An Analysis of the Methyl Rotation and Aldehyde Wagging Dynamics in the S0

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of the Methyl Rotation and Aldehyde Wagging Dynamics in the S0 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC An analysis of the methyl rotation and aldehyde wagging dynamics in 1 3 the S0 (X̃ A’) and T1 (ã A‘) states of thioacetaldehyde from pyrolysis jet spectra Cite as: J. Chem. Phys. 97, 3964 (1992); https://doi.org/10.1063/1.462935 Submitted: 02 January 1992 . Accepted: 02 June 1992 . Published Online: 31 August 1998 D. C. Moule, H. A. Bascal, Y. G. Smeyers, D. J. Clouthier, J. Karolczak, and A. Niño J. Chem. Phys. 97, 3964 (1992); https://doi.org/10.1063/1.462935 97, 3964 © 1992 American Institute of Physics. An analysi~ of the methyl rotation and aldehyde wagging dynamics in the So (X 1A') and T1 ( rA") states of thioacetaldehyde from pyrolysis jet spectra D. C. Moulea) and H. A. 8ascal Department of Chemistry, Brock University, St Catharines, Ontario, L2S3AJ, Canada Y. G. Smeyers Instituto de Estructura de la Materia, CSIC, c/Serrano, 119, 28006 Madrid, Spain b D. J. Clouthier and J. Karolczak ) Department of Chemistry, The University of Kentucky, Lexington, Kentucky 40506-0055 A. Nii'l'o Escuela Universitaria de Informatica, Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain (Received 2 January 1992; accepted 2 June 1992) Jet-cooled, laser induced phosphorescence (LIP) excitation spectra of thioacetaldehyde (CH3CHS, CH3CDS, CD3CHS, and CD3CDS) have been observed in the 15800-17 300 cm - 1 region in a continuous pyrolysis jet. The responsible electronic transition, T1 +- So, (j3A" +- i lA', results from an n--+7r* electron promotion and gives rise to a pattern of vibronic bands that can be attributed to activity of the methyl torsion and the aldehyde hydrogen out-of-plane wagging modes. Potential and kinetic energy surfaces were mapped out for the aldehyde wagging (a) and the torsional (e) internal coordinates by using 6-31G* Hartree-Fock calculations in which the structural parameters were fully relaxed. The potential and kinetic energy data points were fitted to double Fourier expansions in a and e and were incorporated into a two-dimensional Hamiltonian operator. The spectrum was simulated from the transition energies and the Franck-Condon factors and was compared to the observed jet cooled LIP spectra. It was concluded that while the RHF procedure gives a good description to the ground state dynamics, the triplet state surface generated by the UHF method is too bumpy and undulating. INTRODUCTION Additional large amplitude motion is introduced into these systems when more complex structures are attached In general, the higher electronic states of molecules to the carbonyl group. In the case of acetaldehyde, exhibit a greater structural flexibility than do the corre­ CH3CHO, the CCHO frame is rigidly planar in the So state sponding ground electronic states. This nonrigidity is a and the rotation of the methyl group constitutes the single direct consequence of the excitation process which pro­ large amplitude mode. As would be expected, the molecu­ motes an electron from a bonding or nonbonding orbital to lar frame in SI acetaldehyde is pyramidal and the structure a molecular orbital which is antibonding. Thus the n--+7r* is highly flexible along both the aldehyde wagging and me­ electronic excitation in the carbonyl chromophore results thyl torsion coordinates. Thus the low frequency dynamics in a reduction of the C==O bond order from 2.0 to 1.5, of the excited state are governed by two large amplitude while at the same time the bond length increases by 0.08- modes: torsion of the methyl group; and a wagging motion 0.11 A. Even more dramatic changes occur in the bond of the aldehyde hydrogen. An even more complex case angle relationships. In the case of the molecular proto­ would be acetone, (CH hCO, where the low frequency type,1 formaldehyde CH 0, the rigid planar conformation 3 2 dynamics of the ground state are described by interacting of the So ground electronic state converts into a pyramidal methyl groups. Additional flexibility is introduced into the structure on excitation. The out-of-plane motion that in­ upper excited states from the wagging displacement of the verts the pyramidal S 1 singlet excited state structure is described by a double minimum potential which contains a carbonyl group. Thus it would require three large ampli­ central barrier of 350 cm -1. The heights of the barriers to tude coordinates to describe the dynamics of excited states molecular inversion are sensitive to the nature of the at­ of this simple molecule. tached group. For example, the first singlet and triplet It is the Franck-Condon principle that makes elec­ tronic spectroscopy an ideal tool for investigating large states of the sulphur analog, thioformaldehyde CH2S, are amplitude motions in polyatomic molecules. This principle pseudoplanar, while formyl fluoride CF20, on the other hand, has a barrier of 3100 cm -1 to molecular inversion. relates the assignment of the observed band progressions to the normal coordinates that most closely correspond to the changes in molecular structure which occurs on electronic ')To whom correspondence should be addressed. b)Perrnanent address: Quantum Electronics Laboratory, Institute ofPhys­ excitation. Thus we anticipate that the CH wagging and ics, A. Mickiewicz University, Grunwaldzka 6,60-780 Poznan, Poland. the CH3-torsion modes would be active in forming progres- 3964 J. Chem. Phys. 97 (6).15 September 1992 0021-9606/92/183964-09$006.00 © 1992 American Institute of Physics Moule et al.: Dynamics in thioacetaldehyde 3965 sions in the So --+ SI electronic spectrum of acetaldehyde. 2 The visible spectrum of thioacetaldehyde ,3 lies in the 630-560 nm region and results from an n --+ 1T* electron promotion. Both the spin allowed So --+ SI and spin forbid­ den So --+ TI transitions are observed in absorption and have about the same strength. As a result of the structural dif­ ferences between the ground and excited electronic states, ~ (f) the vibronic fine structure contained in the absorption z W spectrum is found to be highly complex. In the case of the I­ Z lower So --+ TI system,4,5 the spin-orbit selection rules limit W the number of active vibronic transitions, and thereby re­ > i= duce the complexity of the spectra. At room temperature, :5 this system consists of two clusters of bands that are sep­ w arated by a quantum of the C S stretching mode, Q9' The 0::: dense cluster that is located in the region of tht: system origin has been attributed to the activity of the methyl torsion mode, Q15' Franck-Condon arguments suggest the appearance of this mode in the spectrum would result from a displacement of the equilibrium conformations in the two electronic states. The lower Tl state is observed to be ra­ diative and under collision free conditions has a lifetime4 of 16200 16400 16600 16800 about 10 Jls. WAVENUMBER (cm-1) FIG. 1. The phosphorescence excitation spectra of CH3CHS and EXPERIMENT CH3CDS recorded under jet conditions. Thioacetaldehyde is unstable at room temperature. It may be prepared by pyrolysis of the trimer 1,3,5,­ RESULTS AND ASSIGNMENTS trimethyl-s-trithiane and detected in a flow system. In this Figures 1 and 2 show the phosphorescence excitation case, the trimer was prepared by the method of Kroto et spectra of thioacetaldehyde and its deuterated isotopomers 7 al. by passing H2S gas through an ice cold mixture ofHCl and acetaldehyde. The CH3CDO, CD3CHO, and CD3CDO samples were supplied by MSD isotopes. For CD3CHS and CD3CDS, which have exchangeable hydro­ gens DCI and D2S, were used. Jet-cooled phosphorescence excitation spectra of thio­ acetaldehyde and its deuterated isotopomers were obtained using the pyrolysis jet spectroscopic technique. 8 The crys­ talline trimer was warmed to 50 'C, the vapor entrained in ~ 1 atm of argon, and the mixture pyrolyzed at 700'C just (f) z prior to expansion through a 150 Jl nozzle into vacuum. W I­ From past experience we estimate that rotational temper­ Z atures of 5-10 K were obtained under these conditions. In W order to accentuate the weak hot bands, warm jet spectra > i= also were recorded by altering the expansion conditions to :5 prevent complete cooling of molecules in higher vibrational w 0::: levels populated in the high temperature pyrolysis zone. The phosphorescence of thioacetaldehyde was excited with a Nd:YAG pumped dye laser system (Lumonics HY 750+HyperDye 300) using rhodamine 6G, rhodamine 610, and coumarin 540A laser dyes (Exciton). Laser pow­ ers of 1-5 mJ per pulse and linewidths of approximately 0.1 cm -I were employed. The emission was detected by 16200 16400 16600 16800 imaging the cold portion of the supersonic expansion 1 through a suitable cutoff filter to reject scattered light and WAVENUMBER (cm- ) onto a high gain, red sensitive photomultiplier (EMI 9816 FIG. 2. The phosphorescence excitation spectra of CD CHS and 9 3 QB). The excitation spectra were wavelength calibrated CD3CDS recorded under jet conditions. by simultaneously observing the optogalvanic effect in a neon-filled hollow cathode lamp. J. Chem. Phys., Vol. 97, No.6, 15 September 1992 3966 Moule et at.: Dynamics in thioacetaldehyde TABLE I. Observed band maxima" in the excitation spectrum of (a) CH3CHS, (b) CH3CDS, (c) CD3CHS, and (d) CD3CDS. 000. Ditr. Assign.b Obs. Ditr. Assign. Obs. Ditr. Assign. Obs. Ditr. Assign. (a) Warm jet spectrum (b) Warm jet spectrum (c) Warm jet spectrum (d) Warm jet spectrum 15987.2 -307.7 15~al 15847.1 -51\.6 159 55.7 - 344.0 15~e 15867.2 -500.0 14?e 160 35.3 -259.6 15le 15943.6 -415.1 15~e 15046.0
Recommended publications
  • A Comprehensive Investigation on the Formation of Organo-Sulfur Molecules in Dark Clouds Via Neutral-Neutral Reactions
    A&A 395, 1031–1044 (2002) Astronomy DOI: 10.1051/0004-6361:20021328 & c ESO 2002 Astrophysics A comprehensive investigation on the formation of organo-sulfur molecules in dark clouds via neutral-neutral reactions M. Yamada1, Y. Osamura1, and R. I. Kaiser2;? 1 Department of Chemistry, Rikkyo University, 3-34-1 Nishi-ikebukuro, Tokyo 171-8501, Japan 2 Department of Chemistry, University of York, YO10 5DD, UK Received 11 June 2002 / Accepted 9 September 2002 Abstract. Fifteen reactions on the doublet HCnS and singlet/triplet H2CnS(n = 1; 2) potential energy surfaces have been investi- gated theoretically via electronic structure calculations to unravel the formation of hydrogen deficient, sulfur bearing molecules via bimolecular reactions of two neutral species in cold molecular clouds. Various barrierless reaction pathways to synthe- size astronomically observed CnS and hitherto undetected HCnS(n = 1; 2) isomers are offered. These data present important 2 2 guidance to search for rotational transitions of the elusive thioformyl HCS(X A0) and thioketenyl HCCS(X Π) radicals in the interstellar medium. Key words. astrochemistry – ISM: molecules – molecular processes – methods: miscellaneous 1. Introduction terminated counterparts HCnSandCnSH have not been de- tected in the interstellar medium yet. However, these molecules Untangling the synthetic routes to form sulfur-carrying might represent the missing source of molecular-bound sul- molecules in the interstellar medium is a significant instru- fur in the interstellar medium. Hydrogen deficient organosul- ment to understand the chemical evolution and physical con- 2 2 fur molecules like HCS(X A0) and HCCS(X Π) resemble also ditions in star forming regions and in circumstellar envelopes important reaction intermediates which could lead to sulfur (Minh & van Dishoeck 2000).
    [Show full text]
  • H2CS) and Its Thiohydroxycarbene Isomer (HCSH
    A chemical dynamics study on the gas phase formation of thioformaldehyde (H2CS) and its thiohydroxycarbene isomer (HCSH) Srinivas Doddipatlaa, Chao Hea, Ralf I. Kaisera,1, Yuheng Luoa, Rui Suna,1, Galiya R. Galimovab, Alexander M. Mebelb,1, and Tom J. Millarc,1 aDepartment of Chemistry, University of Hawai’iatManoa, Honolulu, HI 96822; bDepartment of Chemistry and Biochemistry, Florida International University, Miami, FL 33199; and cSchool of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom Edited by Stephen J. Benkovic, The Pennsylvania State University, University Park, PA, and approved August 4, 2020 (received for review March 13, 2020) Complex organosulfur molecules are ubiquitous in interstellar molecular sulfur dioxide (SO2) (21) and sulfur (S8) (22). The second phase clouds, but their fundamental formation mechanisms have remained commences with the formation of the central protostars. Tempera- largely elusive. These processes are of critical importance in initiating a tures increase up to 300 K, and sublimation of the (sulfur-bearing) series of elementary chemical reactions, leading eventually to organo- molecules from the grains takes over (20). The subsequent gas-phase sulfur molecules—among them potential precursors to iron-sulfide chemistry exploits complex reaction networks of ion–molecule and grains and to astrobiologically important molecules, such as the amino neutral–neutral reactions (17) with models postulating that the very acid cysteine. Here, we reveal through laboratory experiments, first sulfur–carbon bonds are formed via reactions involving methyl electronic-structure theory, quasi-classical trajectory studies, and astro- radicals (CH3)andcarbene(CH2) with atomic sulfur (S) leading to chemical modeling that the organosulfur chemistry can be initiated in carbonyl monosulfide and thioformaldehyde, respectively (18).
    [Show full text]
  • UV-Spectrum of Thioformaldehyde-S-Oxide
    Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013 Matrix Isolation and Spectroscopic Properties • of the Methylsulfinyl Radical CH3(O)S [a] [b] [b] Hans Peter Reisenauer,* Jaroslaw Romanski, Grzegorz Mloston,* Peter R. Schreiner[a] [a] Justus-Liebig University, Institute of Organic Chemistry, Heinrich-Buff-Ring 58, D-35392 Giessen, Fax: (+49) 641-99-34209; E-mail: [email protected] [b] University of Lodz, Section of Heteroorganic Compounds, Tamka 12, PL-91-403 Lodz, Fax: (+48) (42) 665 51 62; E-mail: [email protected] Supplementary Information Table S1. Experimental (Ar, 10 K) and computed (AE-CCSD(T)/cc-pVTZ, harmonic approximation, no scaling) the IR spectra of 3. 13 3 C-3 D3-3 a b a b a b Sym. Approx. Band Position (Intensity) Band Position (Intensity) Band Position (Intensity) Mode Computation Experiment Computation Experiment Computation Experiment a’’ CH str. 3151.3 (2.1) 2995.4 3139.3 (2.1) n.o. 2336.4 (1.2) 2247.2 a’ CH str. 3149.3 (4.1) (vw) 3137.5 (4.0) n.o. 2334.5 (2.2) (vw) 2919.4 2095.5 a’ CH str. 3065.6 (4.3) 3062.7 (4.5) n.o. 2194.2 (1.4) (vw) (vw) CH 1062.8 a’ 3 1477.4 (6.5) 1417.1 (w) 1474.8 (6.6) 1414.6 (w) 1028.7 (s) def. (17.3) CH a’’ 3 1464.4 (7.8) 1405.2 (w) 1461.7 (7.8) 1401.4 (w) 1058.5 (3.7) 1025.6 (w) def.
    [Show full text]
  • Thermal Averaging of the Indirect Nuclear Spin-Spin Coupling Constants of Ammonia: the Importance of the Large Amplitude Inversion Mode Andrey Yachmenev, Sergei N
    Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: The importance of the large amplitude inversion mode Andrey Yachmenev, Sergei N. Yurchenko, Ivana Paidarová, Per Jensen, Walter Thiel, and Stephan P. A. Sauer Citation: J. Chem. Phys. 132, 114305 (2010); doi: 10.1063/1.3359850 View online: https://doi.org/10.1063/1.3359850 View Table of Contents: http://aip.scitation.org/toc/jcp/132/11 Published by the American Institute of Physics Articles you may be interested in Accurate ab initio vibrational energies of methyl chloride The Journal of Chemical Physics 142, 244306 (2015); 10.1063/1.4922890 Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame The Journal of Chemical Physics 143, 014105 (2015); 10.1063/1.4923039 Theoretical rotation-vibration spectrum of thioformaldehyde The Journal of Chemical Physics 139, 204308 (2013); 10.1063/1.4832322 High-level ab initio potential energy surfaces and vibrational energies of H2CS The Journal of Chemical Physics 135, 074302 (2011); 10.1063/1.3624570 A highly accurate ab initio potential energy surface for methane The Journal of Chemical Physics 145, 104305 (2016); 10.1063/1.4962261 Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical The Journal of Chemical Physics 143, 244306 (2015); 10.1063/1.4938253 THE JOURNAL OF CHEMICAL PHYSICS 132, 114305 ͑2010͒ Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: The importance of the large amplitude inversion mode Andrey Yachmenev,1 Sergei N.
    [Show full text]
  • Structural Features of the Carbon-Sulfur Chemical Bond: a Semi-Experimental Perspective Supporting Information
    Structural features of the carbon-sulfur chemical bond: a semi-experimental perspective Supporting Information Emanuele Penocchio, Marco Mendolicchio, Nicola Tasinato, and Vincenzo Barone∗ Scuola Normale Superiore, Pisa, Italy E-mail: [email protected] ∗To whom correspondence should be addressed 1 In Table 1 we focus on molecules reported in Table 2 of the main article and compare reference SE equilibrium parameters with ab-initio predictions obtained with B3LYP/SNSD, B2PLYP/VTZ, M06-2X, and BHandH model chemistries. β In Table 2, experimental rotational constants, ∆Bvib calculated at B3LYP/SNSD and B2PLYP/VTZ β levels of theory, and ∆Bel calculated at B3LYP/AVTZ level are reported for all the species discussed in the main text. Table 1: Comparison between reference SE equilibrium parameters and ab-initio ones ob- tained using functionals with a different amount of Hartree-Fock exchange (see main text). Distances in A,˚ angles in degrees. Atom numbering as in Figure 2 of the main work. SEa re re B3LYP/SNSD B2PLYP/VTZ M06-2X/VTZ BHandH/VTZ SE { Sulfur chains { isothiocyanic acid r(S-C) 1:5832 1:5744 1:5713 1:5588 1:5678(7) r(C-N) 1:2091 1:2047 1:1922 1:179 1:2047(9) r(N-H) 1:0102 1:0035 1:0035 0:9974 1:0070(9) a(S-C-N) 173:77 173:95 174:81 175:42 172:23(18) a(H-N-C) 129:67 131:50 134:72 137:28 129:75(5) thioformaldehyde r(S-C) 1:6227 1:6135 1:60089 1:58782 1:6093(1) r(C-H) 1:0918 1:0859 1:08702 1:0849 1:0854(2) a(H-C-S) 121:95 122:01 122:025 121:964 121:73(2) thioketene r(S-C) 1:5724 1:5623 1:5546 1:5426 1:5556(4) r(C-C) 1:3107 1:3082 1:3021 1:2899 1:3107(5) r(C-H) 1:0863 1:0801 1:0811 1:0793 1:0806(1) a(C-C-H) 120:66 120:46 120:31 129:34 120:15(1) propadienethione r(S1-C2) 1:5876 1:5776 1:5673 1:5546 1:5715(15) r(C2-C3) 1:2722 1:2691 1:2679 1:2571 1:2702(18) r(C3-C4) 1:3223 1:3191 1:3119 1:3003 1:3228(9) r(C4-H) 1:0905 1:0848 1:0851 1:0832 1:0842(3) a(H-C4-C3) 121:80 121:68 121:48 121:49 121:20(2) 2 β β Table 2: Experimental rotational constants, ∆Bvib, and ∆Bel are reported for all the species discussed in the main text.
    [Show full text]
  • Version 038 – Exam 2 – Mccord – (53130) 1 This Print-Out Should
    Version038–Exam2–McCord–(53130) 1 This print-out should have 31 questions. 3. sp3 Multiple-choice questions may continue on the next column or page – find all choices 4. Pure pz orbitals are used in bonding. before answering. 5. sp3d McCord CH301tt Explanation: The structure is b b b This exam is only for b O McCord’s Tues/Thur CH301 class. C If Quest works properly, you should be able H3C CH3 to see your score for this exam by 11:30 PM tonight. Do realize however that Quest has 003 10.0 points been taking up to 8 hours to get through the Which of the molecules b b b grading, so your score might appear bit by bit. b O I will post an announcement on our web page I) and/or Quest when I feel like all bubblesheets H H have been graded. b b b b b b Cl PLEASE carefully bubble in your UTEID and Version Number! We av- II) b b B b b b erage about 20-30 students per exam that b b b b Cl Clb b misbubble this information. Get it right! b b b b b b b b III) b Cl Cl b b b b 001 10.0 points contains polar covalent bonds but is NOT Choose the species that is incorrectly matched itself a polar molecule? with electronic geometry about the central atom. 1. III only 1. CF4 : tetrahedral 2. II and III only 2. BeBr2 : linear 3. I and II only 3. H2O : tetrahedral 4.
    [Show full text]
  • Anchoring the Potential Energy Surfaces of Homogenous and Heterogenous Dimers of Formaldehyde and Thiofomaldehyde
    ANCHORING THE POTENTIAL ENERGY SURFACES OF HOMOGENOUS AND HETEROGENOUS DIMERS OF FORMALDEHYDE AND THIOFOMALDEHYDE by Christina Michelle Holy A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College Oxford May 2014 Approved by _____________________________________ Advisor: Professor Gregory Tschumper _____________________________________ Reader: Associate Professor Nathan Hammer _____________________________________ Reader: Professor Susan Pedigo © 2014 Christina Michelle Holy ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS Many people in the Department of Chemistry and Biochemistry here at the University of Mississippi were of great assistance during the work presented in this manuscript. I would like to thank the Mississippi Center for Supercomputing Research for the use of their computational facilities and the research group of Dr. Gregory Tschumper for their guidance and computational assistance. Specifically, I would like to thank Eric Van Dornshuld for his continual support and advisement throughout this research project. Lastly, I would like to thank my advisor, Dr. Gregory Tschumper, for allowing me to work in his laboratory as well as providing me with a worthwhile project to fulfill this thesis requirement. iii ABSTRACT This work characterizes five stationary points of the formaldehyde dimer, (CH2O)2, two of which are minima, seven newly-identified stationary points of the formaldehyde/thioformaldehyde (mixed) dimer, CH2O/CH2S, four of which are minima, and five newly-identified stationary points of the thioformaldehyde dimer, (CH2S)2 , three of which are minima. Full geometry optimizations and corresponding harmonic vibrational frequencies were performed on CH2O and CH2S as well as each of the dimer configurations (Figures 3-5).
    [Show full text]
  • TA-02 Ion Science PID Response Factors USA V1.6.Pdf 1.43 MB
    Technical/Application Article 02 Version 1.6 19 July 2016 WRH/FD Ion Science PID Response Factors PID Response Photoionization Detectors (PIDs) respond to a broad range of organic and a few inorganic gaseous and volatile chemicals (‘volatiles’). In order for PID to respond to a volatile, the photon energy of the lamp must be greater than its ionization energy. Ion Science PIDs are available with 10.0 eV, 10.6 eV, and 11.7 eV lamps. This Technical Article lists the response factors (‘RF’s’) for over 800 volatiles with PID engaging these lamps. The RF relates the sensitivity of PID to a volatile to the sensitivity to the standard calibration gas isobutylene. The higher the RF, the lower the sensitivity. In the table ‘ZR’ means there is no response, NA that the value has not been measured (Not Available), and NV means that the compound is not volatile enough to measure accurately. For chemicals not listed, contact Ion Science for more information. Isobutylene as Reference Gas It is always most accurate to calibrate a PID directly with the compound to be measured. However, standard gas cylinders of many chemicals are not readily available, and in such cases isobutylene is the standard reference gas used to calibrate. The response of these chemicals differs to isobutylene by the factors listed in the table below. This table allows measurement of all the listed volatiles using only isobutylene for calibration. To obtain the true concentration of the target volatile chemical, multiply the apparent reading by the response factor listed in the table: True Concentration = Apparent Response x Response Factor For example, anisole has a response factor (RF) of 0.47 with a 10.6 eV lamp.
    [Show full text]
  • Criegee Intermediate-Hydrogen Sulfide Chemistry at the Air/Water
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Criegee intermediate-hydrogen sulfide chemistry at the air/water interface† Cite this: Chem. Sci.,2017,8,5385 Manoj Kumar,‡a Jie Zhong,‡a Joseph S. Francisco*a and Xiao C. Zeng*ab We carry out Born–Oppenheimer molecular dynamic simulations to show that the reaction between the smallest Criegee intermediate, CH2OO, and hydrogen sulfide (H2S) at the air/water interface can be observed within few picoseconds. The reaction follows both concerted and stepwise mechanisms with former being the dominant reaction pathway. The concerted reaction proceeds with or without the Received 22nd April 2017 involvement of one or two nearby water molecules. An important implication of the simulation results is Accepted 9th May 2017 that the Criegee-H2S reaction can provide a novel non-photochemical pathway for the formation of DOI: 10.1039/c7sc01797a aC–S linkage in clouds and could be a new oxidation pathway for H2S in terrestrial, geothermal and rsc.li/chemical-science volcanic regions. Creative Commons Attribution 3.0 Unported Licence. Carbon–sulfur linkages are ubiquitous in atmospheric, combus- hydrogen sulde (H2S) under water or acid catalysis could account tion, and biological chemistries. Thioaldehydes comprise an for the atmospheric formation of thioaldehydes and provide useful important class of carbon–sulfur compounds that has a broad guidelines for efficiently synthesizing thioaldehydes within labo- chemical appeal. For example, thioformaldehyde (HCHS) has been ratory environment.7,9
    [Show full text]
  • Submillimeter-Wave Spectroscopy of and Interstellar Search for Thioacetaldehyde
    Submillimeter-wave spectroscopy of and interstellar search for thioacetaldehyde L. Margul`esa, V. V. Ilyushinb,c,∗, B. A. McGuired, A. Bellochee, R. A. Motiyenkoa, A. Remijand, E. A. Alekseevb,c, O. Dorovskayab, J.-C. Guilleminf aUniv. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Mol´ecules,F-59000 Lille, France bInstitute of Radio Astronomy of NASU, 4, Mystetstv St., Kharkiv, 61002, Ukraine cQuantum Radiophysics Department, V.N. Karazin Kharkiv National University, Svobody Square 4, 61022, Kharkiv, Ukraine dNational Radio Astronomy Observatory, Charlottesville, VA 22903, USA eMax-Planck-Institut f¨urRadioastronomie, Auf dem H¨ugel69, 53121 Bonn, Germany fUniv. Rennes, Ecole Nationale Sup´erieure de Chimie de Rennes, CNRS, ISCR { UMR 6226, F-35000 Rennes, France Abstract We present a new study of the millimeter and submillimeter wave spectra of the thioacetaldehyde molecule, CH3CHS, a sulfur-bearing analog of the ubiquitous interstellar molecule acetaldehyde (CH3CHO). Here, we present a laboratory investigation aimed at determining accurate spectroscopic parameters for CH3CHS to enable astronomical searches for this molecule using radio telescope arrays at millimeter and submillimeter wavelengths. New laboratory measurements have been carried out between 150 and 660 GHz using the spectrometer of PhLAM in Lille (France). Rotational transitions up to J = 60 were assigned in the ground, first and second excited torsional states of thioacetaldehyde and fit using the RAM Hamiltonian model. The final fit includes 62 parameters to give an overall weighted root-mean-square deviation of 0.9. On the basis of our spectroscopic results, CH3CHS was searched for, but not detected, in data from the Atacama Large Millimeter/submillimeter Array (ALMA) between 84 GHz and 114 GHz toward the hot molecular core Sgr B2(N2).
    [Show full text]
  • OLCT200 PID Application Note
    OLCT200 PID Application note PID Response Factor PID Response Photoionization Detectors (PIDs) respond to a broad variety of organic gases and vapors, and some inorganic compounds. In order to get a response, the photon energy of the lamp must be greater than the ionization energy of the compound. PIDs are available with 10.6 eV lamps. This Technical Article lists the response factors for over 800 compounds with these lamps. The factors presented are inverse to the response, i.e., the higher the number the lower the response. In the table ‘ZR’ means there is no response, NA that the value has not been measured (Not Available), and NV means that the compound is not volatile enough to measure accurately even if its ionization energy is low enough. Isobutylene as Reference Gas It is always most accurate to calibrate a PID directly with the compound to be measured. However, standard gas cylinders of many chemicals are not readily available, and in such cases isobutylene is the standard reference gas used to calibrate. The response of these chemicals differs to isobutylene by the factors listed in the table below. This table allows measurement of any of the compounds in it using only isobutylene for calibration. To obtain the true concentration of the target chemical, multiply the apparent reading by the response factor listed in the table: True Concentration = Apparent Response x Response Factor For example, anisole has a response factor (RF) of 0.47 with a 10.6 eV lamp. Therefore, a reading of 10 ppm using an isobutylene-calibrated unit would correspond to: True Concentration = 10 ppm x 0.47 = 4.7 ppm Most of the Response Factors are pre-programmed into a compound library and can be called up to make the PID read out in units of the compound of interest.
    [Show full text]
  • Electron Induced Chemistry of Thioformaldehyde
    RSC Advances Electron induced chemistry of Thioformaldehyde Journal: RSC Advances Manuscript ID RA-ART-09-2015-019662.R1 Article Type: Paper Date Submitted by the Author: 11-Nov-2015 Complete List of Authors: Limbachiya, Chetan; The M. S. University Baroda, Vadodara - 390001, Department of applied Physics CHAUDHARI, ASHOK; Government Engineering College Patan,, PHYSICS DESAI, HARDIK; DEPARTMENT OF PHYSICS, SARDAR PATEL UNIVERSITY, VALLABH VIDYANAGAR, PHYSICS VINODKUMAR, MINAXI; V.P & R.P.T.P. SCIENCE COLLEGE, ELECTRONICS; P.G. DEPARTMENT OF PHYSICS, SARDAR PATEL UNIVERSITY, PHYSICS Subject area & keyword: Biophysics - Physical < Physical Page 1 of 15 RSC Advances Electron induced chemistry of Thioformaldehyde Chetan Limbachiyaa,Ashok Chaudharib, Hardik Desaic and Minaxi Vinodkumar∗d Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX First published on the web Xth XXXXXXXXXX 200X DOI: 10.1039/b000000x A comprehensive theoretical study is carried out for electron interactions with thioformaldehyde (H2CS) over a wide range of impact energies (0.01 eV to 5000 eV). Owing to wide energy range we have been able to compute target properties and investigate variety of processes and report data on resonances, vertical electronic excitation energies, differential cross sections (DCS), momentum transfer cross sections (MTCS), total ionization cross sections (TICS) and total cross sections (TCS) as well as scattering rate coefficients. Due to complexity involved in scattering calculations, two different theoretical formalisms are used. We have employed ab initio R-matrix method (0.01 eV to ∼ 20 eV) and the spherical complex optical potential (SCOP) method (∼20 eV to 5000 eV) to compute the cross sections. The R-matrix calculations are performed using close coupling approximation employing static exchange plus polarization (SEP) model with the aid of basis sets, 6-31G* (14 target states) and cc-pVTZ (16 target states).
    [Show full text]