L'enseignement Des Mathématiques En Europe: Défis Communs Et Politiques Nationales Politiques Et Communs Défis Europe: En Mathématiques Des L'enseignement

Total Page:16

File Type:pdf, Size:1020Kb

L'enseignement Des Mathématiques En Europe: Défis Communs Et Politiques Nationales Politiques Et Communs Défis Europe: En Mathématiques Des L'enseignement Cover_MAth.ai 1 15/11/2011 12:58:58 EURYDICE EC-32-11-930-FR-C L'enseignement des mathématiques en Europe: défis communs et politiques nationales FR L'enseignement des EURYDICE mathématiques en Europe: Le réseau Eurydice fournit de l'information sur les systèmes éducatifs défis communs et européens ainsi qu'une analyse de ces systèmes et des politiques menées en la C matière. En 2011, il est constitué de 37 unités nationales basées dans les 33 pays M politiques nationales qui participent au programme de l'Union européenne dans le domaine de Y CM l'éducation et de la formation tout au long de la vie (les États membres de l'UE, MY les pays de l'AELE, la Croatie et la Turquie); il est coordonné et géré par l'Agence CY exécutive «Éducation, Audiovisuel et Culture» de l'UE, située à Bruxelles, qui CMY élabore ses publications et bases de données. K Le réseau Eurydice s’adresse en priorité à tous ceux qui participent au processus de décision politique en éducation tant aux niveaux national, régional et local que dans les institutions européennes. Il se concentre sur la manière dont l’éducation se structure et s’organise en Europe, à tous les niveaux d’enseignement. Ses publications sont principalement constituées de descriptions nationales des systèmes éducatifs, d'analyses comparatives sur des thèmes spécifiques, et d'indicateurs et de statistiques. Elles sont disponibles gratuitement sur le site internet d'Eurydice ou sur papier. EURYDICE sur Internet – http://eacea.ec.europa.eu/education/eurydice Commission européenne FR L’enseignement des mathématiques en Europe: défis communs et politiques nationales Ce document est publié par l’Agence exécutive «Éducation, Audiovisuel et Culture» (EACEA P9 Eurydice). Disponible en français (L’enseignement des mathématiques en Europe: défis communs et politiques nationales), en anglais (Mathematics Education in Europe: Common Challenges and National Policies) et en allemand (Mathematikunterricht in Europa: allgemeine Herausforderungen und politische Maßnahmen). ISBN 978-92-9201-222-9 doi:10.2797/72769 Ce document est également disponible sur l’internet (http://eacea.ec.europa.eu/education/eurydice). Rédaction achevée en octobre 2011. © Agence exécutive «Éducation, audiovisuel et culture», 2011. Sauf à des fins commerciales, le contenu de cette publication peut être reproduit partiellement, à condition que l’extrait soit précédé de la mention «réseau Eurydice», suivie de la date de publication. Toute demande de reproduction de l’entièreté du document doit être adressée à EACEA P9 Eurydice. Agence exécutive «Éducation, audiovisuel et culture» P9 Eurydice Avenue du Bourget 1 (BOU2) B-1140 Bruxelles Tél. +32 2 299 50 58 Fax +32 2 292 19 71 Courriel: [email protected] Internet: http://eacea.ec.europa.eu/education/eurydice PRÉFACE Les compétences en mathématiques ont été classées, au niveau de l’Union européenne, parmi les compétences clés nécessaires à l’épanouissement personnel, la citoyenneté active, l’inclusion sociale et à l’employabilité dans la société de la connaissance du XXIe siècle. Le manque préoccupant de compétences élémentaires chez les élèves, comme l'a révélé les enquêtes internationales, a mené à l'adoption en 2009 d'un critère de référence européen «qui prévoit de ramener à moins de 15 % d’ici 2020 le pourcentage d’élèves obtenant de faibles résultats en lecture, mathématiques et sciences» (1). Afin d'atteindre cet objectif, nous devons conjointement cerner d’un côté les obstacles et les problématiques, et de l’autre, les approches efficaces. Sous la forme d’une analyse comparative des approches de l’enseignement des mathématiques en Europe, ce rapport vise à contribuer à une plus grande maîtrise de ces facteurs. Il dresse un état des lieux des politiques nationales en matière de réforme des curricula de mathématiques, de promotion de méthodes innovantes d’enseignement et d’évaluation, et d’amélioration de la formation initiale et continue des enseignants. Il préconise des politiques globales d’enseignement des mathématiques, fondées sur le suivi continu et la recherche. Il plaide également en faveur de politiques intégrales pour l’encadrement des enseignants, d’une attention renouvelée aux diverses applications des savoirs mathématiques et des compétences de résolution de problèmes, et en faveur de la mise en œuvre d’un éventail de stratégies visant une réduction considérable des nombres d’élèves peu performants. Le rapport formule en outre des recommandations sur les moyens d’accroître la motivation à l’apprentissage des mathématiques et d’encourager les élèves à poursuivre des carrières dans ce domaine. De nombreux pays européens sont confrontés au déclin continu du nombre d’étudiants en mathématiques, sciences et technologies, ainsi qu’à un déséquilibre entre les genres dans ces disciplines. Ce problème doit être abordé de toute urgence pour éviter que le manque de spécialistes en mathématiques et dans les domaines connexes ne nuise non seulement à la compétitivité de nos économies mais aussi aux efforts mis en œuvre pour surmonter la crise économique et financière. Je suis convaincue que ce rapport, fondé sur recherches les plus récentes et des données exhaustives sur les pays, apportera une contribution utile au débat actuel sur l’efficacité de l’enseignement des mathématiques. Il intéressera particulièrement tous ceux qui se préoccupent de l’amélioration du niveau de compétences en mathématiques des jeunes européens. Androulla Vassiliou Commissaire européenne à l’Éducation, à la Culture, au Multilinguisme et à la Jeunesse (1) Cadre stratégique pour la coopération européenne dans le domaine de l’éducation et de la formation («Éducation et formation 2020»), conclusions du Conseil du 12 Mai 2008, JO C 119 du 28.5.2009. 3 TABLE DES MATIÈRES Préface 3 Introduction 7 Synthèse 11 Les acquis en mathématiques: résultats des enquêtes internationales 13 Principales enquêtes sur les mathématiques: TIMSS et PISA 13 Acquis en mathématiques selon les conclusions de l’enquête PISA 15 Acquis en mathématiques selon les conclusions de l’enquête TIMSS 19 Principaux facteurs associés aux performances en mathématiques 20 Chapitre 1. Le curriculum de mathématiques 25 Introduction 25 1.1. Élaboration, approbation et diffusion des documents d’orientation sur les mathématiques 25 1.2. Révision du curriculum de mathématiques et suivi de son efficacité 29 1.3. Objectifs d'apprentissage, contenu et compétences mathématiques dans le curriculum 35 1.4. Temps d’enseignement consacré aux mathématiques 39 1.5. Manuels et matériels éducatifs de mathématiques 45 Synthèse 50 Chapitre 2. Approches pédagogiques, méthodes et organisation de la classe 51 Introduction 51 2.1. Éventail de méthodes pédagogiques: lignes directrices et pratiques 51 2.2. Organisation de la classe: groupement des élèves 57 2.3. Recours aux TIC et aux calculettes en cours de mathématiques 60 2.4. Distribution de devoirs 64 2.5. Enquêtes et rapports nationaux en appui aux décisions politiques en matière de méthodes d’enseignement des mathématiques 67 Synthèse 70 Chapitre 3. L’évaluation en mathématiques 71 Introduction 71 3.1. Améliorer l’enseignement par des formes d’évaluation diverses et innovantes 71 3.2. Le rôle des tests nationaux 74 3.3. Les mathématiques dans l'enseignement secondaire supérieur 75 3.4. Utilisation des données d’évaluation en mathématiques 76 3.5. Enquêtes et rapports nationaux en appui aux politiques d’évaluation 77 Synthèse 79 Chapitre 4. Faire face aux faibles performances en mathématiques 81 Introduction 81 4.1. Politiques basées sur la recherche 81 4.2. Conclusions des principales recherches 83 4.3. Politiques nationales d’amélioration des performances 85 4.4 Types d’encadrement des élèves peu performants 88 Synthèse 92 5 L’enseignement des mathématiques en Europe: défis communs et politiques nationales Chapitre 5. Améliorer la motivation des élèves 93 Introduction 93 5.1. Apport d’un cadre théorique basé sur la recherche 93 5.2. Stratégies nationales d’amélioration de la motivation des élèves en mathématiques 100 5.3 Activités soutenues au niveau central pour améliorer les attitudes à l’égard de l’apprentissage des mathématiques 103 5.4. Questions d’ordre politique liées aux manques de compétences et au choix des mathématiques dans l’enseignement supérieur 107 Synthèse 112 Chapitre 6. Formation initiale et continue des enseignants de mathématiques 113 Introduction 113 6.1. Défis démographiques pour le métier d’enseignant de mathématiques en Europe 113 6.2. Trouver le bon équilibre dans le contenu de la formation initiale des enseignants 117 6.3. L’importance de la formation professionnelle continue collaborative spécifique à la matière 123 6.4. Formation initiale des enseignants de mathématiques/sciences: programmes généralistes et spécialistes – résultats de l’enquête SITEP 131 Synthèse 141 Conclusions 143 Références 149 Glossaire 161 Table des figures 163 Annexes 165 ANNEXE 1 – Contenu du curriculum de mathématiques (), 2010/11 165 ANNEXE 2 – Initiatives promues au niveau central pour encourager la collaboration des enseignants (2010/2011) 166 ANNEXE 3 – Taux de réponse par pays à l’enquête sur les programmes de formation initiale des enseignants de mathématiques et de sciences naturelles (SITEP) 174 Remerciements 175 6 INTRODUCTION Ces dernières années, la question des compétences en mathématiques n’a cessé de gagner en importance; elle se situe aujourd’hui au plus haut niveau de l’agenda politique. Les compétences en mathématiques sont classées parmi les compétences clés nécessaires à l’épanouissement personnel, la citoyenneté active, l’inclusion sociale et l’employabilité dans une société de la connaissance (2). En outre, les conclusions du Conseil du 21 novembre 2008 «Préparer les jeunes au XXIe siècle: un programme de coopération européenne en matière scolaire» (3) établissent la maîtrise de la langue et du calcul comme la première priorité pour la coopération européenne en éducation. La maîtrise du calcul, les compétences mathématiques et numériques ainsi que la compréhension des sciences sont aussi essentielles en vue d’une pleine participation à la société de la connaissance et pour la compétitivité des économies modernes.
Recommended publications
  • Engaging Mathematics for All Learners
    Engaging mathematics for all learners PHOTO REDACTED DUE TO THIRD PARTY RIGHTS OR OTHER LEGAL ISSUES 2 Engaging mathematics for all learners Contents Foreword . .3 Introduction . .5 What are you trying to achieve? . .6 How will you organise learning? . .8 Planning a compelling learning experience 8 Getting started – what are rich mathematical activities? 8 Some strategies for devising and working with rich mathematical activities 9 Finding rich contexts for mathematics 13 How will you know that you are achieving your aims? . .20 Case studies . .22 1: Every Child Matters – using recreational activities to engage learners 22 2: Every Child Matters – working inclusively with all ability groups 23 3: Historical and cultural roots of mathematics – understanding numbers 24 4: Historical and cultural roots of mathematics – the golden ratio 26 5: Modelling with mathematics 27 6: Mathematics in society – ‘number sense’ 28 7: Mathematics in society – technology and the environment 29 8: Mathematics across the curriculum – performing arts 31 9: Mathematics across the curriculum – STEM 32 10: Mathematics across the curriculum – STEM and PE 33 11: Mathematics and curriculum dimensions – healthy lifestyles 34 12: Mathematics and curriculum dimensions – technology and the media 34 13: Mathematics and curriculum dimensions – creativity and critical thinking 35 14: Using timetable opportunities for engaging mathematical activities 1 36 15: Using timetable opportunities for engaging mathematical activities 2 37 16: Working together to trial engaging mathematical activities (Bowland maths)38 17: Working together to introduce rich tasks into the mathematics curriculum for all learners 39 Working together to engage learners . .40 Making it happen . .44 Resources . .46 Acknowledgements .
    [Show full text]
  • Popularising Mathematics
    Popularising Mathematics Philipp Legner August 2013 Abstract Mathematics has countless applications in science, engineering and technology, yet school mathematics is one of the most unpopular subjects, perceived as difficult, boring and not useful in life. ‘Popularisation’ projects can help bridge this gap, by showing how exciting, applicable and beautiful mathematics is. Some popularisation projects focus on telling the wider public about mathematics, including its history, philosophy and applications; other projects encourage you to actively do mathematics and discover surprising relationships and beautiful results using mathematical reasoning and thinking. In this report I will develop a framework to classify and evaluate popularisation, and analyse a wide range of existing projects – ranging from competitions to websites, movies, exhibitions, books and workshops. I also reflect upon my personal experiences in designing popularisation activities. I would like to thank Professor Dave Pratt for his advise while writing this report. Table of Contents Introduction 1 Part 1: A Framework for Mathematics Popularisation The Value of Mathematics ........................................................................... 2 Defining Mathematics Popularisation ...................................................... 4 Designing Mathematics Popularisation ................................................... 8 Evaluating Popularisation Projects ............................................................ 11 Part 2: Case Studies of Popularisation Projects
    [Show full text]
  • Volume 3 Research Reports Ead - Kou
    Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education Prague, Czech Republic July 16-21, 2006 Volume 3 Research Reports Ead - Kou Editors: Jarmila Novotná Hana Moraová, Magdalena Krátká, Naďa Stehlíková Charles University in Prague Faculty of Education Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education Volume 3 Editors Jarmila Novotná Hana Moraová Magdalena Krátká Naďa Stehlíková Charles University in Prague Faculty of Education Czech Republic The Proceedings are also available on CD-ROM Copyright © 2006 left to the authors All rights reserved ISSN 0771-100X Logo: Ivan Špirk Cover Design: Jarmila Novotná & Ivan Špirk Printing: Atelier Guimaec, s.r.o 3-ii PME30 — 2006 TABLE OF CONTENTS VOLUME 3 Research Reports Eade, Frank & Dickinson, Paul 3-1 Exploring realistic mathematics education in English schools Ebersbach, Mirjam & Resing, Wilma C. M. 3-9 Reasoning about non-linearity in 6- to 9-year-olds: the role of task presentation Eichler, Andreas 3-17 Teachers, classroom, students – A holistic view on beliefs concerning the educational practice Elia, Iliada & Gagatsis, Athanasios 3-25 The effects of different modes of representation on problem solving: Two experimental programs Ell, Fiona 3-33 Can moderate hermeneutics help us to understand learning and teaching in the mathematics classroom? Evans, Jeff & Zan, Rosetta 3-41 Sociocultural approaches to emotions in mathematics education: Initial comparisons Falkenberg, Thomas 3-49 Moral
    [Show full text]
  • Learning to Teach Mathematics in the Secondary School: a Companion to School Experience / Edited by Sue Johnston-Wilder...[Et Al.]
    LEARNING TO TEACH MATHEMATICS IN THE SECONDARY SCHOOL What is the role of mathematics in the secondary classroom? What is expected of a would-be maths teacher? How is mathematics best taught and learnt? Learning to Teach Mathematics in the Secondary School combines theory and practice to present a broad introduction to the opportunities and challenges of teaching mathematics in modern secondary school classrooms. Written specifically with the new and student teacher in mind, the book covers a wide range of issues related to the teaching of math- ematics, including: I the role of ICT I planning mathematics lessons I Assessment for LearningNEW I including special-needs pupils I using mathematics in contextNEW I teaching mathematics post-16 I communicating mathematically I professional development. Already a major text for many university teaching courses, this fully revised third edition takes into account new developments in the National Curriculum as well as recent changes to the standards for Qualified Teacher Status. Featuring two brand new chapters, a glossary of useful terms, addresses for resources and organisations, and tasks designed to prompt critical reflection and support thinking and writing at Masters level, this book will help you make the most of school experience, during your training, your NQT year and beyond. Designed for use as a core textbook, this new edition of Learning to Teach Mathematics in the Secondary School provides essential guidance and advice for all trainee and practising teachers of secondary mathematics. Sue Johnston-Wilder is Associate Professor at the University of Warwick; she works with PGCE students and in-service teachers in the West Midlands.
    [Show full text]
  • The Evolution of Mathematics Support Lawson, Duncan; Grove, Michael; Croft, Tony
    University of Birmingham The evolution of mathematics support Lawson, Duncan; Grove, Michael; Croft, Tony DOI: 10.1080/0020739X.2019.1662120 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Lawson, D, Grove, M & Croft, T 2019, 'The evolution of mathematics support: a literature review', International Journal for Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2019.1662120 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 15/10/2019 This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal for Mathematical Education in Science and Technology on 22/09/2019, available online: http://www.tandfonline.com/10.1080/0020739X.2019.1662120. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Some Successful Strategies for Promoting Mathematics in England
    some successful strategies for promoting mathematics in England Professor Celia Hoyles OBE London Knowledge Lab, Institute of Education, University of London, U.K & Director of the National Centre for Excellence in the Teaching of Mathematics Goals of Government 1. to raise standards In mathematics: • internal performance tables from tests at 7, 11, (14)& 16 • TIMSS, PISA, and adult numeracy AND more recently 2. to increase participation in mathematics post-16 to achieve BOTH need • more success in mathematics and • positive attitude to mathematics & appreciation of the point of mathematics • for itself • as a tool in other subjects • for its ‘exchange value’ for individual future careers and for the country target for 2014 set in 2005/6 A level entries (specialist mathematics examination, 18years) Prov Some history: giving mathematics a policy voice ACME The Advisory Committee on Mathematics Education (ACME) was established in 2002 to act as a single voice for the mathematical community, seeking to improve the quality of education in schools and colleges Set up by the Joint Mathematical Council of the UK and the Royal Society (RS), with the explicit support of all major mathematics organisations ACME advises Government on issues such as the curriculum, assessment and the supply and training of mathematics teacher 4 7 members including teachers: part time Chair, Fellow of RS Some interventions: promoting Active Learning post-16 Numbers with more digits are The square of a number is greater in value. greater than the number. incorporating discussion & When you cut a piece off a In a group of ten learners, the the need to shape, you reduce its area and probability of two learners perimeter.
    [Show full text]
  • Where Will the Next Generation of UK Mathematicians Come From?
    Manchester Institute for Mathematical Sciences Where will the next generation of UK mathematicians come from? Preliminary report of a meeting held in Manchester 18/19 March 2005 Participants and contributors acted in a private capacity and did not necessarily express the views of their organisations or institutions: Participants: Stephen Abbott HMI (OfSTED); Dr Paul Andrews (Faculty of Education, Cambridge University; Chair, Association of Teachers of Mathematics ATM); Professor Margaret Brown (Department of Education, King’s College London; Advisory Com- mittee on Mathematics Education ACME); Richard Browne (Qualifications and Curriculum Authority QCA); Doug French (Centre for Educational Studies, Hull University; President Designate, Mathematical Association MA); Gwyneth Gardiner (King Edward’s School, Birmingham); Professor Celia Hoyles (Institute of Education; Government Chief Adviser for Mathematics); Jenny Ingram (Sidney Stringer Community Technology College, Coventry); Dr Andrew Jobbings (United Kingdom Mathematics Trust UKMT; Arbelos); Dr Gerry Leversha (St Paul’s School, London; Editor, The Mathematical Gazette); Dr Hovik Khudaverdyan (School of Mathematics, University of Manchester); Dr Richard Lissaman (Mathematics Institute, University of Warwick; Mathematics in Education and Industry MEI); Dr Mario Micallef (Mathematics Institute, University of Warwick; Admissions Tutor); Dr Karen Page (Department of Computer Science, University College London); Jenny Piggott (Faculty of Education, Cambridge Univer- sity; Millennium Mathematics
    [Show full text]
  • November 2008
    THE LONDON MATHEMATICAL SOCIETY NEWSLETTER No. 375 November 2008 Society THE NEW MATHEMATICAL SOCIETY Meetings AND MEMBERS ABROAD and Events The LMS has 30% of its members Personal membership in the LMS based outside the UK. This remark- comes only in the forms Member, 2008 ably high number has never been Associate Member and Honorary Friday 21 November trumpeted by the Society, but Member. If you join the Society AGM, London could be. The Royal Statistical Soci- through one of the reciprocity ar- [page XX] ety proclaims with pride that 25% rangements with a national society of its members are outside the abroad you are a Member, just like 12–13 December UK, and a fortiori, the LMS could any other, with full voting rights. Joint Meeting with do so too. The high proportion You, like the UK-based Members, the Edinburgh reflects the international nature are the LMS. It is your Society, and Mathematical Society of our subject. Much more than its vigour and success are impor- Edinburgh [page XX] other disciplines, and more even tant for mathematics. than other sciences, mathematics I write this piece on a visit to the 2009 crosses international boundaries Mathematics Department of the Wednesday 14 January with ease. Technical University of Dresden. Northern Regional Should the LMS’s overseas mem- The location has as good a claim Meeting, Manchester bers engage with the present as any to be the middle of Europe, consultation over the New Math- with the rest of Germany to the Friday 27 February ematical Society, and vote if the north and west, Prague nearby to Mary Cartwright vote ensues? The natural initial the south, and Poland a short dis- Lecture, London assumption might be “No: leave tance east.
    [Show full text]
  • La Enseñanza De Las Matemáticas En Europa: Retos Comunes Y Políticas
    EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDI- CE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EU- RYDICE EURYDICE EURYDICEEURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICEEC-32-11-930-ES-C EURYDICE EURYDICE EURYDICE EURYDICE EURYDI- CE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EU- RYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDI- EURYDICE La enseñanza de las matemáticas en Europa: Retos comunes y políticas nacionales La Red Eurydice ofrece información y análisis sobre los sistemasCE educativos EURYDICE Euro- EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EU- ES peos, así como sobre las políticas puestas en marcha. Desde 2011 consta de 37 unidades nacionales pertenecientes a los 33 países que participanRYDICE en el Programa EURYDICE EURYDICELa EURYDICE enseñanza EURYDICE de EURYDICE las EURYDICE para el Aprendizaje Permanente de la Unión Europea (Estados miembros de la UE, países de la Asociación Europea de Libre Comercio –AELC–, CroaciaEURYDICE y Turquía), y se EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDI- coordina y dirige desde la Agencia Ejecutiva en el ámbito Educativo, Audiovisual y matemáticas en Europa: Cultural con sede en Bruselas, que es la encargada de elaborar sus publicaciones y bases de datos. CE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EU- RYDICE EURYDICE EURYDICERetos EURYDICE comunes EURYDICE y políticas EURYDICE EURYDICE EURYDICE EURYDICE EURYDICEnacionales EURYDICE EURYDICE EURYDICE EURYDI- CE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE EU- Eurydice España-REDIE constituye una red a escala española semejante a Eurydice, con la que está plenamente coordinada. Encargada de la recopilación,RYDICE análisis, in EURYDICE- EURYDICE EURYDICE EURYDICE EURYDICE EURYDICE tercambio y difusión de información fiable y comparable acerca de temas de interés común sobre el sistema educativo, su objetivo es apoyar la toma de decisiones en el ámbito educativo europeo, nacional y autonómico.
    [Show full text]
  • The Role of the History and Epistemology of Mathematics in Teachers Training Panel Discussion
    27 THE ROLE OF THE HISTORY AND EPISTEMOLOGY OF MATHEMATICS IN TEACHERS TRAINING PANEL DISCUSSION INTRODUCTION Evelyne BARBIN IREM and Centre François Viète, University of Nantes, France [email protected] The theme of “History of mathematics in pre and in-service teacher training” has already been established as one of the six topics of the 1st European Summer University in Montpellier (France) where one panel and many workshops were held. The Proceedings of this meeting contain 7 papers on this theme (IREM, 1993, pp.451-496). Five years later, it was also the subject of chapter 4 of the ICMI Study (Fauvel & van Maanen, 2000). The current contribution will offer the possibility to study evolution of ideas on the theme, as well as some institutional changes. If we are not able to give a complete outline of the situation in each country from which our members come, it is clear that the possibility of communication among the participants in our different meetings is important for both encouragement, and as a way of communication, in order to compare and exchange thoughts and information on projects we are involved with. The panel was organized to enable 4 communications concerning 4 countries: Italy, Norway, England and France. In order to have a more fruitful interaction, the four participants had to answer the same 6 questions in total, divided into three groups. The aim of the first group was to situate the purpose of investigation in an institutional frame for each country: 1. How is teacher training conceived in your country (pre and in-service teacher training)? 2.
    [Show full text]
  • Effective Mathematics, Effective Mathematicians
    Effective Mathematics, Effective Mathematicians I. David Abrahams Beyer Professor of Applied Mathematics School of Mathematics, University of Manchester January 4, 2010 Overview “Neglect of mathematics works injury to all knowledge, since one who is ignorant of it cannot know the other sciences of the things of this world. And what is worst, those who are thus ignorant are unable to perceive their own ignorance and so do not seek a remedy.” . Roger Bacon (1214– 1292) [1]. Unfortunately, the need for society (in its broadest sense) to recognize the crucial value of mathematics and its applications exists as much today as it did in the 13th century! This article is a written account of my IMA Presidential Address, which was presented to Institute of Mathematics and its Applications (IMA) Branches throughout the UK and Ireland during my tenure of 2008/9. I have tried to remain faithful to my oral presentation, but necessarily modifications have to be made when the mode of delivery is changed; visual props and a chatty delivery have to be replaced by a more formal and hence lengthy setting out of material! This presentation will be divided into two parts: Effective Mathematics will be concerned with the obtaining of effective (or averaged) properties or descriptions of complex materials; Effective Mathematicians will focus on the role of the IMA in addressing the threats and opportunities facing our broad community. Unfortunately, the need to keep the article within reasonable length means that I am forced in the first half to omit all discussion I gave previously on quasicystalline alloys and composites.
    [Show full text]
  • Responding to the Mathematics Problem
    RESPONDING TO THE MATHEMATICS PROBLEM: The Implementation of Institutional Support Mechanisms Edited by C. M. Marr and M. J. Grove Supported by: The Wilkinson Charitable Trust Published by the Maths, Stats & OR Network May 2010 ISBN 978-0-9555914-6-4 Christie dedicates this volume to her darling Poppy, who, at the time of publishing, has mastered counting up to 10. Front cover and separator image: Melancholia I by Albrecht Dürer. © Trustees of the British Museum. CONTENTS piii Preface Acknowledgements piii List of Contributors piv INTRODUCTION C. M. Marr & M. J. Grove p2 The Logistics and Economics of Mathematics Support KEY NOTE ADDRESSES C. Hoyles Mathematics and the Transition from School to University p4 D. A. Lawson & A. C. Croft Enhancing the Quality of Mathematics Support throughout the UK: The Role of sigma p6 CHAPTER 1: Flexible Delivery - Models of Mathematics Support D. A. Lawson p12 The Drop-In Centre Model of Mathematics Support L. Pevy p17 The Portsmouth University Maths Café: Making a Virtue of Necessity C. M. Marr The University of St Andrews Mathematics Support Centre: An Appointment-Based p23 Model L. Meenan p29 Mathematics Support: Looking to the Future C. D. C. Steele p33 The Manchester Mathematics Resource Centre CHAPTER 2: Beyond the STEM Disciplines R. Taylor p39 METAL: Mathematics for Economics: Enhancing Teaching and Learning G. R. Gibbs p44 Mathematics and Statistics Skills in the Social Sciences C. O. Fritz, B. Francis, P. E. Morris & M. Peelo p51 SIMPLE: Helping to Introduce Statistics to Social Science Students CHAPTER 3: Mathematics Support and Institutional Priorities S. J.
    [Show full text]