Resistencia a Antibióticos En Bacterias Recolectadas En Agua De Mar En Las Proximidades De Bases Antárticas

Total Page:16

File Type:pdf, Size:1020Kb

Resistencia a Antibióticos En Bacterias Recolectadas En Agua De Mar En Las Proximidades De Bases Antárticas Anales Instituto Patagonia (Chile), 2018. Vol. 46(3):29-39 29 ARTÍCULO CIENTÍFICO Resistencia a antibióticos en bacterias recolectadas en agua de mar en las proximidades de bases antárticas Antibiotic resistance in bacteria from seawater surrounding antarctic stations Nancy Calisto-Ulloa1, Claudio Gómez-Fuentes1, Patricio Muñoz2 Resumen agentes antimicrobianos en el medio ambiente Se estudió la presencia y distribución de bacterias antártico es indicativa de cuán extendida se ha vuelto con resistencia a antibióticos en el agua de la situación mundial de resistencia a antibióticos. mar próxima a distintas bases antárticas. Se tomaron muestras distribuidas uniformemente Palabras clave: alrededor de las descargas de aguas residuales Base Frei, Base Carlini, Base Bellingshausen, de siete bases antárticas y se aislaron colonias de Base Great Wall , Base Escudero, Base Prat. Escherichia coli. Los patrones de susceptibilidad de las bacterias a distintos agentes microbianos se Abstract determinaron utilizando el método de difusión en Antimicrobial resistant bacteria are widespread in disco y analizando diferentes grupos de antibióticos: aquatic environments. The aim of the present study penicilinas, carbapenémicos, aminoglicosidos, was to obtain information on the occurrence of quinolonas, tetraciclinas, fenicoles y trimetoprim. bacteria with antimicrobial resistance in seawater Para el control de calidad del método se utilizó la surrounding Antarctic stations. cepa Escherichia coli ATCC 25922. Escherichia coli strains were isolated from Se analizaron 216 muestras de agua de mar y en el seawater. The samples were collected from sites 58% de éstas se detectó la presencia de E. coli. Las distributed around the sewage outfalls of seven muestras más cercanas a las descargas de aguas Antarctic stations. Antibiotic susceptibility patterns residuales presentaron los mayores conteos de E. were determined with the disk diffusion method coli observándose una disminución significativa using different groups of antibiotics: penicillins, del número de bacterias a medida que aumenta la carbapenems, aminoglycosides, quinolones, distancia de la muestra a la descarga. En 70 cepas tetracycline, phenicols and trimethoprim. aisladas de E. coli se estudió la susceptibilidad a Escherichia coli ATCC 25922 was used as the los distintos agentes microbianos. En las cepas control for the susceptibility tests. estudiadas se observó resistencia a 16 de los 17 A total of 216 samples were analysed. Escherichia coli antibióticos probados. Treinta y seis cepas fueron were detected in 58 % of the samples. The highest susceptibles a todos los antibióticos evaluados, 34 cepas fueron resistentes a al menos un antibiótico 1 Centro de Investigación y Monitoreo Ambiental Antártico, y 20 mostraron resistencia a la ampicilina. Doce Departamento de Ingeniería Química, Universidad de cepas estudiadas fueron resistentes a múltiples Magallanes, Avenida Bulnes 01855. agentes microbianos. Finalmente, se detectó la 2 presencia de betalactamasas de espectro extendido Laboratorio de microbiología, Facultad de Ciencias, Universidad de Magallanes, Avenida Bulnes 01855. (BLEE) en dos cepas estudiadas. [email protected] La presencia de bacterias con resistencia a distintos Recibido: 09, nov. 2018 Aceptado: 08, dic. 2018 30 Calisto-Ulloa et al. bacterial counts were found in seawater surrounding (Dantas et al. 2008). Por otro lado, los genes de the sewage outfalls. However, the bacterial counts resistencia son elementos auto-replicativos que se decreased rapidly with increasing distance from pueden mantener en las poblaciones microbianas, the outfall. Seventy strains isolated were studied to excepto cuando esta mantención implica un costo determine antibiotic susceptibility. The strains studied biológico significativo a las bacterias receptoras. showed resistant to 16 out of the 17 antibiotics Algunos trabajos han demostrado que la reducción tested. Thirty-six strains were susceptible to all the de la carga de antibióticos en los ecosistemas antibiotics tested Thirty-four were resistant to at least naturales también puede reducir la resistencia a one antibiotic, 12 were multidrug resistant and 20 los antibióticos (Gonzalo et al. 1989; Aarestrup showed resistant to Ampicillin. Finally, the presence et al. 2001). Sin embargo, la situación real es of extended-spectrum beta-lactamases (ESBLs) was más compleja, se ha descrito, por ejemplo, que determined in two strains studied aunque la incidencia de la resistencia disminuye, esta The presence of bacteria with antimicrobial disminución es lenta y parte de la población permanece resistance in the Antarctic environment is indicative resistente (Andersson, 2003). Además, la presencia of how widespread the global antibiotic resistance de los mismos genes de resistencia actualmente situation has become. presentes en patógenos humanos se ha reportado en ambientes sin antecedentes de contaminación por Key words: antibióticos (Pallecchi et al. 2008). Estos entornos Frei Station, Carlini Stattion, Bellingshausen incluyen poblaciones remotas de humanos y animales Station, Great Wall Station, Escudero Station, Prat sin una exposición conocida a los antibióticos, lo que Station. podría indicar una alta prevalencia de resistencia a pesar de no recibir ningún antibiótico (Gilliver et al. INTRODUCCIÓN 1999; Livermore et al. 2001; Grenet et al. 2004; Bartoloni et al. 2009). Durante las últimas décadas, una gran El grado de resistencia a los antibióticos cantidad de micro contaminantes orgánicos en las comunidades bacterianas de un entorno se han liberado en el medio ambiente como dado, se ha relacionado con frecuencia con las resultado de actividades antropogénicas. Entre actividades antropogénicas, por lo tanto, en áreas ellos, los productos farmacéuticos humanos y en las que la actividad humana es limitada, se veterinarios son motivo de preocupación debido al espera que las bacterias contengan pocos genes posible impacto de estos compuestos en el medio de resistencia a los antibióticos. Un ejemplo de acuático. A largo plazo, preocupan especialmente, esto es el continente antártico, donde el impacto los efectos toxicológicos en los organismos antropogénico ha aumentado en los últimos años vivos y el efecto combinado de la exposición a con actividades turísticas y científicas (Bonnedahl múltiples compuestos, en particular los antibióticos et al. 2008; Cowan et al. 2011; Skurnik et al. (Richardson, 2012). 2006). Los principales vectores de introducción de La utilización de antibióticos con fines clínicos microorganismos extraños en la Antártida son las o agrícolas favorece la selección y supervivencia personas que habitan en Bases de investigación y de microorganismos resistentes (Teuber, 2001; animales antárticos, principalmente aves (Cowan Livermore, 2005). Por lo tanto, es previsible que los et al. 2011; Hughes, 2003). Varios estudios han residuos de hospitales o granjas contengan como reportado la presencia de coliformes fecales, así contaminantes, tanto antibióticos como genes de como E. coli, cerca de las descargas de aguas resistencia. Debe notarse que el destino de ambos residuales en diferentes lugares de la Antártica, lo tipos de contaminantes es probablemente diferente. que sugiere que las aguas residuales son una fuente En el caso de los antibióticos, varios de éstos son extrínseca de microorganismos no nativos en el compuestos naturales que han estado en contacto área del Tratado Antártico (Delille & Delille, 2000; con la microbiota ambiental durante millones de Delille & Gleizon, 2003). años y, por lo tanto, son biodegradables, e incluso Uno de los métodos para destruir bacterias sirven como alimento para varios microorganismos patógenas, o sus grupos indicadores, de las aguas RESISTENCIA A ANTIBIÓTICOS EN BACTERIAS RECOLECTADAS EN AGUA DE MAR 31 residuales es su tratamiento en plantas depuradoras. mes de enero del año 2017 en sitios distribuidos Las depuradoras presentan condiciones hostiles uniformemente alrededor de las descargas de para la supervivencia de dichas bacterias debido aguas residuales tratadas de 7 bases antárticas. a su temperatura ambiente, las condiciones físico- Cinco ubicadas en la Isla Rey Jorge (Bases: Frei, químicas de los reactores y la gran abundancia de Carlini, Bellingshausen, Great Wall y Escudero- depredadores (organismos bacterívoros y virus). Estación Marítima de Bahía Fildes), una en la Isla En general, las depuradoras reducen en 1-3 Greenwich (Base Prat), ambas islas pertenecientes logaritmos la abundancia de bacterias del agua al archipiélago de las Shetland del Sur y finalmente, de entrada (Hirata et al. 1993). Sin embargo, una base ubicada en la Península Antártica (Base esta reducción en la abundancia de bacterias no O´Higgins) (Fig. 1). va acompañada de una reducción de bacterias Se recolectaron un total de 216 muestras resistentes. Algunos estudios indican que las de agua de mar superficial, 120 recolectadas en plantas de tratamiento convencionales de aguas el borde costero y 96 en el mar abierto del área residuales (lodos activados) tienden a aumentar el de estudio., a distancias de 0, 10, 25, 50 y 150 porcentaje de bacterias resistentes en su efluente m de las descargas de las plantas de tratamiento como consecuencia de la gran abundancia de de cada bases. Adicionalmente, se recolectaron bacterias en el reactor biológico y del tiempo muestras fuera de la zona de influencia de las de contacto entre ellas, lo que incrementa las descargas de aguas residuales de cada base para tasas de intercambio
Recommended publications
  • Ilha Rei George, Antártica Marítima) Entre 1986 E 2011
    Revista Brasileira de Meteorologia, v.29, n.3, 379 - 388, 2014 http://dx.doi.org/10.1590/0102-778620120439 VARIAÇÕES DA FRENTE DA GELEIRA POLAR CLUB, PENÍNSULA POTTER (ILHA REI GEORGE, ANTÁRTICA MARÍTIMA) ENTRE 1986 E 2011 EVERTON LUÍS POELKING1, ANDRÉ MEDEIROS DE ANDRADE2, GONÇALO BRITO T. G. VIEIRA3, CARLOS ERNESTO G. R. SCHAEFER4, ELPÍDIO INÁCIO FERNANDES FILHO4 1Universidade Federal do Recôncavo da Bahia (UFRB), Cruz das Almas, BA, Brasil 2Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil 3Universidade de Lisboa (UL), Lisboa, Portugal 4Universidade Federal de Viçosa (UFV), Viçosa, MG, Brasil [email protected], [email protected], [email protected], [email protected], elpidio@ufv. br Recebido Fevereiro de 2012 - Aceito Novembro de 2013 RESUMO As mudanças ambientais, especialmente na criosfera, podem resultar em amplas consequências globais, sendo o estudo de geleiras das regiões polares estratégicos para analisar áreas sensíveis às mudanças climáticas. Neste trabalho foram analisadas as taxas de mudança da frente da geleira Polar Club e comparadas com a variabilidade interanual da temperatura do ar, na Península Potter, ilha Rei George, a fim de compreender o impacto direto das alterações do clima local na dinâmica das áreas livres de gelo. Foi utilizada uma série de dez cenas de imagens do satélite Landsat e dados de temperatura do ar superficial entre 1986 e 2011. Os resultados evidenciam uma tendência no aumento na temperatura do ar de 0,04 ºC por ano, o que resultou no incremento de 1,03 ºC nas temperaturas médias do ar para o período de 26 anos analisados.
    [Show full text]
  • Plan Anual Antártico Del Programa Antártico Argentino 2018-2019
    Programa Antártico Argentino Plan Anual Antártico 2018-2019 INTRODUCCIÓN La Argentina reivindica soberanía sobre el Sector Antártico Argentino, comprendido entre los meridianos 25° y 74° de longitud Oeste al sur del paralelo de 60° de latitud Sur, con fundamento en títulos históricos, geográficos, geológicos y jurídicos. La Argentina tiene presencia permanente e ininterrumpida en la Antártida desde el 22 de febrero de 1904, en que se estableciera la primera estación científica (Base Orcadas) en la Isla Laurie, Archipiélago de las Islas Orcadas del Sur. La Argentina, por tanto, tiene la presencia continua más antigua en la Antártida. La Argentina tiene seis bases permanentes (Carlini, Orcadas, Esperanza, Marambio, San Martín y Belgrano II) y siete bases temporarias (Brown, Primavera, Decepción, Melchior, Matienzo, Cámara y Petrel). Todas están situadas en el Sector Antártico Argentino. La Dirección Nacional del Antártico administra dos de ellas (las Bases Carlini y Brown) y el Ministerio de Defensa, a través del Comando Conjunto Antártico, administra las otras once. La Argentina es uno de los doce países que participaron en la Conferencia de Washington sobre la Antártida de 1959, y eso la llevó a ser uno de los doce signatarios originarios del Tratado Antártico. El Tratado establece que la Antártida se utilizará exclusivamente para fines pacíficos y erige a la ciencia en el centro de la actividad antártica. El artículo IV del Tratado resguarda adecuadamente las reivindicaciones de soberanía en la Antártida. Por tanto, uno de los ejes de la política exterior argentina es continuo fortalecimiento del conjunto de normas surgidas a partir del Tratado Antártico. Los lineamientos de la Política Antártica Nacional (PAN) están definidos por el Decreto 2316/90, cuyo objetivo principal es el P á g i n a 2 | 265 Programa Antártico Argentino Plan Anual Antártico 2018-2019 afianzamiento de los derechos argentinos de soberanía en la Antártida.
    [Show full text]
  • The Antarctic Treaty Cm 8841
    The Antarctic Treaty Measures adopted at the Thirty-sixth Consultative Meeting held at Brussels, 20 – 29 May 2013 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty March 2014 Cm 8841 © Crown copyright 2014 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.2. To view this licence visit www.nationalarchives.gov.uk/doc/open-government-licence/version/2/ or email [email protected] This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commo nwealth Office, King Charles Street, London, SW1A 2AH Print ISBN 9781474101134 Web ISBN 9781474101141 Printed in the UK by the Williams Lea Group on behalf of the Controller of Her Majesty’s Stationery Office ID P002631486 03/14 Printed on paper containing 30% recycled fibre content minimum MEASURES ADOPTED AT THE THIRTY-SIXTH ANTARCTIC TREATY CONSULTATIVE MEETING Brussels, Belgium, 20-29 May 2013 The Measures1 adopted at the Thirty-sixth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents.
    [Show full text]
  • 1 Inhabiting the Antarctic Jessica O'reilly & Juan Francisco Salazar
    Inhabiting the Antarctic Jessica O’Reilly & Juan Francisco Salazar Introduction The Polar Regions are places that are part fantasy and part reality.1 Antarctica was the last continent to be discovered (1819–1820) and the only landmass never inhabited by indigenous people.2 While today thousands of people live and work there at dozens of national bases, Antarctica has eluded the anthropological imagination. In recent years, however, as anthropology has turned its attention to extreme environments, scientific field practices, and ethnographies of global connection and situated globalities, Antarctica has become a fitting space for anthropological analysis and ethnographic research.3 The idea propounded in the Antarctic Treaty System—that Antarctica is a place of science, peace, environmental protection, and international cooperation—is prevalent in contemporary representations of the continent. Today Antarctic images are negotiated within a culture of global environmentalism and international science. Historians, visual artists, and journalists who have spent time in the Antarctic have provided rich accounts of how these principles of global environmentalism and 1 See for instance Adrian Howkins, The Polar Regions: An Environmental History (Cambridge, UK: Polity, 2016). 2 Archaeological records have shown evidence of human occupation of Patagonia and the South American sub-Antarctic region (42˚S to Cape Horn 56˚S) dating back to the Pleistocene–Holocene transition (13,000–8,000 years before present). The first human inhabitants south of 60˚S were British, United States, and Norwegian whalers and sealers who originally settled in Antarctic and sub-Antarctic islands during the early 1800s, often for relatively extended periods of time, though never permanently 3 See for instance Jessica O’Reilly, The Technocratic Antarctic: An Ethnography of Scientific Expertise and Environmental Governance (Ithaca, NY: Cornell University Press, 2017); Juan Francisco Salazar, “Geographies of Place-making in Antarctica: An Ethnographic Approach,” The Polar Journal 3, no.
    [Show full text]
  • Multi-Year Analysis of Distributed Glacier Mass Balance Modelling and Equilibrium Line Altitude on King George Island, Antarctic Peninsula
    The Cryosphere, 12, 1211–1232, 2018 https://doi.org/10.5194/tc-12-1211-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula Ulrike Falk1,2, Damián A. López2,3, and Adrián Silva-Busso4,5 1Climate Lab, Institute for Geography, Bremen University, Bremen, Germany 2Center for Remote Sensing of Land Surfaces (ZFL), Bonn University, Bonn, Germany 3Institute of Geology and Mineralogy, University Cologne, Cologne, Germany 4Faculty of Exact and Natural Sciences, University Buenos Aires, Buenos Aires, Argentina 5Instituto Nacional de Agua (INA), Ezeiza, Buenos Aires, Argentina Correspondence: Ulrike Falk ([email protected]) Received: 12 October 2017 – Discussion started: 1 December 2017 Revised: 15 March 2018 – Accepted: 19 March 2018 – Published: 10 April 2018 Abstract. The South Shetland Islands are located at the seen over the course of the 5-year model run period. The win- northern tip of the Antarctic Peninsula (AP). This region ter accumulation does not suffice to compensate for the high was subject to strong warming trends in the atmospheric sur- variability in summer ablation. The results are analysed to as- face layer. Surface air temperature increased about 3K in sess changes in meltwater input to the coastal waters, specific 50 years, concurrent with retreating glacier fronts, an in- glacier mass balance and the equilibrium line altitude (ELA). crease in melt areas, ice surface lowering and rapid break- The Fourcade Glacier catchment drains into Potter cove, has up and disintegration of ice shelves.
    [Show full text]
  • Anta272.Txt F*************************************************************************** * W.A.P
    anta272.txt f*************************************************************************** * W.A.P. Worldwide Antarctic Program * * Antarctic, Sub-Antarctic and Peri-Antarctic News * * SINCE 1979 * * * * Bases, Activities and Informations for * * Amateur Radio Stations and Antarctic Enthusiasts * * Bulletin nr.272 (24 February 2017) * * * * WAP Antarctic Bulletin is a free of charge information sheet * * edited by Max IK1GPG, Gianni I1HYW and Betty IK1QFM @ WAP Staff * * * * WEB Page : http://www.waponline.it/ * * * * * * Others Antarctic WEB Pages with our WAP Bulletin * * http://www.qsl.net/f5nod/antarctica.html * * * * Antarctica Mailing List * * http://groups.yahoo.com/group/antarctica_list/ * ---------------------------------------------------------------------------- * W.A.P. Special Edition * * 22 issues are available at WAP web site !! * * We are waiting volounteers to continue the Monthly Issues pubblication * * Those interested to do this work for free, PSE contact IK1GPG or I1HYW * ---------------------------------------------------------------------------- * W.A.P. - W.A.D.A. (Worked Antarctic Directory Award) * * Antarctic, Sub-Antarctic and Peri-Antarctic Directory * * (16th Edition - Release 1.29 - 04 January 2017) * * List of more than 873 Bases, Camp, Hut, Refuge and Station used in * * Antarctica since 1945. * * * * W.A.P. - W.A.C.A. (Worked Antarctic Callsigns Award) * * Antarctic, Sub-Antarctic and Peri-Antarctic Directory * * (16th Edition - Release 1.29 - 04 January 2017) * * List of more than 4.076 Callsigns used
    [Show full text]
  • National Report, Argentina V2
    IHO Hydrographic Committee on Antarctica (HCA) th 16 Meeting, Prague, Czech Republic. 3 -5 July 2019. REPORT BY THE NAVAL HYDROGRAPHIC SERVICE MINISTERIO DE DEFENSA SERVICIO DE HIDROGRAFIA NAVAL Tel.: (54-11) 4301-0061/67 Fax.: (54-11) 4301-3883 Av. Montes de Oca 2124 www.hidro.gob.ar (C1270ABV) Buenos Aires REPUBLICA ARGENTINA 1- HYDROGRAPHIC OFFICE MINISTERIO DE DEFENSA SERVICIO DE HIDROGRAFÍA NAVAL www.hidro.gob.ar 2- SURVEYS 2.1 INT 9101 / H-757– Península Trinidad – Base Esperanza. 6 (six) WGS84 points and coast line were measured in Esperanza Bay for the realization of INT 9101. 2.2 H-711 – Potter Cove – Carlini Base. 8 (eight) WGS84 points and coast line were measured in Potter Cove for future actualization of H-711. 3- NEW CHARTS & UPDATES 3.1 New Charts 3.1.1 AR-GB INT 9153 / H-734 “Church Point a Cabo Longing”, Published in September 2018. INT9153/H-734 Boundaries Scale North Latitude 63° 39’S “Church Point a Cabo South Latitude 64° 36.4’S 1:50.000 Longing” West Longitude 59° 00’W East Longitude 55° 17.6’W 3.1.2 AR-GB INT 9154 / H-733 “Isla Joinville a Cabo Ducorps”. Published in September, 2018. INT 9154 / H-733 Boundaries Scale North Latitude 62° 50’S “Isla Joinville a Cabo South Latitude 63° 49.1’S 1:50.000 Ducorps” West Longitude 58° 12.5’W East Longitude 54° 30’W 3.2 New Updates 3.2.1 H-7 “Provincia de Tierra del Fuego, Antártida e Islas del Atlántico Sur, Península Antártica”.
    [Show full text]
  • Brazil in Antarctica: the Scientific and Geopolitical Importance of Proantar in the Brazilian Strategic Surrounding Area
    251 BRAZIL IN ANTARCTICA: THE SCIENTIFIC AND GEOPOLITICAL IMPORTANCE OF PROANTAR IN THE BRAZILIAN STRATEGIC SURROUNDING AREA Israel de Oliveira Andrade Leonardo Faria de Mattos Andrea Cancela da Cruz-Kaled Giovanni Roriz Lyra Hillebrand 251 DISCUSSION PAPER Brasilia, September 2020 BRAZIL IN ANTARCTICA: THE SCIENTIFIC AND GEOPOLITICAL IMPORTANCE OF PROANTAR IN THE BRAZILIAN STRATEGIC SURROUNDING AREA1,2 Israel de Oliveira Andrade3 Leonardo Faria de Mattos4 Andrea Cancela da Cruz-Kaled5 Giovanni Roriz Lyra Hillebrand6 1. This text corresponds to the translation of the research, published originally in Portuguese: O Brasil na Antártica: a importân- cia científica e geopolítica do PROANTAR no entorno estratégico brasileiro. Texto para Discussão n. 2425, Brasília, Ipea, 2018. 2. We would like to express our sincere gratitude to Admirals Eduardo Bacellar Leal Ferreira and Marcos Silva Rodrigues, and Rear Admirals Sérgio Gago Guida and Paulo Roberto da Silva Xavier. We also thank the staff of the Secretariat of the Inter- ministerial Commission for Sea Resources (SECIRM), the PhD professors Alvaro Toubes Prata – State Secretary of Research and Development Policies and Programs of the Ministry of Science, Technology, Innovation, and Communications (MCTIC) –, Ana Flávia Barros-Platiau and Paulo Eduardo Aguiar Saraiva Câmara – coordinators of graduate programs at the University of Brasilia (UnB) –, and Daniela Portella Sampaio (University of Leeds), as well as the researchers Luiz Gustavo de Aversa Franco, Maurício Kenyatta and Matheus Augusto Soares, of the Research Program for National Development (PNPD) at Ipea, exempt- ing them of any errors or omissions. Any remaining imperfections in the text are sole responsibility of the authors. 3. Researcher at Ipea.
    [Show full text]
  • EXPEDITION PROGRAM ANTARCTICA (ANT – Land 2014/2015)
    EXPEDITION PROGRAM ANTARCTICA (ANT – Land 2014/2015) STATIONS AND FLIGHT MISSIONS NEUMAYER STATION III KOHNEN STATION Flight Missions DALLMANN LABORATORY Other Activities Coordinators: Uwe Nixdorf Eberhard Kohlberg Dirk Mengedoht Tom Brey Daniel Steinhage ALFRED WEGENER INSTITUTE HELMHOLTZ CENTRE FOR POLAR AND MARINE RESEARCH November 2014 ANT-Land 14/15 CONTENTS 1. NEUMAYER STATION III 4 1.1 Summary 4 1.2 Operation of observatories 5 1.2.1 Meteorological Observatory 5 1.2.2 Operational weather forecast service for DROMLAN 5 1.2.3 Geophysical observatory 6 1.2.4 Air chemistry observatory 7 1.2.5 PALAOA - the Perennial Acoustic Observatory in the Antarctic Ocean 8 1.3 Scientific projects 9 1.3.1 Neutron-Monitor and Muon-Telescope 9 1.3.2 SPOT – Single Penguin Observation and Tracking 9 1.3.3 Long term measurement of the cosmic radiation component on different geological positions. 10 1.3.4 Consequences of longterm-Confinement and Hypobaric HypOxia on Immunity in the Antarctic Environment at NEUMAYER STATION III (CHO2ICE@NMIII) 11 1.3.5 Antarctic Fast Ice Network – Sea Ice Monitoring in Atka Bay 13 1.4 National and international visits and inspections 15 1.4.1 International Visits, International Guest Scientists 15 1.4.2 International Guest Scientists 15 1.4.3 International Inspection 16 1.5 Scientific projects during wintering 16 1.5.1 Human Physiology at Neumayer Station III – Campaign 2015 16 2. KOHNEN STATION 18 2.1. Summary 18 2.2 Scientific Projects 19 2.2.1 Coldest Firn and Associated Projects (CoFi & CoFiAP) 19 2.2.2 Coldest Firn – Meteorology 19 1 ANT-Land 14/15 3.
    [Show full text]
  • Impact of Climate-Induced Dynamics on a Coastal Benthic Ecosystem from the West Antarctic Peninsula
    Impact of Climate-induced dynamics on a Coastal Benthic Ecosystem from the West Antarctic Peninsula Francesca Pasotti 2015 Impact of Climate-induced dynamics on a Coastal Benthic Ecosystem from the West Antarctic Peninsula By Francesca Pasotti Promotor: Prof. Dr. Ann Vanreusel Academic year 2014-2015 This thesis is submitted in partial fulfillment of the requirements for the degree of Doctor in Science (Marine Sciences) Committee members Reading Committee Prof. Bruno Danis (Marine Biology Laboratory, Université Libre de Bruxelles, Belgium) Prof. Wim Vyverman (Phycology and Aquatic Ecology Laboratory, Ghent University, Belgium) Dr. Marleen De Troch (Marine Biology Laboratory, Ghent University, Belgium) Examination Comittee Dr. Elie Verleyen (Phycology and Aquatic Ecology Laboratory, Ghent University, Belgium) Dr. Ulrike Braeckman (Marine Biology Laboratory, Ghent University, Belgium) Prof. Dr. Tom Moens (Marine Biology Laboratory, Ghent University, Belgium) Prof. Dr. Magda Vincx (Marine Biology Laboratory, Ghent University, Belgium) Prof. Dr. Doris Abele (Dept. of Functional Ecology, Alfred Wegener Institute, Germany) Prof. Wim Vyverman (Phycology and Aquatic Ecology Laboratory, Ghent University Belgium) Dr. Marleen De Troch (Marine Biology Laboratory, Ghent University, Belgium) Prof. Dr. Ann Vanreusel (promoter, Marine Biology Laboratory, Ghent University, Belgium) Prof. Dr. Dominique Adriaens (chairman, Dept. of Evolutionary Morphology of Vertebrates, Ghent University, Belgium) Aknowledgments The last lines I find myself writing are actually the first in importance for my heart. This PhD thesis would have never been possible without many and several causes and conditions (hence, wonderful people) which shaped my life. First of all, I need to thank my parents and family, who gave me this life, nurtured me when I was little and transmitted me those basic human values which made me go through life in a lighter, yet stronger way.
    [Show full text]
  • RV LAURENCE M. GOULD Cruise History
    R/V LAURENCE M. GOULD Cruise History 1 of 21 Last Update: 6/8/2021 RV LAURENCE M. GOULD Cruise History COPA=Copacabana Field Camp, Antarctica; CS=Cape Sherriff, Antarctica; DEC=Deception Island, Antarctica; ESP=Esperanza Base, Antarctica; FCH=Fourchon, LA; KGI=King George Island, Antarctica; LIV=Livingston Island, Antarctica; OHG=O'Higgins Base, Antarctica; PAL=Palmer Station, Port Key: Antarctica; PAN=Panama; PMN=Peterman Island, Antarctica; PNT=Puerto Natales, Chile; PUQ=Punta Arenas, Chile; SNO=Snow Island, Antarctica; ROT=Rothera Base, Antarctica; SEY=Seymour Island, Antarctica; TAL=Talcahuano, Chile; , Antarctica; VRN=Vernadsky Station, Antarctica Contacting Principal Investigators: Each cruise's principal investigator and/or chief scientist is listed below. For e-mail addresses, and for links to the Antarctic Data Repository, please refer to the HTML version of the cruise history. For more in-depth contact information, mailing address, phone numbers, etc, please refer to the online version of the Science Planning Summaries Where active or archived information is available, the researcher’s website may be accessed by clicking the link in the Cruise Name field. Use BOOKMARKS to get to specific cruises by name/date. CRUISE # CRUISE by NAME PIs Departure PORT Arrival PORT LMG 98-1t Transit to Punta Arenas N/A 12/25/1997 FCH 1/16/1998 PUQ Antarctic Data Repository for LMG9801T LMG 98-1 Long-Term Ecological Research on the Antarctic Marine Ecosystem: Maria Vernet 1/22/1998 PUQ 2/20/1998 PUQ An Ice-Dominated Environment. (LTER) S-016 http://www.icess.ucsb.edu
    [Show full text]
  • High Resolution Spatial Mapping of Human Footprint Across Antarctica and Its Implications for the Strategic Conservation of Avifauna
    RESEARCH ARTICLE High Resolution Spatial Mapping of Human Footprint across Antarctica and Its Implications for the Strategic Conservation of Avifauna Luis R. Pertierra1*, Kevin A. Hughes2, Greta C. Vega1, Miguel A . Olalla-TaÂrraga1 1 Area de Biodiversidad y ConservacioÂn, Universidad Rey Juan Carlos, MoÂstoles, Spain, 2 British Antarctic Survey, National Environment Research Council, High Cross, Madingley Road, Cambridge, United Kingdom a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract Human footprint models allow visualization of human spatial pressure across the globe. Up until now, Antarctica has been omitted from global footprint models, due possibly to the lack of a permanent human population and poor accessibility to necessary datasets. Yet Antarc- OPEN ACCESS tic ecosystems face increasing cumulative impacts from the expanding tourism industry Citation: Pertierra LR, Hughes KA, Vega GC, Olalla- and national Antarctic operator activities, the management of which could be improved with  TaÂrraga MA (2017) High Resolution Spatial footprint assessment tools. Moreover, Antarctic ecosystem dynamics could be modelled to Mapping of Human Footprint across Antarctica and Its Implications for the Strategic Conservation incorporate human drivers. Here we present the first model of estimated human footprint of Avifauna. PLoS ONE 12(1): e0168280. across predominantly ice-free areas of Antarctica. To facilitate integration into global mod- doi:10.1371/journal.pone.0168280 els, the Antarctic model was created using methodologies applied elsewhere with land use, Editor: Hans-Ulrich Peter, Friedrich-Schiller- density and accessibility features incorporated. Results showed that human pressure is Universitat Jena, GERMANY clustered predominantly in the Antarctic Peninsula, southern Victoria Land and several Received: September 13, 2016 areas of East Antarctica.
    [Show full text]