BASP1 Promotes Apoptosis in Diabetic Nephropathy

Total Page:16

File Type:pdf, Size:1020Kb

BASP1 Promotes Apoptosis in Diabetic Nephropathy BASIC RESEARCH www.jasn.org BASP1 Promotes Apoptosis in Diabetic Nephropathy Maria Dolores Sanchez-Nin˜o,* Ana Belen Sanz,† Corina Lorz,* Andrea Gnirke,‡ ʈ Maria Pia Rastaldi,§ Viji Nair, Jesus Egido,* Marta Ruiz-Ortega,* ʈ Matthias Kretzler, and Alberto Ortiz* *Nefrologı´a, Fundacio´n Jime´nez Dı´az, Universidad Autonoma de Madrid and Instituto Reina Sofia de Investigaciones Nefrolo´gicas-IRSIN, Madrid, Spain; †Servicio de Nefrologia, Fundacion para la Investigacion Biomedica del Hospital Universitario La Paz, Madrid, Spain; ‡Xantos, Munich, Germany; §Fondazione D’Amico per la ʈ Ricerca sulle Malattie Renali & Fondazione IRCCS Policlinico, Milan, Italy; and Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan ABSTRACT Apoptosis contributes to the development of diabetic nephropathy (DN), but the mechanisms that lead to diabetes-induced cell death are not fully understood. Here, we combined a functional genomics screen for cDNAs that induce apoptosis in vitro with transcriptional profiling of renal biopsies from patients with DN. Twelve of the 138 full-length cDNAs that induced cell death in human embryonic kidney cells matched upregulated mRNA transcripts in tissue from human DN. Confirmatory screens identified induction of BASP1 in tubular cross sections of human DN tissue. In vitro, apoptosis-inducing conditions such as serum deprivation, high concentrations of glucose, and proinflammatory cytokines increased BASP1 mRNA and protein in human tubular epithelial cells. In normal cells, BASP1 localized to the cytoplasm, but in apoptotic cells, it colocalized with actin in the periphery. Overexpression of BASP1 induced cell death with features of apoptosis; conversely, small interfering RNA (siRNA)-mediated knockdown of BASP1 protected tubular cells from apoptosis. Supporting possible involvement of BASP1 in renal disease other than DN, we also observed significant upregulation of renal BASP1 in spontane- ously hypertensive rats and a trend toward increased tubulointerstitial BASP1 mRNA in human hyper- tensive nephropathy. In summary, a combined functional genomics approach identified BASP1 as a proapoptotic factor in DN and possibly also in hypertensive nephropathy. J Am Soc Nephrol 21: 610–621, 2010. doi: 10.1681/ASN.2009020227 Diabetic end-organ damage contributes to at least lated by a host of checks and balances with a multi- 233,000 yearly deaths in the United States alone, tude of positive and negative regulators, many of with diabetic nephropathy (DN) being the most which are disease and organ specific.6 common cause of ESRD.1 The diabetic milieu is known to induce apoptosis in various end-organ Received February 28, 2009. Accepted December 8, 2009. 2,3 systems and is believed to contribute to the grad- Published online ahead of print. Publication date available at ual loss of renal function and mass in DN, because www.jasn.org. apoptosis has been detected in tubular epithelial, C.L.’s current affiliation is Ciemat, Madrid, Spain; A.G.’s current endothelial, and interstitial cells of renal biopsy affiliation is Fresenius Biotech GMBH, Munich, Germany. 4,5 samples from patients with DN. Correspondence: Dr. Alberto Ortiz, Dialysis Unit, Fundacio´n Cell death via apoptosis is an active response to Jime´nez Diaz, Avd. Reyes Cato´licos 2, 28040 Madrid, Spain. an altered microenvironment and is characterized Phone: 34-91-5504940; Fax: 734-764-3157; E-mail: [email protected]; or Dr. Matthias Kretzler, Division of Nephrology, University of by the activation of specific intracellular pathways. Michigan, 1570 MSRB II, 1150 W. Medical Center Drive, Ann The presence of injurious factors and/or the lack of Arbor, MI 48109-0676. Phone: 734-764-3157; Fax: 734-763-0982; survival factors may lead to engagement of the ap- E-mail: [email protected] optotic molecular machinery. Apoptosis is modu- Copyright ᮊ 2010 by the American Society of Nephrology 610 ISSN : 1046-6673/2104-610 J Am Soc Nephrol 21: 610–621, 2010 www.jasn.org BASIC RESEARCH BASP1 (also neuron-enriched acidic protein, having a molecular mass of 22 kD/cortical cy- toskeleton-associated protein) is a 23-kDa myr- istoilated protein originally isolated from brain extracts10,11 that shares 70% homology in hu- man and rat.12 It was initially described as a brain-specific protein,10,11 but later studies re- vealed that BASP1 is also expressed by human endothelium,13 developing mammary gland, kidney, testis, and lymphoid tissues.12–16 BASP1 is involved in cytoskeletal and lipid raft dynam- ics, as well as in the nuclear regulation of tran- scription. However, a role in apoptosis has not been previously reported. BASP1 contains an ef- fector domain (ED) that dynamically binds to the plasma membrane, to calmodulin, and to actin fibrils. Reversible phosphorylation of ED by protein kinase C modulates these interac- tions.12 In the plasma membrane BASP1 local- izes to lipid rafts and may influence the behavior and composition of the membrane.17 In addi- tion, BASP1 promotes actin dynamics, includ- ing loss of stress fibers and bleb formation.18 Ad- ditionally, BASP1 is present in the developing nephron structures of the embryonic kidney co- inciding with the transcriptional regulator Wilm’s tumor gene (WT1). In the adult kidney the main site of BASP1 expression is the podo- cyte, where it behaves as a transcriptional cosup- Figure 1. Integrative functional genomics screen for apoptosis mediators in DN. pressor of WT1. Low levels of BASP1 expression 138 of 18000 unique cDNA clones containing full-length open reading frames are present in the cytoplasm of tubular cells in induced cell death upon overexpression in HEK293 cells. Genome-wide expres- 15 sion analysis of renal biopsies from DN and control patients identified 12 of the vivo and in cell lines. 138 unique clones to be upregulated in the tubulointerstitium with q Յ 0.05 BASP1 expression is increased in human (Table 1). Of these, only BASP1 was positive in confirmatory apoptosis screening DN tubulointerstitium and in tubules from tests and was chosen for further analysis. experimental DN. BASP1 is also expressed by cultured renal tubular cells, where it is regu- The combination of unbiased gene expression profiling lated by stimuli that promote cell death and has a role in with focused data mining has proven to be a powerful tool to apoptotic cell death. expand our knowledge of relevant pathways and players in human disease.7,8 We have recently used this approach to find specific changes in apoptosis-related genes in the renal tubu- RESULTS lointersitium transcriptome of the human diabetic kidney us- ing gene ontology.6 A key limitation of this method is the need Functional Genomics cDNA Screening for Cell-Death- of a priori knowledge of the cell-death-associated function of Inducing Genes the regulated transcript. Genome-wide functional assays for In a previous search for genes with a potential tumor suppres- the identification of novel cell-death-associated molecules sor phenotype, a high throughput (HT) functional genomics have recently been developed.9 For this study this strategy was screen was established to identify novel cell-death-inducing adapted to identify apoptosis-inducing full-length reading genes.9 In brief, 596,832 independent clones from a human frames in human embryonic kidney cells as a primary screen- embryo cDNA expression library and 17,680 defined full- ing step. The in vitro assay was followed by analysis of the length cDNA expression plasmids were screened for cell death regulation of the corresponding mRNA transcripts in human induction after transient transfection into human embryonic DN. From the genes passing both filter steps, brain acid soluble kidney (HEK293) cells. Of these, 194 unique cDNAs induced protein 1/brain-abundant signal protein 1 (BASP1) mRNA cell death and DNA fragmentation: 138 contained full-length and protein was induced in the tubulointerstitial compartment open reading frames (Figure 1). Thirty-nine genes were known of human DN. inducers or associated with apoptosis. J Am Soc Nephrol 21: 610–621, 2010 BASP1 in Diabetic Nephropathy 611 BASIC RESEARCH www.jasn.org The list of full-length cDNAs whose overexpression in- rRNA ratio was induced 2.4 times in DN compared with duced cell death in the HT functional screen was compared controls [mean Ϯ SD; control 0.5 Ϯ 0.25, DN 1.18 Ϯ 0.6, with genome-wide expression profiles from tubulointerstitial P ϭ 0.02]. BASP1 expression in nondiabetic renal diseases is compartments of DN biopsies.6,7 Twelve genes were upregu- summarized in Supplemental Table 1). Immunofluores- lated in DN (q Ͻ 0.05) and induced cell death in the HT func- cence confirmed an increase of tubular expression of BASP1 tional screen as assessed by ␤-galactosidase/chlorophenolred- in human DN compared with minimal detectable levels in ␤-D-galactopyranoside and DNA fragmentation assays in control kidneys (Supplemental Figure 1), as well as co-stain- HEK293 cells (Table 1). Of these genes, only BASP1 overex- ing for BASP1 and active caspase 3 in human DN (Figure 2B). pression yielded positive results in all three subsequent confir- The percentage of positive tubulointerstitial area was signifi- matory screens for caspase activation, externalization of phos- cantly higher in DN (18.25 Ϯ 2.49, versus MCD 7.2 Ϯ 3.11% phatidylserin, and loss of mitochondrial potential (Figure 1). and control kidney 0%, P Ͻ 0.05) and this was associated with an increased apoptosis rate (active caspase 3 staining DN BASP1 Is an Apoptosis Inducer and Is Upregulated in 5.25 Ϯ 2.96% of cells, versus MCD 0.6 Ϯ 0.89 versus control the Tubulointerstitium of DN kidney 0.33 Ϯ 0.57%, P Ͻ 0.05). In addition, total kidney Overexpression of BASP1-induced death as assessed by BASP1 protein was increased in two animal models of chronic ␤-galactosidase/chlorophenolred-␤-D-galactopyranoside kidney disease: diabetes induced by streptozotocin and hyper- and DNA fragmentation assays in HEK293 cells.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Mapping the Interface Between Calmodulin and MARCKS-Related Protein by Fluorescence Spectroscopy Andreas Ulrich*†‡, Arndt A
    Mapping the interface between calmodulin and MARCKS-related protein by fluorescence spectroscopy Andreas Ulrich*†‡, Arndt A. P. Schmitz*‡§, Thomas Braun*‡¶, Tao Yuanʈ‡, Hans J. Vogelʈ, and Guy Verge` res*,** *Department of Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland; and ʈDepartment of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada Edited by H. Ronald Kaback, University of California, Los Angeles, CA, and approved March 3, 2000 (received for review November 16, 1999) MARCKS-related protein (MRP) is a myristoylated protein kinase C acid residues. The effector domain could be on the surface of substrate that binds calmodulin (CaM) with nanomolar affinity. To MARCKS proteins and partially exposed to water (model B). This obtain structural information on this protein, we have engineered model fits the proposed amphipathic structure of the effector 10 tryptophan residues between positions 89 and 104 in the domain (basic͞hydrophobic residues). Finally, the effector domain effector domain, a 24-residue-long amphipathic segment that could be completely exposed to water and either act as a hinge mediates binding of MRP to CaM. We show that the effector between the C- and N-terminal domains of MARCKS proteins domain is in a polar environment in free MRP, suggesting exposure (model C1) or form an exposed loop on the surface of the protein to water, in agreement with a rod-shaped structure of the protein. (model C2). The observation that MARCKS proteins are elon- The effector domain participates in the binding of MRP to CaM, as gated molecules (5, 10) supports model C1.
    [Show full text]
  • 1) (As of December 2018) and the Latest GWAS of AD (2
    SUPPLEMENTARY FIGURES downstream intergenic ncRNA_exonic upstream ●936 ●918 group downstream intergenic ncRNA_exonic upstream group exonic exonicintronicintronic ncRNA_intronic ncRNA_intronicUTR3 UTR3 3.8% 1.2%1.5%1.9% 3.8% 5.4%5.4% 750 0.3% 3.8%1.2%1.5%1.9% ●700 5.4% ●670 0.3% 500 45.8% 40.240.2% % 45.8% ●329 ●274 250 ●223 Number (GWAS SNPs/studies) Number (GWAS ●128 ●105 45.8% ●54 ●57 ●58 ●48 ●42 ●46 ●50 ●30 ●3740.2% ● ●17 ●25 ●4 ●6 ●12 0 ● 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Year Supplementary Figure S1. GWAS of AD since 2007. The figure is based on data from the GWAS Catalog (1) (as of December 2018) and the latest GWAS of AD (2). The green area shows the total number of AD-associated SNPs, and the purple area shows the total number of GWAS of AD. The insert chart shows the proportions of different types of all 936 AD-associated SNPs. 1 100 200 RPS27A TGFB2 BIN1 C4BPB MSH2 PROC UGT1A1 RAB1A TTN DISC1 50 PDCL3 COL4A3 CD55 ERCC3 100 USP21 C4BPA ITSN2 PTPRF MPZ FMN2 INPP5D CEP85 FNBP1L CSF1 CD46 ADAMTS4 PRKRA SPRED2 0 CTNNA2 DGKD ADCY10 ZAP70 LIMS2 PDE1A PROX1 0 CHRNB2 CR1 HSPG2 SH3BGRL3 DAB1 CTBS FCER1G MAP3K2 AD risk score or log10(P value) IL6R CDC73 CD34 AD risk score or log10(P value) −50 B4GALT3 IL19 0 50 100 150 200 250 0 50 100 150 200 Chromosome 1 (Mb) Chromosome 2 (Mb) ATP2B2 LTF ARF4 MECOM PAK2 EPHB1 40 VHL PRSS42 ARL6IP5 150 COL25A1 TDGF1 RPSA CCR2 CCR1 IL1RAP IRAK2 20 PTPRG 100 FLNB TF CX3CR1 IL17RD SH3RF1 FGG FANCD2 LIMD1 CCR5 50 0 WDR1 PDGFRA EIF4E FGB AD risk score or log10(P value) AD risk
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • RNA Sequencing of Whole Blood in Discordant Twin and Case-Controlled Cohorts
    Biomarker Discovery in Attention Decit Hyperactivity Disorder: RNA sequencing of Whole Blood in Discordant Twin and Case-Controlled Cohorts Timothy A. McCaffrey ( [email protected] ) George Washington University Medical Center https://orcid.org/0000-0002-4648-7833 Georges St. Laurent III The St. Laurent Institute Dmitry Shtokalo Institut sistem informatiki imeni A P Ersova SO RAN Denis Antonets A P Ershov Institute of Informatics Systems SB RAS: Institut sistem informatiki imeni A P Ersova SO RAN Yuri Vyatkin Janssen Research and Development LLC Daniel Jones Amgen Inc Eleanor Battison Oregon Health & Science University - West Campus Joel T. Nigg Oregon Health & Science University Research article Keywords: attention-decit/hyperactivity disorder (ADHD), RNA sequencing, transcriptome, GIT1, galactose, twins Posted Date: October 22nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-20756/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/34 Version of Record: A version of this preprint was published on October 28th, 2020. See the published version at https://doi.org/10.1186/s12920-020-00808-8. Page 2/34 Abstract Background: A variety of DNA-based methods have been applied to identify genetic markers of attention decit hyperactivity disorder (ADHD), but the connection to RNA-based gene expression has not been fully exploited. Methods: Using well dened cohorts of discordant, monozygotic twins from the Michigan State University Twin Registry, and case-controlled ADHD cases in adolescents, the present studies utilized advanced single molecule RNA sequencing to identify expressed changes in whole blood RNA in ADHD. Multiple analytical strategies were employed to narrow differentially expressed RNA targets to a small set of potential biomarkers of ADHD.
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • MARCKS Regulates Membrane Targeting of Rab10 Vesicles to Promote Axon Development
    npg MARCKS and axonal membrane addition Cell Research (2014) 24:576-594. 576 © 2014 IBCB, SIBS, CAS All rights reserved 1001-0602/14 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development Xiao-Hui Xu1, 2, *, Cai-Yun Deng1, *, Yang Liu1, Miao He1, Jian Peng1, 3, Tong Wang1, Lei Yuan1, Zhi-Sheng Zheng1, Perry J Blackshear4, Zhen-Ge Luo1 1Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Acad- emy of Sciences, Shanghai 200031, China; 2School of Life Sciences, Shanghai University, Shanghai 200444, China; 3School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China; 4Laboratory of Signal Transduction, National Insti- tute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA Axon development requires membrane addition from the intracellular supply, which has been shown to be medi- ated by Rab10-positive plasmalemmal precursor vesicles (PPVs). However, the molecular mechanisms underlying the membrane trafficking processes of PPVs remain unclear. Here, we show that myristoylated alanine-rich C-kinase substrate (MARCKS) mediates membrane targeting of Rab10-positive PPVs, and this regulation is critical for axon development. We found that the GTP-locked active form of Rab10 binds to membrane-associated MARCKS, whose affinity depends on the phosphorylation status of the MARCKS effector domain. Either genetic silencing of MARCKS or disruption of its interaction with Rab10 inhibited axon growth of cortical neurons, impaired docking and fusion of Rab10 vesicles with the plasma membrane, and consequently caused a loss of membrane insertion of axonal receptors responsive to extracellular axon growth factors.
    [Show full text]
  • Mechanisms of Membrane Remodeling by Peripheral Proteins and Divalent Cations
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Mechanisms of Membrane Remodeling by Peripheral Proteins and Divalent Cations Zheng Shi University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biophysics Commons, and the Physical Chemistry Commons Recommended Citation Shi, Zheng, "Mechanisms of Membrane Remodeling by Peripheral Proteins and Divalent Cations" (2015). Publicly Accessible Penn Dissertations. 2011. https://repository.upenn.edu/edissertations/2011 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2011 For more information, please contact [email protected]. Mechanisms of Membrane Remodeling by Peripheral Proteins and Divalent Cations Abstract Biological membranes undergo constant shape remodeling involving the formation of highly curved structures. As one of the most extensively studied membrane remodeling events, endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation, and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. There are multiple independent endocytic pathways which differ by their speed as well as the proteins that are involved in. Bin/Amphiphysin/Rvs (BAR) domain proteins, such as endophilin, are responsible for sensing or generating membrane curvature in multiple endocytic pathways. In this dissertation, I elucidate the mechanisms of membrane remodeling through in vitro experimental studies with synthetic lipid bilayers. Firstly, I investigated the binding and assembly of endophilin on planar membranes. Endophilin was found to be attracted to the membrane through electrostatic forces and to subsequently oligomerize on the membrane with the help of the protein’s N-terminal helices. Next, I studied the mechanisms that govern membrane shape transitions induced by BAR domain proteins.
    [Show full text]
  • Genetic Research
    Genetic Research Who Is At Risk for Alcoholism? Tatiana Foroud, Ph.D.; Howard J. Edenberg, Ph.D.; and John C. Crabbe, Ph.D. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) was founded 40 years ago to help elucidate the biological underpinnings of alcohol dependence, including the potential contribution of genetic factors. Twin, adoption, and family studies conclusively demonstrated that genetic factors account for 50 to 60 percent of the variance in risk for developing alcoholism. Case–control studies and linkage analyses have helped identify DNA variants that contribute to increased risk, and the NIAAA­sponsored Collaborative Studies on Genetics of Alcoholism (COGA) has the expressed goal of identifying contributing genes using state­of­the­art genetic technologies. These efforts have ascertained several genes that may contribute to an increased risk of alcoholism, including certain variants encoding alcohol­metabolizing enzymes and neurotransmitter receptors. Genome­wide association studies allowing the analysis of millions of genetic markers located throughout the genome will enable discovery of further candidate genes. In addition to these human studies, genetic animal models of alcohol’s effects and alcohol use have greatly advanced our understanding of the genetic basis of alcoholism, resulting in the identification of quantitative trait loci and allowing for targeted manipulation of candidate genes. Novel research approaches—for example, into epigenetic mechanisms of gene regulation—also are under way and undoubtedly
    [Show full text]
  • MARCKS Deficiency in Mice Leads to Abnormal Brain
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 944-948, February 1995 Developmental Biology MARCKS deficiency in mice leads to abnormal brain development and perinatal death (myristoylated, alanine-rich C kinase substrate/protein kinase C/Macs gene) DEBORAH J. STUMPO*t, CHERYL B. BOCKt, JANE S. TUTTLE*t, AND PERRY J. BLACKSHEAR*t#§ tHoward Hughes Medical Institute Laboratories, Durham, NC; *Division of Endocrinology, Metabolism and Nutrition, Departments of Medicine and Biochemistry; and tComprehensive Cancer Center, Duke University Medical Center, Durham, NC 27710 Communicated by Robert L. Hill, Duke University Medical Center, Durham, NC, October 14, 1994 ABSTRACT The MARCKS protein is a widely distributed To elucidate possible roles of MARCKS in both develop- cellular substrate for protein kinase C. It is a myristoylprotein ment and normal cellular function, we disrupted its gene in that binds calmodulin and actin in a manner reversible by mice by using the techniques of homologous recombination in protein kinase C-dependent phosphorylation. It is also highly embryonic stem (ES) cells. This gene, Macs, has been localized expressed in nervous tissue, particularly during development. to mouse chromosome 10 in a region of synteny with human To evaluate a possible developmental role for MARCKS, we chromosome 6q21, where the human gene (MACS) has been disrupted its gene in mice by using the techniques of homol- mapped (10, 11). Our results indicate that expression of ogous recombination. Pups homozygous for the disrupted MARCKS during embryonic and fetal life in the mouse is allele lacked detectable MARCKS mRNA and protein. All necessary for normal development of the central nervous MARCKS-deficient pups died before or within a few hours of system as well as for extrauterine survival.
    [Show full text]
  • Clinical and Molecular Characterization of a Patient With
    Tassano et al. Molecular Cytogenetics (2015) 8:31 DOI 10.1186/s13039-015-0134-7 CASE REPORT Open Access Clinical and molecular characterization of a patient with interstitial 6q21q22.1 deletion Elisa Tassano1*, Marisol Mirabelli-Badenier2, Edvige Veneselli2, Aldamaria Puliti3,4, Margherita Lerone4, Carlotta Maria Vaccari3, Giovanni Morana5, Simona Porta1, Giorgio Gimelli1 and Cristina Cuoco1 Abstract Background: Interstitial 6q deletions, involving the 6q15q25 chromosomal region, are rare events characterized by variable phenotypes and no clear karyotype/phenotype correlation has been determined yet. Results: We present a child with a 6q21q22.1 deletion, characterized by array-CGH, associated with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, skeletal, muscle, and brain anomalies. Discussion: In our patient, the 6q21q22.1 deleted region contains ten genes (TRAF3IP2, FYN, WISP3, TUBE1, LAMA4, MARCKS, HDAC2, HS3ST5, FRK, COL10A1) and two desert gene regions. We discuss here if these genes had some role in determining the phenotype of our patient in order to establish a possible karyotype/phenotype correlation. Keywords: Interstitial deletion, 6q21q22.1, Array-CGH, Karyotype/phenotype correlation, Poland syndrome Background discuss the role of the deleted genes in order to establish Interstitial deletions of the long arm of chromosome 6 a possible karyotype/phenotype correlation. are rare and are divided into proximal (6q11q16), medial (6q15q25), and terminal (6q25qter) based on conven- Case presentation tional cytogenetics [1]. Approximately, less than 30 pa- The patient, a 13-year-old boy, is the only child of non- tients with intermediate 6q interstitial deletions, studied consanguineous, healthy Paraguayan parents. The child by standard cytogenetics and array-CGH, have been re- was born at term by elective caesarean section after an ported [2-13].
    [Show full text]
  • LSCC SNP Variant Regulates SOX2 Modulation of VDAC3
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 32), pp: 22340-22352 Research Paper LSCC SNP variant regulates SOX2 modulation of VDAC3 Jacqueline Chyr1,3, Dongmin Guo2 and Xiaobo Zhou2,3 1Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA 2Center for Bioinformatics and Systems Biology, Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA 3School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA Correspondence to: Xiaobo Zhou, email: [email protected] Keywords: lung cancer; SOX2; eQTL; SNP; topologically associating domain Received: June 21, 2017 Accepted: February 28, 2018 Published: April 27, 2018 Copyright: Chyr et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Lung squamous cell carcinoma (LSCC) is a genomically complex malignancy with no effective treatments. Recent studies have found a large number of DNA alterations such as SOX2 amplification in LSCC patients. As a stem cell transcription factor, SOX2 is important for the maintenance of pluripotent cells and may play a role in cancer. To study the downstream mechanisms of SOX2, we employed expression quantitative trait loci (eQTLs) technology to investigate how the presence of SOX2 affects the expression of target genes. We discovered unique eQTLs, such as rs798827-VDAC3 (FDR p-value = 0.0034), that are only found in SOX2-active patients but not in SOX2- inactive patients.
    [Show full text]