Towards a Phylogenetic Classification of Cordyceps

Total Page:16

File Type:pdf, Size:1020Kb

Towards a Phylogenetic Classification of Cordyceps Mycol. Res. 109 (1): 41–56 (January 2005). f The British Mycological Society 41 DOI: 10.1017/S095375620400139X Printed in the United Kingdom. Towards a phylogenetic classification of Cordyceps: ITS nrDNA sequence data confirm divergent lineages and paraphyly Øyvind STENSRUD1, Nigel L. HYWEL-JONES2 and Trond SCHUMACHER1 1 Division of Botany and Plant Physiology, Department of Biology, University of Oslo, P.O. Box 1045, Blindern, 0316 Oslo, Norway. 2 BIOTEC (Yothi-Research Unit), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency Building, 73/1 Rama VI Road, Rajdhevee, Bangkok 10400, Thailand. E-mail : [email protected] Received 1 June 2003; accepted 3 September 2004. The ascomycetous genus Cordyceps accommodates endoparasitic species that attack arthropods or other fungi. Analyses of ITS nrDNA sequence data of 72 taxa from the teleomorph genera Cordyceps, Claviceps, Epichloe¨, and the anamorph genera Akanthomyces, Beauveria, Metarhizium, Hirsutella, Hymenostilbe, Paecilomyces, Polycephalomyces, and Tolypocladium assigned the taxa to four main evolutionary lineages not reflected in the current classification of Cordyceps. Ten subclades were recognized from separate analyses of data subsets. Judged from the ITS phylogenies, Cordyceps spp. with branched stromata were highly supported as a divergent lineage. Host specificity was found to be of limited phylogenetic significance, and several host shifts are suggested to have occurred during the evolution of Cordyceps. Similar ascospore morphology was not reflected in the phyletic groups, and closely related taxa showed large interspecific variation with respect to the number of segments in which the ascospores are divided. However, combinations of selected characters were found to delimitate some lineages, e.g. all Cordyceps spp. that attack hosts in the insect orders Coleoptera and Lepidoptera, and with non-immersed perithecia and clavate to acicular, brightly yellowish to reddish stromata, constituted a separate clade. Furthermore, all Cordyceps spp. with perithecia obliquely immersed in the stroma were recognized as a distinct monophyletic group. This clade is additionally characterized by the formation of anamorphs ascribable to the genus Hymenostilbe. The mycogenous Cordyceps spp. grouped in a separate subclade, interspersed by two cicadaen parasites and all Tolypocladium spp. except T. parasiticum. Tolypocladium and Beauveria were found to be polyphyletic. The included Claviceps and Epichloe¨ taxa appeared to be derived within Cordyceps, thus making Cordyceps paraphyletic as suggested in other studies. INTRODUCTION capitate-stipitate stromata. The non-amyloid and apically thickened asci generally contain eight (or four Morphologically and ecologically the megagenus in C. sinensis; Kobayasi 1941) more or less filiform Cordyceps constitutes a well-defined group of patho- multiseptate ascospores that in most species undergo gens and parasites on arthropods (insects, spiders and fragmentation just before or after discharge. Relative mites) and hypogeous fungi (Elaphomyces spp.) to the large number of species, subdivisions into (Kobayasi 1941, 1982, Mains 1954, 1957, Kobayasi & infrageneric groups, e.g. subgenera and sections, have Shimizu 1960, 1977, Evans 1982). The genus is cosmo- been proposed in the classification of Cordyceps, politan in distribution (Hawksworth et al. 1995), and traditionally based on morphological and ecological to date approx. 450 taxa have been accommodated in (host relations) characters. Massee (1895) referred the Cordyceps. However, quite a number are expected to mycogenous species of Cordyceps to the genus Cordylia. represent mere taxonomic synonyms. Kobayasi (1982) In erecting the genus Ophiocordyceps, Petch (1931b) recognized y280 species in his synopsis of the genus, emphasized the microanatomy of clavate asci and several of which are depicted by Imazeki, Otani, & elongate-fusoid, non-fragmentating ascospores as diag- Hongo (1988). nostic characters. Kobayasi (1982) divided Cordyceps Cordyceps spp. are characterized by the development into three subgenera, Ophiocordyceps, Eucordyceps, of perithecioid ascomata that develop superficially or and Neocordyceps, putting emphasis on the direction are embedded in more or less acicular, clavate or of perithecial placement in the stroma, and type of Phylogenetic classification of Cordyceps 42 ascospore shape and septation. Within subgen. provided by Julian Mitchell). Taxon names and refer- Eucordyceps sect. Cystocarpon subsect. Eucystocarpon, ences to the included ITS sequences are listed in Table 1. Kobayasi (1982) recognized ser. Mycogenae that ac- Axenic culture isolates were maintained on water commodated the Elaphomyces inhabiting taxa. agar added antibiotics (tsWA; 1.5% agar sup- More recently, nuclear ribosomal DNA (nrDNA) plemented with 12.5 mg lx1 tetracycline and 25.0 mg lx1 sequence data have proved advantageous in studying streptomycin), 2.0% potato dextrose agar (PDA; species delimitation, anamorph–teleomorph connec- Difco Laboratories, Detroit, MI), and 2.0% potato tions, and evolutionary relationships in fungi (e.g. dextrose agar added antibiotics (tsPDA; PDA supple- Guadet et al. 1989, Hibbett 1992, LoBuglio, Pitt & mented with 12.5 mg lx1 tetracycline and 25.0 mg lx1 Taylor 1993, Holst-Jensen & Schumacher 1997, streptomycin). A piece of fertile stroma with the Schumacher & Holst-Jensen 1997, Hansen, Læssøe & perithecia directed downwards was glued inside a lid of Pfister 2001). In Cordyceps, several studies that also a 9 cm Petri dish containing tsPDA or tsWA, and include associated mitosporic anamorphs have been ascospores were allowed to discharge directly on the made; Rakotonirainy et al. (1991) compared LSU agar. Single, germinating, complete ascospores from rDNA sequences of Beauveria bassiana, Tolypocladium tsWA were transferred to PDA for colony growth. cylindrosporum,andT. extinguens and found the level Somatic cultures were obtained by transferring small of variation sufficient to discriminate among genera pieces (approx. 0.5 cm2) from internal tissues of stroma and species. In Metarhizium, the internal transcribed to tsPDA for colony growth, after submersion in 70% spacer (ITS) region of nrDNA resolved intra- and ethanol (20 s), household bleach (20 s), and dsH2O inter-species relationships, and efficiently demarcated (20 s). the genus from the hyphomycete genera Beauveria and Paecilomyces (Curran et al. 1994). Engh (1999) DNA extraction and PCR inferred three main evolutionary lineages in the study sample of twenty-one taxa of Cordyceps, Beauveria, Various protocols for DNA extraction were used in and Tolypocladium using ITS nrDNA sequences. this study, including the 2% CTAB miniprep method Nikoh & Fukatsu (2000) used nrDNA and mitochon- described by Murray & Thompson (1980), the micro- drial rDNA sequence data in inferring phyletic groups wave miniprep procedure described by Goodwin & among 22 representatives of Cordyceps, Beauveria, Lee (1993) and the Dynabeads R (Dynal, Oslo) Metarhizium, and Paecilomyces. Sung et al. (2001) DNA DirectTM System 1 extraction kit (Rudi et al. concluded that the genus Cordyceps was paraphyletic, 1997). based on phylogenetic analyses of SSU and LSU To obtain target DNA, PCR amplification was nrDNA sequence data in nine Cordyceps spp., includ- performed on a Genius Operator (Techne, Cambridge, ing other clavicipitaceous fungi as well. Cordyceps was UK) or a Biometra T gradient PCR machine observed to be paraphyletic also in the study by (Whatman Biometra, Go¨ ttingen), using the primer Artjariyasripong et al. (2001), who recognized four pairs ITS5/ITS4 or ITS1/ITS4 (White et al. 1990), and groups (clades) of taxa within the Clavicipitaceae based 40.0 ml totvols, consisting of 20.5 ml reaction mix on SSU and LSU nrDNA sequence data. [5 ml5mM ITS5 (or ITS1) primer, 5 ml5mM ITS4 In this study our goal was to infer the main evol- primer, 5 ml2mM dNTPs, 5 ml reaction buffer, 0.5 ml utionary lineages in Cordyceps, based on a broad (1 U) DyNAzymeTM II polymerase (Finnzymes Oy, sample of teleomorphic as well as anamorphic taxa Espoo)] and 19.5 ml20r diluted DNA template. A world-wide, using cladistic analyses of ITS nrDNA cyclic thermal program of an initial 4 min denaturation sequences. Secondly we wanted to see whether the step (94 xC), followed by 35 cycles of 40 s at 94 x current classification and previously proposed classifi- (denaturation), 40 s at 50 x (annealing), and 45 s at 72 x cation schemes reflect phylogenetically meaningful (synthesis), and termination with a 10 min elongation groups. step at 72 x was performed. A negative control (dsH2O) was included. Gel electrophoresis of PCR products was performed on a 1.5% agarose gel added 3 ml ethidium bromide MATERIALS AND METHODS per 50 ml Tris-Acetate-EDTA (TAE) buffer, using Morphological and molecular data were obtained from HaeIII digested bacteriophage WX174 as a standard fresh collections, axenic culture isolates and dried size marker. The gels were photographed under an specimens deposited in the fungal herbaria of Oslo (O), UV-trans-illuminator. Helsinki (H), Copenhagen (C), and ARON (Asco- mycete Research group of Oslo, Norway). Fresh DNA sequencing specimens were collected in 1997–2001 in Norway and Denmark. 26 complete ITS sequences (ITS1–5.8S- The forward and reverse strands of ITS nrDNA were ITS2) were obtained from herbarium specimens and manually and/or automatically sequenced, using one of axenic cultures. 73 additional ITS sequences were re- the
Recommended publications
  • Natasha Final 1202.Pdf (4.528Mb)
    University of São Paulo “Luiz de Queiroz” College of Agriculture Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth Natasha Sant´Anna Iwanicki Thesis presented to obtain the degreee of Doctor in Science. Area: Entomology Piracicaba 2020 UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth PhD THESIS 2020 – Natasha Sant´Anna Iwanicki Natasha Sant´Anna Iwanicki Agronomic Engineer Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth Advisors: Prof. Dr. ITALO DELALIBERA JUNIOR Prof. PhD and Dr. agro JØRGEN EILENBERG Co-advisor for transcriptomic studies: Associate professor PhD HENRIK H. DE FINE LICHT Thesis presented to obtain the double-degreee of Doctor in Science of the University of São Paulo and PhD at University of Copenhagen. Area: Entomology Piracicaba 2020 2 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA – DIBD/ESALQ/USP Iwanicki, Natasha Sant´Anna Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth / Natasha Sant´Anna Iwanicki. - - Piracicaba, 2020. 248 p. Tese (Doutorado) - - USP / Escola Superior de Agricultura “Luiz de Queiroz”. 1. Blastosporos 2. Fermentação líquida 3. Dimorfismo fúngico 4. Fungos entomopatogênicos I. Título 3 4 ACKNOWLEDGMENTS First, I would like to thank my supervisors, Prof. Italo Delalibera Júnior and Prof. Jørgen Eilenberg for their confidence in my potential as a student, for the opportunities they gave me and the knowledge they shared, for their guidance and friendship over these years. I also thank my co-advisors, Prof.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Multigene Phylogeny and Morphology Reveal a New Species, Ophiocordyceps Vespulae, from Jilin Province, China
    Phytotaxa 478 (1): 033–048 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.478.1.2 Multigene phylogeny and morphology reveal a new species, Ophiocordyceps vespulae, from Jilin Province, China FENG-YAO LONG1, 2, 6, LI-WU QIN3, 7, YUAN-PIN XIAO2, 4, 8, KEVIN D. HYDE4, 9, SHAO-XIAN WANG3, 10* & TING-CHI WEN1, 2, 5, 11* 1 School of Pharmacy, Guizhou University, Guiyang 550025, Guizhou, China. 2 The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China. 3 Changbai Mountain Academy of Sciences, Jilin Provincial Joint Key Laboratory of Changbai Mountains Biocoenosis & Biodiversity, Erdaobaihe 133613, Jilin, China. 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand. 5Mushroom Research Institute,Guizhou University,Guiyang,550025,China 6 [email protected]; https://orcid.org/0000-0002-5818-694X 7 [email protected]; https://orcid.org/0000-0002-5586-2885 8 [email protected]; https://orcid.org/0000-0003-1730-3545 9 [email protected]; https://orcid.org/0000-0002-2191-0762 10 [email protected]; https://orcid.org/0000-0002-0921-1790 11 [email protected]; https://orcid.org/0000-0003-1744-5869 *Corresponding author Abstract Ophiocordyceps is entomopathogenic and is the best studied genus in Ophiocordycipitaceae. Members of Ophiocordyceps and ants form sophisticated interactions. However, taxonomy and evolutionary relationships of this group of pathogens remain unclear. During a survey in Changbai Mountains, Jiling Province, China, a new entomogenous species, Ophiocordyceps vespulae sp.
    [Show full text]
  • The Genus Simplicillium
    A peer-reviewed open-access journal MycoKeys 60: 69–92 (2019) The genus Simplicillium 69 doi: 10.3897/mycokeys.60.38040 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The genus Simplicillium De-Ping Wei1,2,3,4, Dhanushka N. Wanasinghe3,5, Kevin D. Hyde2,4, Peter E. Mortimer3, Jianchu Xu3,5, Yuan-Pin Xiao2,6,7, Chitrabhanu S. Bhunjun2,7, Chaiwat To-anun1 1 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand3 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4 Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand5 World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, China 6 Engineering Research Center of Southwest Bio- Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, 550025, China 7 School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand Corresponding author: Peter E. Mortimer ([email protected]) Academic editor: Cecile Gueidan | Received 6 July2019 | Accepted 9 September 2019 | Published 19 November 2019 Citation: Wei D-P, Wanasinghe DN, Hyde KD, Mortimer PE, Xu J-C, Xiao Y-P, Bhunjun CS, To-anun C (2019) The genus Simplicillium. MycoKeys 60: 69–92. https://doi.org/10.3897/mycokeys.60.38040 Abstract Simplicillium species have a wide host range and an extensive distribution. Some species are associated with rusts, as well as other plant pathogenic fungi and play an important role in biological control.
    [Show full text]
  • Tropical Mycology: Volume 2, Micromycetes
    Tropical Mycology: Volume 2, Micromycetes Tropical Mycology: Volume 2, Micromycetes Edited by Roy Watling, Juliet C. Frankland, A.M. Ainsworth, Susan Isaac and Clare H. Robinson CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 212 481 7018 Fax: +44 (0)1491 833508 Fax: +1 212 686 7993 Email: [email protected] Email: [email protected] Web site: www.cabi-publishing.org © CAB International 2002. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Tropical mycology / edited by Roy Watling ... [et al.]. p. cm. Selected papers of the Millenium Symposium held April 2000 at the Liverpool John Moores University and organized by the British Mycological Society. Includes bibliographical references and index. Contents: v. 1. Macromycetes. ISBN 0-85199-542-X (v. 1 : alk. paper) 1. Mycology--Tropics--Congresses. 2. Fungi--Tropics--Congresses. I. Watling, Roy. QK615.7.T76 2001 616.9¢69¢00913--dc21 2001025877 ISBN 0 85199 543 8 Typeset in Photina by Wyvern 21 Ltd. Printed and bound in the UK by Biddles Ltd, Guildford and King’s Lynn. Contents Dedication vii Contributors ix Preface xi 1 Why Study Tropical Fungi? 1 D.L.
    [Show full text]
  • V.Woolleythesisfinalversion Corrections VWJWSR
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/129924 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Elucidating the natural function of cordycepin, a secondary metabolite of the fungus Cordyceps militaris, and its potential as a novel biopesticide in Integrated Pest Management By Victoria Clare Woolley A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Life Sciences University of Warwick, School of Life Sciences September 2018 Table of Contents List of Figures ......................................................................................................... 1 List of Tables ........................................................................................................... 3 Abbreviations .......................................................................................................... 4 Acknowledgements .................................................................................................. 6 Declarations ............................................................................................................ 7 Abstract ..................................................................................................................
    [Show full text]
  • Fungal Pathogens Occurring on <I>Orthopterida</I> in Thailand
    Persoonia 44, 2020: 140–160 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.06 Fungal pathogens occurring on Orthopterida in Thailand D. Thanakitpipattana1, K. Tasanathai1, S. Mongkolsamrit1, A. Khonsanit1, S. Lamlertthon2, J.J. Luangsa-ard1 Key words Abstract Two new fungal genera and six species occurring on insects in the orders Orthoptera and Phasmatodea (superorder Orthopterida) were discovered that are distributed across three families in the Hypocreales. Sixty-seven Clavicipitaceae sequences generated in this study were used in a multi-locus phylogenetic study comprising SSU, LSU, TEF, RPB1 Cordycipitaceae and RPB2 together with the nuclear intergenic region (IGR). These new taxa are introduced as Metarhizium grylli­ entomopathogenic fungi dicola, M. phasmatodeae, Neotorrubiella chinghridicola, Ophiocordyceps kobayasii, O. krachonicola and Petchia new taxa siamensis. Petchia siamensis shows resemblance to Cordyceps mantidicola by infecting egg cases (ootheca) of Ophiocordycipitaceae praying mantis (Mantidae) and having obovoid perithecial heads but differs in the size of its perithecia and ascospore taxonomy shape. Two new species in the Metarhizium cluster belonging to the M. anisopliae complex are described that differ from known species with respect to phialide size, conidia and host. Neotorrubiella chinghridicola resembles Tor­ rubiella in the absence of a stipe and can be distinguished by the production of whole ascospores, which are not commonly found in Torrubiella (except in Torrubiella hemipterigena, which produces multiseptate, whole ascospores). Ophiocordyceps krachonicola is pathogenic to mole crickets and shows resemblance to O. nigrella, O. ravenelii and O. barnesii in having darkly pigmented stromata. Ophiocordyceps kobayasii occurs on small crickets, and is the phylogenetic sister species of taxa in the ‘sphecocephala’ clade.
    [Show full text]
  • Identification of Rosellinia Species As Producers Of
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 96: 1–16 (2020). Identification of Rosellinia species as producers of cyclodepsipeptide PF1022 A and resurrection of the genus Dematophora as inferred from polythetic taxonomy K. Wittstein1,2, A. Cordsmeier1,3, C. Lambert1,2, L. Wendt1,2, E.B. Sir4, J. Weber1,2, N. Wurzler1,2, L.E. Petrini5, and M. Stadler1,2* 1Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany; 2German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany; 3University Hospital Erlangen, Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, Wasserturmstraße 3/5, Erlangen, 91054, Germany; 4Instituto de Bioprospeccion y Fisiología Vegetal-INBIOFIV (CONICET- UNT), San Lorenzo 1469, San Miguel de Tucuman, Tucuman, 4000, Argentina; 5Via al Perato 15c, Breganzona, CH-6932, Switzerland *Correspondence: M. Stadler, [email protected] Abstract: Rosellinia (Xylariaceae) is a large, cosmopolitan genus comprising over 130 species that have been defined based mainly on the morphology of their sexual morphs. The genus comprises both lignicolous and saprotrophic species that are frequently isolated as endophytes from healthy host plants, and important plant pathogens. In order to evaluate the utility of molecular phylogeny and secondary metabolite profiling to achieve a better basis for their classification, a set of strains was selected for a multi-locus phylogeny inferred from a combination of the sequences of the internal transcribed spacer region (ITS), the large subunit (LSU) of the nuclear rDNA, beta-tubulin (TUB2) and the second largest subunit of the RNA polymerase II (RPB2). Concurrently, various strains were surveyed for production of secondary metabolites.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • Cordyceps, Isaria, Lecanicillium, the Conidial States of Ascomycetes in Hypocreales—The Most Common and Best Metarhizium, Nomuraea and Many More)
    Richard A. Humber USDA-ARS Biological Integrated Pest Management HURRICANEHURRICANE WARNING!WARNING! ! RW Holley Center for Agriculture & Health 538 Tower Road, Ithaca, NY 14853, USA How changed nomenclatural rules [email protected] affect fungal entomopathogens ABSTRACT: The changes in the International Code of Nomenclature for fungi, that will accept only a single generic name in the future for all connected algae and plants (a new name!) adopted at the 2011 International Botanical conidial and sexual forms of fungal genera while suppressing all other linked Congress brought a mix of the good, the bad, and the ugly. Most people will genera; committees will have to choose which names to accept and to suppress, welcome the ability to publish descriptions and diagnoses of new taxa in English and will supposedly favor the earliest published applicable (sexual or conidial) (or Latin), and to publish new taxa in a wide range of online rather than print generic name. These changes in the Code will have disruptive and destabilizing media. Many people, however, may regard the elimination of dual nomen- effects for several years, and will affect few fungi more severely than hypo- clature for the conidial and sexual states of individual pleomorphic fungi (e.g., crealean entomopathogens (e.g., Beauveria, Cordyceps, Isaria, Lecanicillium, the conidial states of ascomycetes in Hypocreales—the most common and best Metarhizium, Nomuraea and many more). This poster explains the changes and known entomopathogenic conidial genera) to be an unfortunate step backward suggests what might be the probable (if, for many of us, unwelcomed) decisions forced by the adoption of a new standard referred to as ‘One Fungus = One that will probably be reached for these fungi.
    [Show full text]
  • Nuevos Registros De Hongos Entomopatógenos Del Género Cordyceps S
    Disponible en www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 88 (2017) 773–783 www.ib.unam.mx/revista/ Taxonomía y sistemática Nuevos registros de hongos entomopatógenos del género Cordyceps s. l. (Ascomycota: Hypocreales) del Estado de México New records of entomopathogenous fungi of the genus Cordyceps s. l. (Ascomycota: Hypocreales) from the State of México a a,∗ a Juan Carlos Pérez-Villamares , Cristina Burrola-Aguilar , Xóchitl Aguilar-Miguel , b c Tatiana Sanjuan y Esteban Jiménez-Sánchez a Centro de Investigación en Recursos Bióticos, Facultad de Ciencias, Universidad Autónoma del Estado de México, carretera Toluca-Atlacomulco, Km 14.5, 50200, Toluca, Estado de México, México b a Laboratorio de Micología y Fitopatología, Universidad de los Andes, Carrera 1 Núm. 18 -12, Bogotá 111711, Colombia c Laboratorio de Zoología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, México Recibido el 17 de noviembre de 2015; aceptado el 23 de mayo de 2017 Disponible en Internet el 14 de noviembre de 2017 Resumen Cordyceps s. l. es un género de hongos entomopatógenos muy poco estudiado en México, y debido a las escasas exploraciones se desconoce la diversidad de especies presentes en la región. Con el objetivo de contribuir al conocimiento de este grupo taxonómico, se realizaron recolectas en el sureste del Estado de México para determinar las especies de Cordyceps s. l. presentes en la región. Se examinaron en total 236 especímenes que se agrupan en 7 especies identificadas: Ophiocordyceps entomorrhiza, O. gracilioides, O.
    [Show full text]
  • Five New Species of Entomopathogenic Fungi from the Amazon and Evolution of Neotropical Ophiocordyceps
    Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical Ophiocordyceps Sanjuan, T. I., Franco-Molano, A. E., Kepler, R. M., Spatafora, J. W., Tabima, J., Vasco-Palacios, A. M., & Restrepo, S. (2015). Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical Ophiocordyceps. Fungal Biology, 119(10), 901-916. doi:10.1016/j.funbio.2015.06.010 10.1016/j.funbio.2015.06.010 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse fungal biology 119 (2015) 901e916 journal homepage: www.elsevier.com/locate/funbio Five new species of entomopathogenic fungi from the Amazon and evolution of neotropical Ophiocordyceps Tatiana I. SANJUANa,e,*, Ana E. FRANCO-MOLANOa, Ryan M. KEPLERb, Joseph W. SPATAFORAc, Javier TABIMAc,Aıda M. VASCO-PALACIOSa,d, Silvia RESTREPOe aLaboratorio de Taxonomıa y Ecologıa de Hongos, Universidad de Antioquia, Calle 67 No. 53 e 108, A.A. 1226 Medellın, Colombia bSystematic Mycology and Microbiology Laboratory, USDA, Bldg 011A Rm 212 BARC-W, Beltsville, MD 20705, USA cDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA dFundacion Biodiversa Colombia, Carrera 22 N 41 e 80 Apto. 004, 111311 Bogota D.C. Colombia eLaboratorio de Micologıa y Fitopatologıa, Universidad de Los Andes, Cra 1 No 18A- 12, Bogota 111711, Colombia article info abstract Article history: The neotropical biogeographic zone is a ‘hot spot’ of global biodiversity, especially for in- Received 20 January 2015 sects. Fungal pathogens of insects appear to track this diversity. However, the integration Received in revised form of this unique component of fungal diversity into molecular phylogenetic analyses remains 5 June 2015 sparse.
    [Show full text]