Vapor Pressure Measurements on Low-Volatility Terpenoid

Total Page:16

File Type:pdf, Size:1020Kb

Vapor Pressure Measurements on Low-Volatility Terpenoid Environ. Sci. Technol. 2010, 44, 388–393 their role in cloud formation (1, 9). However, there is still Vapor Pressure Measurements on substantial uncertainty associated with the treatment of SOAs Low-Volatility Terpenoid Compounds in global climate models. For example, SOA formation depends directly on the vapor pressures of the constituent by the Concatenated Gas Saturation compounds (1, 9, 10), but only a few vapor pressure measurements have been made on these compounds Method (1, 8, 11-14). Consequently, models of aerosol formation have to rely on estimated values of vapor pressure for aerosol JASON A. WIDEGREN AND precursors (9). For this reason, a recent review of organic THOMAS J. BRUNO* aerosols and global climate modeling concluded that accurate measurements of vapor pressure (and enthalpy of vaporiza- Thermophysical Properties Division, National Institute of tion/sublimation) are needed in order to decrease the Standards and Technology, 325 Broadway, Boulder, Colorado 80305 uncertainty in global climate models (1). The lack of known vapor pressures for monoterpenoid compounds illustrates a broader need for vapor pressure Received August 28, 2009. Revised manuscript received measurements on low-volatility compounds for scientific and November 20, 2009. Accepted November 23, 2009. environmental applications (15-17). Typically, for organic compounds with high molar mass, the best one can hope to find in the literature is a single measurement at high The atmospheric oxidation of monoterpenes plays a central temperature (such as a boiling temperature). Even when a role in the formation of secondary organic aerosols (SOAs), high temperature measurement has been reported, it often has a large uncertainty because of thermal decomposition which have important effects on the weather and climate. or other reasons, which can force a reliance on group However, models of SOA formation have large uncertainties. contribution estimates (18). One reason for this is that SOA formation depends directly on The vapor pressures of compounds of high molar mass the vapor pressures of the monoterpene oxidation products, are typically less than 1 kPa at temperatures below 323 K (the but few vapor pressures have been reported for these compounds. temperature range of greatest concern for environmental As a result, models of SOA formation have had to rely on and climate studies), which limits the number of useful vapor estimated values of vapor pressure. To alleviate this problem, pressure measurement methods (16, 19). Methods that we have developed the concatenated gas saturation method, directly measure the pressure exerted by the vapor phase which is a simple, reliable, high-throughput method for measuring (e.g., static gauged bombs and ebulliometry) are often not the vapor pressures of low-volatility compounds. The suited to measurements on low-volatility samples for multiple reasons. First, the contributions of volatile impurities to concatenated gas saturation method represents a significant measured pressures can be significant at extremely low advance over traditional gas saturation methods. Instead of a impurity mole fractions (19, 20). The reason, of course, is single saturator and trap, the concatenated method uses that impurities can have vapor pressures that are orders of several pairs of saturators and traps linked in series. Consequently, magnitude greater than that of the sample compound. several measurements of vapor pressure can be made Second, these methods typically require sample masses of simultaneously, which greatly increases the rate of data at least a few grams. Obviously, large amounts of highly pure collection. It also allows for the simultaneous measurement of material are difficult to obtain for many compounds of a control compound, which is important for ensuring data environmental interest. quality. In this paper we demonstrate the use of the concatenated A variety of “indirect” methods are capable of measuring the vapor pressures of low-volatility compounds (11-14, 16, gas saturation method by determination of the vapor pressures - of five monoterpene oxidation products and n-tetradecane 21 27). However, the gas saturation method and the effusion - method (when high-purity samples are available) are gener- (the control compound) over the temperature range 283.15 313.15 ally considered to be the most accurate of these methods for K. Over this temperature range, the vapor pressures ranged low vapor pressures (16). The gas saturation method (16, from about 0.5 Pa to about 70 Pa. The standard molar enthalpies 19-21, 28-32) is a simple technique that involves the of vaporization or sublimation were determined by use of the saturation of a carrier gas stream with the vapor of a Clausius-Clapeyron equation. condensed phase of the compound of interest. The most common approach is to strip the vapor from a measured volume of the saturated carrier gas using an adsorber or cold Introduction trap, and then measure the recovered mass with an ap- Globally, vegetation emits a tremendous quantity of volatile propriate analytical method. The vapor pressure is then organic compounds (VOCs) (1-5). Annually, plants and trees calculated with the ideal gas equation, eq 1, emit more than 1012 kg of carbon as VOCs, about 40% of ) · · · which is isoprene (2-5). The balance of these emissions is psat (m R T)/(V M) (1) mostly monoterpenes such as R- and -pinene. In the atmosphere, monoterpenes are readily oxidized to less where psat is the vapor pressure, m is the recovered mass of volatile “monoterpenoid” compounds, which then form the vapor, R is the gas constant, T is the temperature of the aerosols (1, 5-8). Such secondary organic aerosols (SOAs) saturator, V is the volume of carrier gas at the temperature have an important impact on climate because of the way and pressure of the saturator, and M is the molar mass of the that they scatter and absorb solar radiation, and because of compound. The gas saturation method has several key advantages * Corresponding author phone: (303) 497-5158; fax: (303) 497- (16, 21, 27, 28). Calibration is not required. Impurities have 5927; e-mail: [email protected]. a relatively small effect on the measured vapor pressures, 388 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 44, NO. 1, 2010 10.1021/es9026216 2010 U.S. Government Published on Web 12/10/2009 SCHEME 1. Chemical Structures and Abbreviations for the Monoterpenoids Studied FIGURE 1. A concatenated gas saturation apparatus featuring several saturator-adsorber pairs linked in series. The apparatus assuming that a technique such as gas chromatography is used for this study has 18 saturator-adsorber pairs (X ) 14). used to determine the amount of solute vapor, so samples of limited purity can be used. Little sample is needed for a measurement (typically tens of milligrams or less), again cylinder to facilitate mass determinations. SF6 was chosen assuming that a sensitive analytical method is used to as the carrier gas for a variety of reasons: it is inert, it is determine the amount of vapor. Finally, such an apparatus less prone to leak than gases like nitrogen or argon, is simple and inexpensive to build and operate. On the other diffusion in SF6 is relatively slow (mass transfer by diffusion hand, traditional gas saturation methods have two significant is undesirable in this system), and its high density facilitates drawbacks. First, measurement periods can be quite long if mass determinations (see below). a large volume of carrier gas is needed in order to collect a Concatenated Gas Saturation Apparatus. The apparatus sufficient amount of vapor for analysis. Second, the method used for these measurements was designed and constructed is susceptible to certain types of systematic errors (e.g., leaks) at NIST. A detailed description of the apparatus is published that can be difficult to detect. in a recent paper (34), so only an overview of the principal The “concatenated” gas saturation method (21) was components is given here. It is also worth noting that this developed in order to compensate for the drawbacks apparatus is similar to an earlier apparatus for which a mentioned above. In this type of apparatus, several saturator- detailed description has also been published (21). The adsorber pairs are linked in series, so that multiple measure- principal components of the apparatus are illustrated ments can be made simultaneously with the same carrier schematically in Figure 1. The carrier gas supply includes an gas stream. This approach greatly speeds data collection. It aluminum gas cylinder, pressure regulator, and flow con- also allows for strategies that ensure data quality. For example, troller. The cylinder-regulator assembly must be removed a control compound with a well-known vapor pressure can between measurements to determine the mass of carrier gas be measured simultaneously with the sample compounds. that was used. To facilitate this procedure, it is connected If the measurement yields the expected vapor pressure for to the flow controller by a short stainless steel capillary with the control compound, one has a high level of confidence a valve at each end. Closing these two valves allows the in the other measurements that were made simultaneously. cylinder-regulator assembly to be removed with the loss of The concatenated gas saturation method can make a only the capillary’s volume of carrier gas (approximately 1 valuable contribution to vapor pressure measurements on mg of SF6). Carrier gas from the flow controller first passes environmentally important compounds. By use of a recently through an adsorbent column packed with the porous constructed apparatus with 18 saturator-adsorber pairs, we polymer adsorbent poly(2,6-diphenyl-1,4-phenylene oxide) demonstrate the utility of the method with a series of (33, 35-37). The gas then flows through the 18 saturator- monoterpenoid compounds. The monoterpenoids were (+)- adsorber pairs. The saturators are located inside a forced- carvone (CAR), (1S,2S,5S)-(-)-2-hydroxy-3-pinanone (HP), air, temperature-controlled chamber and consist of PTFE (1R,2R,3R,5S)-(-)-isopinocampheol (IPC), (+)-trans-myr- tubes (1 m in length with an inside diameter of 0.48 cm) tanol (TM), and (-)-trans-pinocarveol (TPC).
Recommended publications
  • Mint and Mint Oil Profile New York State Integrated Pest Management Cornell Cooperative Extension Program
    http://hdl.handle.net/1813/56133 Mint and Mint Oil Profile New York State Integrated Pest Management Cornell Cooperative Extension Program Mint and Mint Oil Profile Active Ingredient Eligible for Minimum Risk Pesticide Use Brian P. Baker and Jennifer A. Grant New York State Integrated Pest Management, Cornell University, Geneva NY Label Display Names: Cornmint, Cornmint oil, U.S. EPA PC Code: 128800 (Peppermint is also Spearmint, Spearmint oil cross referenced under the listing for mint and mint oil) Active Components: Carvone, Menthol, pulegone, limonene, linarin, pinene, piperitone, linalool, and CA DPR Chem Code: Not Found various other terpenoids, alcohols, esters, and hydrocarbons Other Names: Cornmint oil, spearmint oil, men- thol oil, spearmint terpenes CAS Registry #s: 8008-79-5 (Spearmint oil) Other Codes: 68917-18-0 (Cornmint oil) Cornmint oil—FEMA: 4219; EINECS: 290-058-5; HT: None (Cornmint and Spearmint) 3301.25 Spearmint oil—FEMA: 3032; EINECS: 283-656- HT: 3301.25; RTECS: WG7360000 Summary: Mint and mint oils are a class of active ingredients derived from selected members of the plant genus Mentha. Primary sources include cornmint, peppermint, and spearmint. Active substances contained in the plants and essential oils in this class include menthol, carvone, and various other ter- penoids. Peppermint and spearmint are commonly used food ingredients; cornmint is used as a food ingredient in some Asian cuisines and is a major source of food-grade menthol used as a flavoring agent. As a pesticide, mint and mint oils work primarily through non-toxic modes of action as repellents, but also have anti-microbial properties. Peppermint is covered in a separate profile.
    [Show full text]
  • United States Patent Patented Dec
    Mice 3,293,301 United States Patent Patented Dec. 20, 1966 1 2 tional acid per mole of carvoxime at the beginning of the 3,293,301 hydrolysis. Phosphoric acid is the preferred additional PREPARATION OF CARVONE acid. John M. Derfer, Jacksonville, Bernard J. Kane, Atlantic Also, by using an acceptor for the hydroxylamine it is Beach, and Donald G. Young, Jacksonville, Fla., as not necessary to remove the carvone during the hydrolysis signors to The Glidden Company, Cleveland, Ohio, a as in Reitsema, since there is an equilibrium between corporation of Ohio No Drawing. Filed Apr. 7, 1964, Ser. No. 358,051 carvoxime and its hydrolysis products, carvone and hy- ' 13 Claims. (Cl. 260-—-587) droxylamine, and the reaction can be carried to comple tion before any recovery of the carvone is required. The present invention relates to the preparation of We have found that the objects of the invention can be carvone. achieved when the reactions are carried ‘out in a suitable 'Carvone is an important constituent of many essential solvent such as a lower aliphatic alkanol. The preferred oils. About 65% of spearmint oil is l-carvone and d solvent is isopropyl alcohol. But any other solvent for carvone is the chief constituent of caraway and dill seed carvoxime and carvone which is water soluble, nonreac oils. 15 tive with the reacting materials, and which has a boiling The preparation of l-carvone from d-limonene has been point of at least about 75° C, or higher can be used. described by Bordenca et al., Ind. and Eng.
    [Show full text]
  • United States Patent Office
    - 2,837,570 United States Patent Office Patented June 3, 1958 2 thesis of l-carvone from d-limonene glycol are repre sented as follows, along with the structural formulae of 2,837,570 l-carvone, d-limonene and d-limonene monoxide. For purposes of illustration, the intermediate substitution METHOD OF PREPARNG CARVONE 5 product formed in the dehydration and hydrolysis of the Seymour M. Linder, Eggertsville, and Frank P. Green 1-hydroxyhydrocarvone is represented as the semicar span, Buffalo, N.Y., assignors to Food Machinery and . bazone derivative of that compound. Chemical Corporation, San Jose, Calif. (His GH, CE No Drawing. Application March 21, 1956 -o COH Serial No. 572,789 10 6 Claims. (C. 260-587) Hic bH, C bH, NHMC NH/ 5 This invention relates to a method for preparing 1-car S n vone, and particularly to a method for preparing 1-car C /'sCH HC /o CH vone from d-limonene and certain d-limonene deriva : - d-limonene monoxide d-limonene glycol - tives. (H, CH 1-Carvone, the levoratory form of carvone, by reason COE O of its minty odor and flavor has found wide acceptance 20 / in the prepartion of cosmetics and comestibles. Typi HaC Yo-NNENH cally, it is used as a flavoring and perfuming ingredient for toothpaste, mouth wash, chewing gum and mint can dies. 1-Carvone is expensive, presently being obtained 25 from principally from spearmint oil in which it occurs / Sn naturally. HC CH The high cost combined with the usefulness of 1-car -carvone vone offers a strong incentive to chemists to devise syn thetic methods for preparing the material.
    [Show full text]
  • Alternative Solvents in Carvone Hydrogenation
    Catarina Isabel Cabral de Carvalho e Melo Mestrado Integrado em Engenharia Química e Bioquímica Alternative Solvents in Carvone Hydrogenation Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquimica Orientadora: Dra Ewa Bogel-Łukasik Júri: Presidente: Prof. Doutor Manuel Nunes da Ponte Arguente: Doutor Rafał Marcin Bogel-Łukasik Vogal: Doutora Ewa Bogel-Łukasik Julho de 2011 Copyright Os direitos de cópia da dissertação intitulada de “Alternative Solvents in Carvone Hydrogenation” pertencem ao autor, à Faculdade de Ciências e Tecnologia e à Universidade Nova de Lisboa. A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualguer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distrilbuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ii Acknowledgments The accomplishment of this thesis was only possible due to the contribution of several people, to whom I would like to thank. First I would like to express my gratitude to my supervisor Dr. Ewa Bogel Łukasik for the ‐ supervision and all her help, and to Professor Dr. Manuel Nunes da Ponte, head of Chemical Engineering Department where I have had the opportunity to work. I would like to acknowledge Professor Dr. Marco Silva for all the help provided in order to make get along with the Gas Chromatograph.
    [Show full text]
  • Steroids from Carvone Promotor Prof
    Steroids from Carvone Promotor Prof. dr. Ae. de Groot, Hoogleraar in de Bio-organische Chemie, Wageningen Universiteit Co-promotoren Prof. dr. M. B. Groen, Hoogleraar aan de Vrije Universiteit Amsterdam Dr. B. J. M. Jansen, Universitair Docent bij het Laboratorium voor Organische Chemie, Wageningen Universiteit Promotiecommissie Prof. dr. J. Wicha, Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland Prof. dr. H. Hiemstra, Universiteit van Amsterdam Dr. J.W. Scheeren, Radboud Universiteit Nijmegen Prof. dr. E. J. R. Sudhölter, Wageningen Universiteit Florence C. E. Sarabèr Steroids from Carvone Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op dinsdag 10 mei 2005 des namiddags te half twee in de aula Sarabèr, Florence C. E. Steroids from Carvone Thesis Wageningen University –with references and summaries in English, French and Dutch ISBN 90-8504-181-3 Contents Chapter 1 1 Introduction Chapter 2 31 Domino Mukaiyama reactions to polycyclic systems Chapter 3 63 New approach towards C,D-trans fused steroid and D-homo steroid skeletons Chapter 4 85 A new and short synthesis of C,D-cis fused steroid and D-homosteroid skeletons Chapter 5 99 A second new and short synthesis of C,D-trans fused steroid skeletons Chapter 6 127 Synthesis of a chiral ring D precursor for the generation of enantiomerically pure steroid skeletons Chapter 7 145 1-Phenylthio-3-vinyl-3-cyclohexenol, a new reagent for bis-annelation of silyl enol ethers Chapter 8 165 The use of b-cyanoketones for the synthesis of functionalized polycyclic compounds Chapter 9 177 Discussion Appendix 187 List of used abbreviations 188 Summary 189 Samenvatting 195 Résumé 201 Dankwoord 207 Curriculum vitae 209 Wanneer jij je ogen opent zullen wij, opnieuw, op weg gaan tussen de uren en hun uitvindingen en slenterend tussen de verschijningen zullen wij de tijd en zijn vervoegingen bevestigen.
    [Show full text]
  • The Quantitative Determination of Carvone in Essential Oils
    T H E S I S on THE QUANTITATIVE DETERMINATION OF CARVONE IN ESSENTIAL OILS Submitted to the OREGON STATE AGRICULTURAL COLLEGE In partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE by Jesse Carl Kimmel May 1932 APPROV@: Redacted for Privacy esson of Phanmacy In Charge Redacted for Privacy Chafu'man of Conmlttee on Graduate Study ACKNOWLEDGMENTS To Professor Lewis c. Britt, under whose direction this work was done, I wish to express my sincere appreciation for the kind assistance and encouragement which he was ready at all times to give. I also wish to express my appreciation of the help and inspiration that has come to me through my associations with Doctor F. A. Gilfillan and Professor E. T. Stuhr. TABLE OF CONTENTS I. Introduction II. Previous Work III. Experimental Approach rv. Sulphite-sulphate Method v. Conclusions VI. Appendix VII. Bibliography I NTRODUCTION The study of a method for the determination of carvone in the official1 volatile oils was begun after attempting to determine. the carvone content of oil of caraway by the method outlined in the United States Pharmacopoeia. The U. s. P. method is not satisfactory as the neutralization of the sodium hydroxide, formed by the hydrolysis of carvone sodium sulphite, cannot be accomplished in the size flask prescribed in the of­ ficial monograph. Assay by the U. S. P. IX2 method is also unsatisfactory as the accuracy is not greater than one per cent. In this method one hundredth part of a cubic centimeter must be estimated and multiplied by ten in order to arrive at the volume of carvone present.
    [Show full text]
  • Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint
    molecules Article Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint Zhaohai Wu 1,2, Bie Tan 1,3, Yanhong Liu 1, James Dunn 4, Patricia Martorell Guerola 5, Marta Tortajada 5, Zhijun Cao 2 and Peng Ji 6,* 1 Department of Animal Science, University of California, Davis, CA 95616, USA 2 State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China 3 Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China 4 Applied Nutrition, ADM Animal Nutrition, Quincy, IL 62305, USA 5 Cell Biology Laboratory, ADM Biopolis, 46980 Valencia, Spain 6 Department of Nutrition, University of California, Davis, CA 95616, USA * Correspondence: [email protected]; Tel.: +1-530-752-6469; Fax: +1-530-752-0175 Received: 26 June 2019; Accepted: 30 July 2019; Published: 2 August 2019 Abstract: Natural antioxidants have drawn growing interest for use in animal feed and the food industry. In the current study, essential oils (EOs) obtained from hydrodistillation of three mentha species, including Mentha piperita (peppermint), Mentha spicata (native spearmint) and Mentha gracilis (Scotch spearmint), harvested in the Midwest region in the United States, were analyzed for their chemical composition using gas chromatography-mass spectrometry, and their antioxidant properties were assessed through chemical assays, in vitro cell culture modeling and in Caenorhabditis elegans (C. elegans). The activity of ferric iron reduction and free-radical scavenging capacity were assessed through chemical-based assays, including the reducing power assay, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, and Trolox equivalent antioxidant capacity assay (TEAC).
    [Show full text]
  • Liquid-Phase Catalytic Oxidation of Limonene to Carvone Over ZIF-67(Co)
    catalysts Article Liquid-Phase Catalytic Oxidation of Limonene to Carvone over ZIF-67(Co) Yizhou Li, Yepeng Yang, Daomei Chen, Zhifang Luo, Wei Wang, Yali Ao, Lin Zhang, Zhiying Yan * and Jiaqiang Wang * National Center for International Research on Photoelectric and Energy Materials, Yunnan Provincial Collaborative Innovation Center of Green Chemistry for Lignite Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, The Universities’ Center for Photocatalytic Treatment of Pollutants in Yunnan Province, School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China; [email protected] (Y.L.); [email protected] (Y.Y.); [email protected] (D.C.); [email protected] (Z.L.); [email protected] (W.W.); [email protected] (Y.A.); [email protected] (L.Z.) * Correspondence: [email protected] (Z.Y.); [email protected] (J.W.); Tel.: +86-871-6503-1567 (Z.Y.); +86-871-6503-1567 (J.W.) Received: 15 March 2019; Accepted: 16 April 2019; Published: 21 April 2019 Abstract: Liquid-phase catalytic oxidation of limonene was carried out under mild conditions, and carvone was produced in the presence of ZIF-67(Co), cobalt based zeolitic imidazolate framework, as catalyst, using t-butyl hydroperoxide (t-BHP) as oxidant and benzene as solvent. As a heterogeneous catalyst, the zeolitic imidazolate framework ZIF-67(Co) exhibited reasonable substrate–product selectivity (55.4%) and conversion (29.8%). Finally, the X-ray diffraction patterns of the catalyst before and after proved that ZIF-67(Co) acted as a heterogeneous catalyst, and can be reused without losing its activity to a great extent.
    [Show full text]
  • 71 ~Hru) ~
    INcaR~aRATED 71 ~HRU) ~ 3 /1rPf;<' ~ '", .. 1 Annual Report "IRIS Biological Experiments". Contract No. NAS5-11294 " Prepared for National Aeronaut~cs and Space Administration Goddard Space Flight Center Greenbelt, Maryland. 20771 ,.. ., , "" '"'b • " Prepared by BIOSPHERICS INC ORPORA TED 4928 Wyaconda Road ,Rockville, Maryland 20853 April 15, 1971 ,', -. Annual Report April 1970 - April 1971 . Contract No. NAS5-11294 BIOSPHERICS INCORPORATED IRIS BIOLOGICAL EXPERIMENTS TABLE OF CONTENTS ABSTRACT I. INTRODUCTION II. BIOLOGICAL STUDIES A. Inferences to be Made from Surface Phenomenon 1. Reflectance of Inorganic, Organic, and Biological Samples a. Inorganic Reststrahlen Effect b. Reflectance of Organic .and Biological Samples .. c. Effect of Combining Inorganic with Organic or Biological Material 2.' Materials or Phenomenon Yielding Black Body Spectral Responses 3. Developm.ent of a Strategy froIn Surface Data 4. Probable Distribution of Si02 on the Surface of Mars 5. Status o£ Obtaining Biological Inferences from Surface Phenomenon 14 Be Inferences to be Made from Atmospheric Analysis 16 .I,. Gases Involved in Terrestrial Metabolic Pathways 16 2. Gas Detection by the IRIS· 21 .3. .Gases Detected in the Earth's Atmosphere 23 4. Relationships BetweellAtmospheric Gasesand_.· Surface. Metabolic A~tivity . 23 .. - ,,<~. • i Annual Report April 1970 - April 1971 \ Contract No .. NAS5-ll294 I· \ BIOSPHERICS INCORPORATED I i 1. I TABLE OF CONTENTS i t (Continued) I'. Page a. Diurnal Fluctuations in Gas Concentrations 25' b. Isotopic Ratios of Elements 25 c. \ The Hitchcock/Lovelock Theory 26 d. Limitations of IRIS in Utilizing Theories to Make Biological Implications 27 5. Presence of Hydrocarbons and Related Derivatives in the Earth's Atmosphere 28 a. Co.nunents on'1IBiue H.aze" b.
    [Show full text]
  • Primary Documents. 27. on the Catalytic Decomposition Of
    Bull. Hist. Chem., VOLUME 40, Number 2 (2015) 69 PRIMARY DOCUMENTS 27. ON THE CATALYTIC DECOMPOSITION OF ALKYLIDENEHYDRAZINES. (SECOND PART) (ABRIDGED) N. Kizhner Zhurnal Russkago Fiziko-Khimicheskago Obshchestva, 1911, 43, 951-962. Translated by Vladislav Suntsov and David E. Lewis Supplemental Material In the previous article, a method for obtaining carvone (from the bisulfite compound): boiling point hydrocarbons based on the catalytic decomposition of 222.5° at 752 mm.; [a]D = –18.36°. alkylidenehydrazines of the type R:N–NH in the pres- 2 The compound of dihydrocarvone with hydrazine, ence of potassium hydroxide, was described. C10H16:NNH2, was obtained as follows: a solution of 17 In this direction, so far only alkylidenehydrazines g. of dihydrocarvone and 25 g. 50% hydrazine hydrate in originating from ketones (cyclic and bicyclic series) alcohol was boiled under reflux for 5 hours, after which have been studied. In terms of the generalization of the the alcohol and part of the hydrazine hydrate were dis- method, it was interesting to explore the decomposition tilled from an oil bath (bath temperature 140°). The base of alkylidenehydrazines of the aldehyde type, as well as was dried by warming with fused potash on a water bath. to extend it to hydrazine derivatives with the character The decomposition of the base when heated with of an unsaturated ketone. potassium hydroxide is very easy. The hydrogen [hydro- In this paper, the extension of our method to two carbon? —translators] was distilled with steam, washed series of unsaturated cyclic ketones, dihydrocarvone with 50% acetic acid, then with water, and dried with and carvenone, and the two unsaturated fatty aldehydes, calcium chloride.
    [Show full text]
  • Technical Document for L-Carvone Also Referred to As a BRAD
    BIOPESTICIDES REGISTRATION ACTION DOCUMENT l-Carvone U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division (Last updated August 31, 2009) This document is for informational purposes only and is representative of the Agency’s justification in registering products containing this active ingredient. This is not a legal document. l-Carvone Page 2 of 16 Biopesticides Registration Action Document TABLE OF CONTENTS I. EXECUTIVE SUMMARY.................................................................................................... 5 II. ACTIVE INGREDIENT OVERVIEW .................................................................................. 6 III. REGULATORY BACKGROUND........................................................................................ 6 A. Food Clearances/Tolerances.................................................................................................. 6 IV. RISK ASSESSMENT............................................................................................................6 A. Active Ingredient Characterization........................................................................................ 6 B. Human Health Assessment .................................................................................................... 7 1. Toxicology .......................................................................................................................... 7 a. Acute Toxicity...............................................................................................................
    [Show full text]
  • Methylene-P-Toluenesulfonamide (−)-Carvone Is Spearmint Oil, Whereas the (S)-(+)- a B Enantiomer Is a Constituent of Dill and Caraway Oils
    Note 351 Synthesis and Analgesic-like Effect diterpene skeletons. Among the monoterpene starting − of (6R,4S)-p-Mentha-1,8-dien-6-yl- materials, probably the (+)- and ( )-forms of car- vone are the most versatile. The best source of (R)- methylene-p-toluenesulfonamide (−)-carvone is spearmint oil, whereas the (S)-(+)- a b enantiomer is a constituent of dill and caraway oils. Dami˜ao P. de Sousa , Franklin F. F. Nobrega ´ , The cost of (R)-(−)-carvone is usually much lower Reinaldo N. de Almeidab,andTimothyJ.Brocksomc than that of the (+)-isomer, but both enantiomers of a Laborat´orio de Qu´ımica de Produtos Naturais e Sint´eticos carvone have been used as chirons in the synthesis of Bioativos (LAPROBIO), Departamento de Fisiologia, Universidade Federal de Sergipe, diverse intermediates and natural compounds, princi- CEP 49100-000 S˜ao Crist´ov˜ao, Sergipe, Brazil pally terpenoids [1 – 4]. b Laborat´orio de Tecnologia Farmacˆeutica, Universidade The range of pharmacological activity that has been Federal da Para´ıba; Caixa Postal 5009, CEP 58051 – 970, recorded for terpenes is remarkably wide. They are Jo˜ao Pessoa, Para´ıba, Brazil c Laborat´orio de Qu´ımica Bio-Orgˆanica, Departamento de found to function as anticonvulsant, antinociceptive, Qu´ımica, Universidade Federal de S˜ao Carlos, sedative, and anxiolytic agents [5 – 11]. The range Caixa Postal 676, 13565-905 S˜ao Carlos, SP, Brazil of pharmacological effects of this family of natu- Reprint requests to Dr. Dami˜ao P. de Sousa. ral products is apparently due to a variety of ac- E-mail: damiao [email protected] tion mechanisms.
    [Show full text]