Histone H3.3 and Cancer: a Potential Reader Connection

Total Page:16

File Type:pdf, Size:1020Kb

Histone H3.3 and Cancer: a Potential Reader Connection Histone H3.3 and cancer: A potential reader connection Fei Lana,b,1 and Yang Shic,d,1 aKey Laboratory of Epigenetics of Shanghai Ministry of Education, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China; bKey Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai 201102, China; cDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115; and dDivision of Newborn Medicine, Boston Children’s Hospital, Boston MA 02115 Edited by Donald W. Pfaff, The Rockefeller University, New York, NY, and approved November 7, 2014 (received for review October 2, 2014) The building block of chromatin is nucleosome, which consists of G34R/G34V/G34W/G34L, and K36M. Although both H3F3A and 146 base pairs of DNA wrapped around a histone octamer com- H3F3B encode H3.3 with identical amino acid sequences, the posed of two copies of histone H2A, H2B, H3, and H4. Significantly, H3.3K36M mutation occurs predominantly in H3F3B whereas the the somatic missense mutations of the histone H3 variant, H3.3, are other mutations are almost exclusive to H3F3A (9). Furthermore, associated with childhood and young-adult tumors, such as pediat- these different mutations also appear to segregate with distinct ric high-grade astrocytomas, as well as chondroblastoma and giant- types of tumors. For instance, the K27M mutation has been found cell tumors of the bone. The mechanisms by which these histone only in pediatric diffuse intrinsic pontine glioma (DIPG) and high- mutations cause cancer are by and large unclear. Interestingly, two grade astrocytomas primarily restricted to midline locations (spi- recent studies identified BS69/ZMYND11, which was proposed to be nal cord, thalamus, pons, brainstem) in children and younger a candidate tumor suppressor, as a specific reader for a modified adults (11–17). The majority of K36M mutation has been found form of H3.3 (H3.3K36me3). Importantly, some H3.3 cancer muta- in chondroblastoma, and to a lesser extent, in clear-cell chon- tions are predicted to abrogate the H3.3K36me3/BS69 interaction, drosarcoma (9). The G34R/V mutations predominantly associate suggesting that this interaction may play an important role in with pediatric glioblastoma multiforme (GBM) in the cerebral tumor suppression. These new findings also raise the question of hemispheres (11, 12, 18, 19), and in some very rare cases, in oste- whether H3.3 cancer mutations may lead to the disruption and/or osarcoma (9). Interestingly, two different substitutions at the same gain of interactions of additional cellular factors that contribute to amino acid position, G34W and G34L, have been found only in tumorigenesis. giant-cell tumor of bone (9). It remains to be determined whether differential association of these H3.3 mutations with histone | H3.3 | H3.3K36me3 | cancer | BS69 differential cancer types may imply disparate underlying mo- lecular mechanisms. he histone H3 variant, H3.3, differs from the canonical his- Recent studies have begun to address the mechanism by which Ttone H3 (H3.2 and H3.1) by only 4 and 5 amino acids, re- H3.3 mutations may cause cancer. It has been demonstrated that spectively. With the exception of serine 31 located in the H3.3 the H3.3K27M mutation affects not only the methylation po- tail region, the rest of the amino acid difference resides in the tential on the mutated histone tail but also global methylation of nucleosome core, which dictates the differential recognition of H3K27me3 in cell-culture models as well as in the primary the H3.3 variant versus the canonical histone H3 by different tumors (19–21). Supporting this finding, a recent study in Dro- histone chaperones as well as its mode of incorporation into the sophila also found that the H3.3K27M ectopic expression phe- chromatin. The canonical histone H3 proteins are incorporated nocopies PRC2 mutants and causes loss of global H3K27me3 into chromatin via the histone chaperone CAF-1 (chromatin and depression of PRC2 target genes (22). In the study from assembly factor 1) at S phase in a replication-dependent manner Lewis et al., H3.3K36M was also shown to cause a global re- (1). In contrast, H3.3 is incorporated into chromatin by HIRA duction of H3K36me3 (19). Cross talk between these mutations (histone regulator A) and DAXX (death domain-associated and the nearby modifications has also been observed. For in- protein)/ATRX (alpha thalassemia/mental retardation syndrome stance, G34R/V mutations have been found to cause a significant X-linked protein), respectively, in a replication-independent loss of H3.3K36me3 only in cis (19), suggesting that these muta- manner (1–3), suggesting that H3.3 may play a regulatory role in tions may differentially influence the affected epigenomes. Sub- many chromatin-templated processes outside of the S phase of sequent studies also showed that K27M and G34R/V mutations are the cell cycle, including transcription. Consistently, H3.3 has mutually exclusive in tumors and are associated with distinct gene been found at gene bodies and promoters of transcriptionally expression and DNA methylation profiles (11, 12). The clinical active genes as well as gene regulatory elements, such as significance of these findings, however, remains to be de- enhancers (1, 4, 5). More recently, it has been shown that the termined. Taken together, these recent exciting findings sug- H3.3-containing nucleosomes are compromised in their ability gest that H3.3 mutations may play an oncogenic driver role by to form compact structure in vitro and that the H3.3 genomic reshaping the epigenomes through alterations of either the distribution correlates well with DNase I-sensitive regions, local or global histone methylation patterns. Although much suggesting a preferential association with open chromatin remains to be learned regarding the mechanism by which these environment in vivo (6). Interestingly, H3.3 has also been mutations cause cancer, two recent studies unexpectedly found found at pericentromeric and telomeric regions, where its an H3.3K36me3-specific reader, BS69/ZMYND11, which may deposition is largely dependent on the DAXX/ATRX chap- erone system; however, the function of H3.3 at these regions remains unclear (7). This paper results from the Arthur M. Sackler Colloquium of the National Academy of Although H3.3 represents only a small portion of the total Sciences, “Epigenetic Changes in the Developing Brain: Effects on Behavior,” held March 28–29, 2014, at the National Academy of Sciences in Washington, DC. The complete pro- cellular histone H3 pool (8), emerging evidence suggests that H3.3 gram and video recordings of most presentations are available on the NAS website at carries biological information that is distinct from its counterparts, www.nasonline.org/Epigenetic_changes. H3.1 and H3.2. This notion is best exemplified by the exciting Author contributions: F.L. and Y.S. wrote the paper. recent findings of recurring heterozygous mutations in H3F3A and Conflict of interest statement: Y.S. is a cofounder of Constellation Pharmaceutical, Inc. H3F3B, the only two genes in mammals that encode H3.3, that are and a member of its scientific advisory board. associated with a number of pediatric cancers, including pediatric This article is a PNAS Direct Submission. and young-adult high-grade astrocytomas, chondroblastoma, and 1To whom correspondence may be addressed. Email: [email protected] or fei_lan@ giant-cell tumor of bone (9–11). These mutations include K27M, fudan.edu.cn. 6814–6819 | PNAS | June 2, 2015 | vol. 112 | no. 22 www.pnas.org/cgi/doi/10.1073/pnas.1418996111 Downloaded by guest on September 30, 2021 PAPER provide a new avenue to explore H3.3 biology as well as its cancer BS69 BROMO-PWWP Domains Read H3.3K36me3 COLLOQUIUM connection (23, 24). In these two recent studies (23, 24), the BS69 PWWP domain was identified as a specific reader for the K36 trimethylation on BS69 (also Known as ZMYND11) histone variant H3.3 (H3.3K36me3) (Fig. 1). In both studies, the BS69 was originally identified as an interacting protein of the authors used an array of methylated and unmethylated histone adenoviral E1A oncoprotein and a suppressor of the trans- peptides and demonstrated that, surprisingly, BS69 preferentially activating function of E1A and has thus been suggested to recognizes H3.3K36me3. This highly specific recognition is sen- function as a transcriptional repressor and a candidate tumor sitive to both the methyl level on lysine 36: i.e., BS69 binds to suppressor (25–27). The architecture of BS69 is quite interesting; H3.3K36me3, but much less to H3.3K36me0/1/2, as well as the the N-terminal two thirds of BS69 contains three tandemly adjacent residues, S31 on H3.3 vs. A31 on H3.1/2 (23, 24). Using arranged, putative chromatin recognition modules: namely PHD, a cocrystallization approach, the Wen et al. study provided at the BROMO, and PWWP domains (Fig. 1). The C terminus of BS69 atomic level mechanistic understanding of how the BS69 reader contains a zinc-binding motif, the MYND domain, which func- modalities discriminate H3.3K36me3 from H3.1K36me3. In- tions as a protein–protein interaction surface, which mediates terestingly, the recognition of H3.3K36me3 by BS69 involves not interactions of BS69 with transcription factors and chromatin only the PWWP but also the adjacent BROMO domain (23). (26–28) (Fig. 1). Compared with the MYND domain, essentially Specifically, the H3.3-dependent recognition is mediated by the “ ” nothing was known about the three N-terminal putative chro- encapsulation of the H3.3-specific S31 residue in a composite matin readers. Previous studies indicated that PHD and BROMO pocket formed by the tandem BROMO-PWWP domains of BS69. S31 is a critical contact that is lacking in H3.1/2, thus domains are protein modalities that mainly recognize methylated explaining the preference of BS69 toward H3.3K36me3 (23).
Recommended publications
  • FUSIP1 Polyclonal Antibody Catalog Number PA5-41929 Product Data Sheet
    Lot Number: A9C701N Website: thermofisher.com Customer Service (US): 1 800 955 6288 ext. 1 Technical Support (US): 1 800 955 6288 ext. 441 thermofisher.com/contactus FUSIP1 Polyclonal Antibody Catalog Number PA5-41929 Product Data Sheet Details Species Reactivity Size 100 µl Tested species reactivity Equine, Guinea Pig, Human, Mouse, Host / Isotype Rabbit IgG Rabbit, Rat Class Polyclonal Tested Applications Dilution * Type Antibody Immunohistochemistry (Paraffin) 4-8 µg/mL (IHC (P)) Immunogen Synthetic peptide directed towards the C-terminal of human FUSIP1 Western Blot (WB) 0.2-1 µg/mL Conjugate Unconjugated * Suggested working dilutions are given as a guide only. It is recommended that the user titrate the product for use in their own experiment using appropriate negative and positive controls. Form Liquid Concentration 0.5mg/mL Purification Affinity Chromatography Storage Buffer PBS with 2% sucrose Contains 0.09% sodium azide Storage Conditions -20° C, Avoid Freeze/Thaw Cycles Product Specific Information Peptide sequence: TDSKTHYKSG SRYEKESRKK EPPRSKSQSR SQSRSRSKSR SRSWTSPKSS Sequence homology: Guinea Pig: 100%; Horse: 100%; Human: 100%; Mouse: 100%; Rabbit: 100%; Rat: 100% Background/Target Information FUSIP1 is a member of the serine-arginine (SR) family of proteins, which is involved in constitutive and regulated RNA splicing. Members of this family are characterized by N-terminal RNP1 and RNP2 motifs, which are required for binding to RNA, and multiple C-terminal SR/RS repeats, which are important in mediating association with other cellular proteins. This protein can influence splice site selection of adenovirus E1A pre-mRNA. It interacts with the oncoprotein TLS, and abrogates the influence of TLS on E1A pre-mRNA splicing.This gene product is a member of the serine-arginine (SR) family of proteins, which is involved in constitutive and regulated RNA splicing.
    [Show full text]
  • FUSIP1 (SRSF10) (NM 006625) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221759 FUSIP1 (SRSF10) (NM_006625) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: FUSIP1 (SRSF10) (NM_006625) Human Tagged ORF Clone Tag: Myc-DDK Symbol: SRSF10 Synonyms: FUSIP1; FUSIP2; NSSR; PPP1R149; SFRS13; SFRS13A; SRp38; SRrp40; TASR; TASR1; TASR2 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC221759 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGTCCCGCTACCTGCGTCCCCCCAACACGTCTCTGTTCGTCAGGAACGTGGCCGACGACACCAGGTCTG AAGACTTGCGGCGTGAATTTGGTCGTTATGGTCCTATAGTTGATGTGTATGTTCCACTTGATTTCTACAC TCGCCGTCCAAGAGGATTTGCTTATGTTCAATTTGAGGATGTTCGTGATGCTGAAGACGCTTTACATAAT TTGGACAGAAAGTGGATTTGTGGACGGCAGATTGAAATACAGTTTGCCCAGGGGGATCGAAAGACACCAA ATCAGATGAAAGCCAAGGAAGGGAGGAATGTGTACAGTTCTTCACGCTATGATGATTATGACAGATACAG ACGTTCTAGAAGCCGAAGTTATGAAAGGAGGAGATCAAGAAGTCGGTCTTTTGATTACAACTATAGAAGA TCGTATAGTCCTAGAAACAGTAGACCGACTGGAAGACCACGGCGTAGCAGAAGCCATTCCGACAATGATA GACCAAACTGCAGCTGGAATACCCAGTACAGTTCTGCTTACTACACTTCAAGAAAGATC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA Protein Sequence: >RC221759 protein sequence Red=Cloning site Green=Tags(s) MSRYLRPPNTSLFVRNVADDTRSEDLRREFGRYGPIVDVYVPLDFYTRRPRGFAYVQFEDVRDAEDALHN
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases
    G C A T T A C G G C A T genes Review RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases Amber Willbanks, Shaun Wood and Jason X. Cheng * Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL 60637, USA; [email protected] (A.W.); [email protected] (S.W.) * Correspondence: [email protected] Abstract: Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases. Keywords: 5’ cap (5’ cap); 7-methylguanosine (m7G); R-loops; N6-methyladenosine (m6A); RNA editing; A-to-I; C-to-U; 2’-O-methylation (Nm); 5-methylcytosine (m5C); NOL1/NOP2/sun domain Citation: Willbanks, A.; Wood, S.; (NSUN); MYC Cheng, J.X. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes 2021, 12, 627.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(Methacrylic Acid-Co-Methyl Methacrylate) Beads
    Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(methacrylic acid-co-methyl methacrylate) Beads by Lindsay Elizabeth Fitzpatrick A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto © Copyright by Lindsay Elizabeth Fitzpatrick 2012 Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(methacrylic acid-co-methyl methacrylate) Beads Lindsay Elizabeth Fitzpatrick Doctorate of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto 2012 Abstract Poly(methacrylic acid -co- methyl methacrylate) beads were previously shown to have a therapeutic effect on wound closure through the promotion of angiogenesis. However, it was unclear how this polymer elicited its beneficial properties. The goal of this thesis was to characterize the host response to MAA beads by identifying molecules of interest involved in MAA-mediated angiogenesis (in comparison to poly(methyl methacrylate) beads, PMMA). Using a model of diabetic wound healing and a macrophage-like cell line (dTHP-1), eight molecules of interest were identified in the host response to MAA beads. Gene and/or protein expression analysis showed that MAA beads increased the expression of Shh, IL-1β, IL-6, TNF- α and Spry2, but decreased the expression of CXCL10 and CXCL12, compared to PMMA and no beads. MAA beads also appeared to modulate the expression of OPN. In vivo, the global gene expression of OPN was increased in wounds treated with MAA beads, compared to PMMA and no beads. In contrast, dTHP-1 decreased OPN gene expression compared to PMMA and no beads, but expressed the same amount of secreted OPN, suggesting that the cells decreased the expression of the intracellular isoform of OPN.
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • Enzyme DHRS7
    Toward the identification of a function of the “orphan” enzyme DHRS7 Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Selene Araya, aus Lugano, Tessin Basel, 2018 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt (Fakultätsverantwortlicher) und Prof. Dr. Michael Arand (Korreferent) Basel, den 26.6.2018 ________________________ Dekan Prof. Dr. Martin Spiess I. List of Abbreviations 3α/βAdiol 3α/β-Androstanediol (5α-Androstane-3α/β,17β-diol) 3α/βHSD 3α/β-hydroxysteroid dehydrogenase 17β-HSD 17β-Hydroxysteroid Dehydrogenase 17αOHProg 17α-Hydroxyprogesterone 20α/βOHProg 20α/β-Hydroxyprogesterone 17α,20α/βdiOHProg 20α/βdihydroxyprogesterone ADT Androgen deprivation therapy ANOVA Analysis of variance AR Androgen Receptor AKR Aldo-Keto Reductase ATCC American Type Culture Collection CAM Cell Adhesion Molecule CYP Cytochrome P450 CBR1 Carbonyl reductase 1 CRPC Castration resistant prostate cancer Ct-value Cycle threshold-value DHRS7 (B/C) Dehydrogenase/Reductase Short Chain Dehydrogenase Family Member 7 (B/C) DHEA Dehydroepiandrosterone DHP Dehydroprogesterone DHT 5α-Dihydrotestosterone DMEM Dulbecco's Modified Eagle's Medium DMSO Dimethyl Sulfoxide DTT Dithiothreitol E1 Estrone E2 Estradiol ECM Extracellular Membrane EDTA Ethylenediaminetetraacetic acid EMT Epithelial-mesenchymal transition ER Endoplasmic Reticulum ERα/β Estrogen Receptor α/β FBS Fetal Bovine Serum 3 FDR False discovery rate FGF Fibroblast growth factor HEPES 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid HMDB Human Metabolome Database HPLC High Performance Liquid Chromatography HSD Hydroxysteroid Dehydrogenase IC50 Half-Maximal Inhibitory Concentration LNCaP Lymph node carcinoma of the prostate mRNA Messenger Ribonucleic Acid n.d.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • ZFP207 Controls Pluripotency by Multiple Post-Transcriptional Mechanisms
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433507; this version posted March 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ZFP207 controls pluripotency by multiple post-transcriptional mechanisms Sandhya Malla1,2,3†, Devi Prasad Bhattarai1,2,3†, Dario Melguizo-Sanchis1,3, Ionut Atanasoai4, Paula Groza2,3, Ángel-Carlos Román5, Dandan Zhu6, Dung-Fang Lee6,7,8,9, Claudia Kutter4, Francesca Aguilo1,2,3* 1Department of Medical Biosciences, Umeå University, SE-901 85, Umeå, Sweden 2Department of Molecular Biology, Umeå University, SE-901 85, Umeå, Sweden 3Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85, Umeå, Sweden 4Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Science for Life Laboratory, SE-171 77, Stockholm, Sweden 5Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, 06071, Badajoz, Spain 6Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA 7Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA 8The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA 9Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA *Correspondence to: [email protected] †These authors contributed equally to this work Malla et.
    [Show full text]
  • Inhibition of SNW1 Association with Spliceosomal Proteins Promotes
    Cancer Medicine Open Access ORIGINAL RESEARCH Inhibition of SNW1 association with spliceosomal proteins promotes apoptosis in breast cancer cells Naoki Sato1, Masao Maeda2, Mai Sugiyama2, Satoko Ito2, Toshinori Hyodo2, Akio Masuda3, Nobuyuki Tsunoda1, Toshio Kokuryo1, Michinari Hamaguchi2, Masato Nagino1 & Takeshi Senga2 1Department of Surgical Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan 2Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan 3Division of Neurogenetics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan Keywords Abstract Apoptosis, EFTUD2, PRPF8, RNA splicing, SNRNP200, SNW1 RNA splicing is a fundamental process for protein synthesis. Recent studies have reported that drugs that inhibit splicing have cytotoxic effects on various Correspondence tumor cell lines. In this report, we demonstrate that depletion of SNW1, a Takeshi Senga, 65 Tsurumai, Showa, Nagoya component of the spliceosome, induces apoptosis in breast cancer cells. Proteo- 466-8550, Japan. Tel: 81-52-744-2463; mics and biochemical analyses revealed that SNW1 directly associates with Fax: 81-52-744-2464; other spliceosome components, including EFTUD2 (Snu114) and SNRNP200 E-mail: [email protected] (Brr2). The SKIP region of SNW1 interacted with the N-terminus of EFTUD2 Funding Information as well as two independent regions in the C-terminus of SNRNP200. Similar to This research was funded by a grant from SNW1 depletion, knockdown of EFTUD2 increased the numbers of apoptotic the Ministry of Education, Culture, Sports, cells. Furthermore, we demonstrate that exogenous expression of either the Science and Technology of Japan SKIP region of SNW1 or the N-terminus region of EFTUD2 significantly pro- (Nanomedicine molecular science, 23107010.
    [Show full text]
  • Discovering Protein-Binding RNA Motifs with a Generative Model of RNA Sequences T
    Computational Biology and Chemistry 84 (2020) 107171 Contents lists available at ScienceDirect Computational Biology and Chemistry journal homepage: www.elsevier.com/locate/cbac Research Article Discovering protein-binding RNA motifs with a generative model of RNA sequences T Byungkyu Park, Kyungsook Han* Department of Computer Engineering, Inha University, 22212 Incheon, South Korea ARTICLE INFO ABSTRACT Keywords: Recent advances in high-throughput experimental technologies have generated a huge amount of data on in- Protein-RNA interaction teractions between proteins and nucleic acids. Motivated by the big experimental data, several computational Binding motif methods have been developed either to predict binding sites in a sequence or to determine if an interaction exists Generator between protein and nucleic acid sequences. However, most of the methods cannot be used to discover new Long short-term memory network nucleic acid sequences that bind to a target protein because they are classifiers rather than generators. In this paper we propose a generative model for constructing protein-binding RNA sequences and motifs using a long short-term memory (LSTM) neural network. Testing the model for several target proteins showed that RNA sequences generated by the model have high binding affinity and specificity for their target proteins and that the protein-binding motifs derived from the generated RNA sequences are comparable to the motifs from experi- mentally validated protein-binding RNA sequences. The results are promising and we believe this approach will help design more efficient in vitro or in vivo experiments by suggesting potential RNA aptamers for a target protein. 1. Introduction protein-binding sites in the input nucleic sequence.
    [Show full text]