Identification of Entomopathogenic Fungi As Naturally Occurring
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Corythucha Arcuata
Rapid Pest Risk Analysis (PRA) for: Corythucha arcuata November 2018 Summary and conclusions of the rapid PRA This rapid PRA is an update of one produced in 2007 and shows that the oak lace bug has the potential to add strain to trees and ecosystems which are already under threat from other pests and environmental factors. This pest has been present in Europe for some time, but in recent years its distribution has either expanded, or its population levels have increased so there is greater evidence of the potential effects of this pest, though still many uncertainties. The ratings for establishment potential and economic impact remain unchanged, however, more evidence of the potential of this pest to move on wood and wood products has led to a raising of the risk of entry, and evidence from Europe suggests that this pest may have a greater potential environmental impact than previously rated. Risk of entry Although oak trees are the preferred host, there are a number of other tree species that can be potential hosts, and therefore entry has been assessed accordingly. Entry on plants for planting has been assessed as moderately likely with medium confidence. The oak lace bug is most likely to be associated with plants for planting when overwintering under loose bark scales and in crevices. Most plants imported into the UK are likely to be young trees, with few bark crevices. Larger trees do represent a significant 1 risk, as it would be difficult to determine if they were pest free, however the numbers are likely to be fewer. -
EPPO Reporting Service
ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2021-01 General 2021/001 New data on quarantine pests and pests of the EPPO Alert List 2021/002 Update on the situation of quarantine pests in the Russian Federation 2021/003 Update on the situation of quarantine pests in Tajikistan 2021/004 Update on the situation of quarantine pests in Uzbekistan 2021/005 New and revised dynamic EPPO datasheets are available in the EPPO Global Database Pests 2021/006 Anoplophora glabripennis eradicated from Austria 2021/007 Popillia japonica is absent from Germany 2021/008 First report of Scirtothrips aurantii in Spain 2021/009 Agrilus planipennis found in Saint Petersburg, Russia 2021/010 First report of Spodoptera frugiperda in Syria 2021/011 Spodoptera frugiperda found in New South Wales, Australia 2021/012 Spodoptera ornithogalli (Lepidoptera Noctuidae - yellow-striped armyworm): addition to the EPPO Alert List 2021/013 First report of Xylosandrus compactus in mainland Spain 2021/014 First report of Eotetranychus lewisi in mainland Portugal 2021/015 First report of Meloidogyne chitwoodi in Spain 2021/016 Update on the situation of the potato cyst nematodes Globodera rostochiensis and G. pallida in Portugal Diseases 2021/017 First report of tomato brown rugose fruit virus in Belgium 2021/018 Update on the situation of tomato brown rugose fruit virus in Spain 2021/019 Update on the situation of Acidovorax citrulli in Greece with findings -
Natasha Final 1202.Pdf (4.528Mb)
University of São Paulo “Luiz de Queiroz” College of Agriculture Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth Natasha Sant´Anna Iwanicki Thesis presented to obtain the degreee of Doctor in Science. Area: Entomology Piracicaba 2020 UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth PhD THESIS 2020 – Natasha Sant´Anna Iwanicki Natasha Sant´Anna Iwanicki Agronomic Engineer Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth Advisors: Prof. Dr. ITALO DELALIBERA JUNIOR Prof. PhD and Dr. agro JØRGEN EILENBERG Co-advisor for transcriptomic studies: Associate professor PhD HENRIK H. DE FINE LICHT Thesis presented to obtain the double-degreee of Doctor in Science of the University of São Paulo and PhD at University of Copenhagen. Area: Entomology Piracicaba 2020 2 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA – DIBD/ESALQ/USP Iwanicki, Natasha Sant´Anna Advances in Metarhizium blastospores production and formulation and transcriptome studies of the yeast and filamentous growth / Natasha Sant´Anna Iwanicki. - - Piracicaba, 2020. 248 p. Tese (Doutorado) - - USP / Escola Superior de Agricultura “Luiz de Queiroz”. 1. Blastosporos 2. Fermentação líquida 3. Dimorfismo fúngico 4. Fungos entomopatogênicos I. Título 3 4 ACKNOWLEDGMENTS First, I would like to thank my supervisors, Prof. Italo Delalibera Júnior and Prof. Jørgen Eilenberg for their confidence in my potential as a student, for the opportunities they gave me and the knowledge they shared, for their guidance and friendship over these years. I also thank my co-advisors, Prof. -
To Corythucha Arcuata (Say, 1832) Attack
Physiological responses of pedunculate oak (Quercus robur L.) to Corythucha arcuata (Say, 1832) attack Nataša Nikolić1,*, Andrej Pilipović2, Milan Drekić2, Danijela Kojić1, Leopold Poljaković-Pajnik2, Saša Orlović2 and Danijela Arsenov1 1Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obrodovića 3, Novi Sad, Republic of Serbia 2Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13, Novi Sad, Republic of Serbia *Corresponding author: [email protected] Received: September 27, 2018; Revised: November 30, 2018; Accepted: December 14, 2018 Abstract: The spread and occurrence of the oak lace bug Corythucha arcuata out of its natural distribution area across European and Asian countries has been reported during the past decades. The ecological and economic significance of oak stands and the vulnerability of plants to various abiotic and/or biotic factors requires in-depth knowledge of plant-pest interaction. The present study examined the influence of C. arcuata feeding on the photosynthetic characteristics and gas-exchange parameters, mineral nutrient concentrations and defense mechanisms (the activities of some antioxidant enzymes) of leaves of pedunculate oak. The rate of photosynthesis, transpiration and stomatal conductance were lowered by 58.84, 21.66 and 35.71%, respectively, in comparison to non- infested plants. The concentrations of photosynthetic pigments and activities of antioxidant enzymes, catalase and ascorbate peroxidase, were affected by the presence of C. arcuata. To our knowledge this is the first paper providing a report on the physiological responses of Q. robur plants exposed to C. arcuata infestation. Understanding the impact of pests, such as the invasive species C. -
Sub-Lethal Effects of Lecanicillium Lecanii
agriculture Article Sub-Lethal Effects of Lecanicillium lecanii (Zimmermann)-Derived Partially Purified Protein and Its Potential Implication in Cotton (Gossypium hirsutum L.) Defense against Bemisia tabaci Gennadius (Aleyrodidae: Hemiptera) Yusuf Ali Abdulle 1,†, Talha Nazir 1,2,*,† , Samy Sayed 3 , Samy F. Mahmoud 4 , Muhammad Zeeshan Majeed 5 , Hafiz Muhammad Usman Aslam 6, Zubair Iqbal 7, Muhammad Shahid Nisar 2, Azhar Uddin Keerio 1, Habib Ali 8 and Dewen Qiu 1 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (Y.A.A.); [email protected] (A.U.K.); [email protected] (D.Q.) 2 Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan 32200, Pakistan; [email protected] 3 Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] Citation: Abdulle, Y.A.; Nazir, T.; 4 Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Sayed, S.; Mahmoud, S.F.; Majeed, [email protected] M.Z.; Aslam, H.M.U.; Iqbal, Z.; Nisar, 5 Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; M.S.; Keerio, A.U.; Ali, H.; et al. [email protected] 6 Sub-Lethal Effects of Lecanicillium Department of Plant Pathology, Institute of Plant Protection (IPP), MNS-University of Agriculture, lecanii (Zimmermann)-Derived -
EPPO Reporting Service
ORGANISATION EUROPEENNE EUROPEAN AND ET MEDITERRANEENNE MEDITERRANEAN POUR LA PROTECTION DES PLANTES PLANT PROTECTION ORGANIZATION EPPO Reporting Service NO. 4 PARIS, 2018-04 General 2018/068 New data on quarantine pests and pests of the EPPO Alert List 2018/069 Quarantine lists of Kazakhstan (2017) 2018/070 EPPO report on notifications of non-compliance 2018/071 EPPO communication kits: templates for pest-specific posters and leaflets 2018/072 Useful publications on Spodoptera frugiperda Pests 2018/073 First report of Tuta absoluta in Tajikistan 2018/074 First report of Tuta absoluta in Lesotho 2018/075 First reports of Grapholita packardi and G. prunivora in Mexico 2018/076 First report of Scaphoideus titanus in Ukraine 2018/077 First report of Epitrix hirtipennis in France 2018/078 First report of Lema bilineata in Italy 2018/079 Eradication of Anoplophora glabripennis in Brünisried, Switzerland 2018/080 Update on the situation of Anoplophora glabripennis in Austria Diseases 2018/081 First report of Ceratocystis platani in Turkey 2018/082 Huanglongbing and citrus canker are absent from Egypt 2018/083 Xylella fastidiosa eradicated from Switzerland 2018/084 Update on the situation of Ralstonia solanacearum on roses in Switzerland 2018/085 First report of ‘Candidatus Phytoplasma fragariae’ in Slovenia Invasive plants 2018/086 Ambrosia artemisiifolia control in agricultural areas in North-west Italy 2018/087 Optimising physiochemical control of invasive Japanese knotweed 2018/088 Update on LIFE project IAP-RISK 2018/089 Conference: Management and sharing of invasive alien species data to support knowledge-based decision making at regional level (2018-09-26/28, Bucharest, Romania) 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 E-mail: [email protected] 75011 Paris Fax: 33 1 70 76 65 47 Web: www.eppo.int EPPO Reporting Service 2018 no. -
Final Report
Final Report Project title (Acronym) Corythucha arcuata (Heteroptera, Tingidae): Evaluation of the pest status in Europe and development of survey, control and management strategies Short title – Oak Lace Bug In Europe (OLBIE) Project duration: Start date: 01-04-19 End date: 31-03-21 1 Euphresco project report Contents 1. Research consortium partners ........................................................................................................ 3 2. Short project report......................................................................................................................... 5 2.1. Short executive summary ............................................................................................................ 5 2.2. Project aims ................................................................................................................................. 5 2.3. Description of the main activities ................................................................................................ 6 2.4. Main results ................................................................................................................................. 6 2.4.1. Review evidence of impacts .................................................................................................... 6 2.4.2. Prevention and detection ...................................................................................................... 10 2.4.2.1. Developing early detection and surveying techniques/protocols for Corythucha arcuata 10 2.4.2.2. -
The Genus Simplicillium
A peer-reviewed open-access journal MycoKeys 60: 69–92 (2019) The genus Simplicillium 69 doi: 10.3897/mycokeys.60.38040 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The genus Simplicillium De-Ping Wei1,2,3,4, Dhanushka N. Wanasinghe3,5, Kevin D. Hyde2,4, Peter E. Mortimer3, Jianchu Xu3,5, Yuan-Pin Xiao2,6,7, Chitrabhanu S. Bhunjun2,7, Chaiwat To-anun1 1 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand3 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4 Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand5 World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, China 6 Engineering Research Center of Southwest Bio- Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, 550025, China 7 School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand Corresponding author: Peter E. Mortimer ([email protected]) Academic editor: Cecile Gueidan | Received 6 July2019 | Accepted 9 September 2019 | Published 19 November 2019 Citation: Wei D-P, Wanasinghe DN, Hyde KD, Mortimer PE, Xu J-C, Xiao Y-P, Bhunjun CS, To-anun C (2019) The genus Simplicillium. MycoKeys 60: 69–92. https://doi.org/10.3897/mycokeys.60.38040 Abstract Simplicillium species have a wide host range and an extensive distribution. Some species are associated with rusts, as well as other plant pathogenic fungi and play an important role in biological control. -
Fungal Pathogens Occurring on <I>Orthopterida</I> in Thailand
Persoonia 44, 2020: 140–160 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.06 Fungal pathogens occurring on Orthopterida in Thailand D. Thanakitpipattana1, K. Tasanathai1, S. Mongkolsamrit1, A. Khonsanit1, S. Lamlertthon2, J.J. Luangsa-ard1 Key words Abstract Two new fungal genera and six species occurring on insects in the orders Orthoptera and Phasmatodea (superorder Orthopterida) were discovered that are distributed across three families in the Hypocreales. Sixty-seven Clavicipitaceae sequences generated in this study were used in a multi-locus phylogenetic study comprising SSU, LSU, TEF, RPB1 Cordycipitaceae and RPB2 together with the nuclear intergenic region (IGR). These new taxa are introduced as Metarhizium grylli entomopathogenic fungi dicola, M. phasmatodeae, Neotorrubiella chinghridicola, Ophiocordyceps kobayasii, O. krachonicola and Petchia new taxa siamensis. Petchia siamensis shows resemblance to Cordyceps mantidicola by infecting egg cases (ootheca) of Ophiocordycipitaceae praying mantis (Mantidae) and having obovoid perithecial heads but differs in the size of its perithecia and ascospore taxonomy shape. Two new species in the Metarhizium cluster belonging to the M. anisopliae complex are described that differ from known species with respect to phialide size, conidia and host. Neotorrubiella chinghridicola resembles Tor rubiella in the absence of a stipe and can be distinguished by the production of whole ascospores, which are not commonly found in Torrubiella (except in Torrubiella hemipterigena, which produces multiseptate, whole ascospores). Ophiocordyceps krachonicola is pathogenic to mole crickets and shows resemblance to O. nigrella, O. ravenelii and O. barnesii in having darkly pigmented stromata. Ophiocordyceps kobayasii occurs on small crickets, and is the phylogenetic sister species of taxa in the ‘sphecocephala’ clade. -
Identification of Rosellinia Species As Producers Of
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 96: 1–16 (2020). Identification of Rosellinia species as producers of cyclodepsipeptide PF1022 A and resurrection of the genus Dematophora as inferred from polythetic taxonomy K. Wittstein1,2, A. Cordsmeier1,3, C. Lambert1,2, L. Wendt1,2, E.B. Sir4, J. Weber1,2, N. Wurzler1,2, L.E. Petrini5, and M. Stadler1,2* 1Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany; 2German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany; 3University Hospital Erlangen, Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, Wasserturmstraße 3/5, Erlangen, 91054, Germany; 4Instituto de Bioprospeccion y Fisiología Vegetal-INBIOFIV (CONICET- UNT), San Lorenzo 1469, San Miguel de Tucuman, Tucuman, 4000, Argentina; 5Via al Perato 15c, Breganzona, CH-6932, Switzerland *Correspondence: M. Stadler, [email protected] Abstract: Rosellinia (Xylariaceae) is a large, cosmopolitan genus comprising over 130 species that have been defined based mainly on the morphology of their sexual morphs. The genus comprises both lignicolous and saprotrophic species that are frequently isolated as endophytes from healthy host plants, and important plant pathogens. In order to evaluate the utility of molecular phylogeny and secondary metabolite profiling to achieve a better basis for their classification, a set of strains was selected for a multi-locus phylogeny inferred from a combination of the sequences of the internal transcribed spacer region (ITS), the large subunit (LSU) of the nuclear rDNA, beta-tubulin (TUB2) and the second largest subunit of the RNA polymerase II (RPB2). Concurrently, various strains were surveyed for production of secondary metabolites. -
What If Esca Disease of Grapevine Were Not a Fungal Disease?
Fungal Diversity (2012) 54:51–67 DOI 10.1007/s13225-012-0171-z What if esca disease of grapevine were not a fungal disease? Valérie Hofstetter & Bart Buyck & Daniel Croll & Olivier Viret & Arnaud Couloux & Katia Gindro Received: 20 March 2012 /Accepted: 1 April 2012 /Published online: 24 April 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Esca disease, which attacks the wood of grape- healthy and diseased adult plants and presumed esca patho- vine, has become increasingly devastating during the past gens were widespread and occurred in similar frequencies in three decades and represents today a major concern in all both plant types. Pioneer esca-associated fungi are not trans- wine-producing countries. This disease is attributed to a mitted from adult to nursery plants through the grafting group of systematically diverse fungi that are considered process. Consequently the presumed esca-associated fungal to be latent pathogens, however, this has not been conclu- pathogens are most likely saprobes decaying already senes- sively established. This study presents the first in-depth cent or dead wood resulting from intensive pruning, frost or comparison between the mycota of healthy and diseased other mecanical injuries as grafting. The cause of esca plants taken from the same vineyard to determine which disease therefore remains elusive and requires well execu- fungi become invasive when foliar symptoms of esca ap- tive scientific study. These results question the assumed pear. An unprecedented high fungal diversity, 158 species, pathogenicity of fungi in other diseases of plants or animals is here reported exclusively from grapevine wood in a single where identical mycota are retrieved from both diseased and Swiss vineyard plot. -
Entomopathogenic Fungal Identification
Entomopathogenic Fungal Identification updated November 2005 RICHARD A. HUMBER USDA-ARS Plant Protection Research Unit US Plant, Soil & Nutrition Laboratory Tower Road Ithaca, NY 14853-2901 Phone: 607-255-1276 / Fax: 607-255-1132 Email: Richard [email protected] or [email protected] http://arsef.fpsnl.cornell.edu Originally prepared for a workshop jointly sponsored by the American Phytopathological Society and Entomological Society of America Las Vegas, Nevada – 7 November 1998 - 2 - CONTENTS Foreword ......................................................................................................... 4 Important Techniques for Working with Entomopathogenic Fungi Compound micrscopes and Köhler illumination ................................... 5 Slide mounts ........................................................................................ 5 Key to Major Genera of Fungal Entomopathogens ........................................... 7 Brief Glossary of Mycological Terms ................................................................. 12 Fungal Genera Zygomycota: Entomophthorales Batkoa (Entomophthoraceae) ............................................................... 13 Conidiobolus (Ancylistaceae) .............................................................. 14 Entomophaga (Entomophthoraceae) .................................................. 15 Entomophthora (Entomophthoraceae) ............................................... 16 Neozygites (Neozygitaceae) ................................................................. 17 Pandora