiology Team Study 1997-1998 Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 SP-1231 October 1999 EXOBIOLOGY IN THE SOLAR SYSTEM AND THE SEARCH FOR LIFE ON MARS Report from the ESA Exobiology Team Study 1997-1998 Cover Fossil coccoid bacteria, 1 µm in diameter, found in sediment 3.3-3.5 Gyr old from the Early Archean of South Africa. See pages 160-161. Background: a portion of the meandering canyons of the Nanedi Valles system viewed by Mars Global Surveyor. The valley is about 2.5 km wide; the scene covers 9.8 km by 27.9 km centred on 5.1°N/48.26°W. The valley floor at top right exhibits a 200 m-wide channel covered by dunes and debris. This channel suggests that the valley might have been carved by water flowing through the system over a long period, in a manner similar to rivers on Earth. (Malin Space Science Systems/NASA) SP-1231 ‘Exobiology in the Solar System and The Search for Life on Mars’, ISBN 92-9092-520-5 Scientific Coordinators: André Brack, Brian Fitton and François Raulin Edited by: Andrew Wilson ESA Publications Division Published by: ESA Publications Division ESTEC, Noordwijk, The Netherlands Price: 70 Dutch Guilders/ EUR32 Copyright: © 1999 European Space Agency Contents Foreword 7 I An Exobiological View of the -
Ausonia Cavus and Kasei Valles: Complementary Exploration Zone Sites for Biology, Geology and Isru
First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1045.pdf AUSONIA CAVUS AND KASEI VALLES: COMPLEMENTARY EXPLORATION ZONE SITES FOR BIOLOGY, GEOLOGY AND ISRU. J.C. Hamilton1,3, S. Lundblad2, D.L. Clark4, N.G. Purves1, C.T. Milovsoroff2, N. Thomas1. 1Dept. of Physics & Astronomy, University of Hawai`i at Hilo. [email protected], [email protected] & [email protected]. 2Dept. of Geology, University of Hawai`i at Hilo, Hilo, HI 96720, [email protected] & [email protected]. 3Pacific International Space Center for Exploration Systems, 99 Aupuni St., Hilo, HI 96720 4Space Resource Technologies, LLC, Denver CO, [email protected]. Introduction: Two candidate EZs are proposed that are rich in geologic history and exhibit water evidence for astrobiology. Both sit midway down flow features in erosional valley networks. Ausonia Cavus (Figure 1) lies at the beginning of the drainage features Dao and Niger Valles downslope of the Noachian volcano Tyrrhenus Mons on the Hesperia Planun which continues past Ausonia Caves down to Hellas Planetia (one of the lowest Figure 1- Ausonia Caves (32.0S, 96.5E) elevation features in the southern hemisphere). Its geologic attraction is the ability to sample ancient From an exploration lava flow basalt rocks from the Tyrrhenus Mons viewpoint, the floor erosional deposits and glacial flow. The major lava of Ausonia Cavus is channel from the caldera and pit craters flows to this easily accessible from area. By analogy with terrestrial shield volcanoes, the south shore with a this area should contain extensive lava tube systems. gentle sloping terrain. -
The Science Process for Selecting the Landing Site for the 2011 Mars Science Laboratory
Planetary and Space Science 59 (2011) 1114–1127 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss The science process for selecting the landing site for the 2011 Mars Science Laboratory John A. Grant a,n, Matthew P. Golombek b, John P. Grotzinger c, Sharon A. Wilson a, Michael M. Watkins b, Ashwin R. Vasavada b, Jennifer L. Griffes c, Timothy J. Parker b a Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, 6th at Independence SW, Washington, DC 20560, USA b Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA c Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA article info abstract Available online 25 June 2010 The process of identifying the landing site for NASA’s 2011 Mars Science Laboratory (MSL) began in Keywords: 2005 by defining science objectives, related to evaluating the potential habitability of a location on Mars Mars, and engineering parameters, such as elevation, latitude, winds, and rock abundance, to determine Landing sites acceptable surface and atmospheric characteristics. Nearly 60 candidate sites were considered at a series of open workshops in the years leading up to the launch. During that period, iteration between evolving engineering constraints and the relative science potential of candidate sites led to consensus on four final sites. The final site will be selected in the Spring of 2011 by NASA’s Associate Administrator for the Science Mission Directorate. This paper serves as a record of landing site selection activities related primarily to science, an inventory of the number and variety of sites proposed, and a summary of the science potential of the highest ranking sites. -
The GEAS Project: Astronomy Laboratory
Lab 4 Cratering and the Martian Surface 4.1 Introduction Human space travel enthusiasts hope that our manned missions to the Moon will serve as stepping stones for an eventual trip to Mars. Our “visit” to the Moon in our previous lunar cratering laboratory exercise has prepared us similarly to visit Mars today. We have already learned that cratering is a key process in shaping the appearance of terrestrial planetary surfaces, and that counting craters can help determine the ages of surface features. We studied techniques used to decide which geological event occurred first, or which surface is younger (relative dating techniques), and also learned how to determine absolute ages based on radioactive dating of physical samples. Lunar and Martian surfaces are similar in many ways (both types are heavily cratered in some places and covered with smooth ancient lava flows in others), but they exhibit several important differences. First, volcanic features on Mars are much more prominent than those on the Moon. Mars has the largest volcanoes in the entire solar system, and some of them have clearly become inactive only recently. (Some planetary scientists suspect that the largest Martian volcano of all, Olympus Mons, may still be active today.) Second, unlike the bone-dry Moon, Mars was once a very wet planet. Its surface contains channel and river delta-like features that were undeniably formed by flowing water in the past. These differences lead us to two important questions. When did the last volcanic eruptions occur on Mars, and when did water last flow freely there? In this lab, you’ll use crater counting techniques to help reconstruct a Martian surface chronology and investigate these questions.