Combatting Nutrient Spillage in the Archipelago Sea—A Model System

Total Page:16

File Type:pdf, Size:1020Kb

Combatting Nutrient Spillage in the Archipelago Sea—A Model System Environmental Coastal Regions III, C.A. Brebbia, G.R. Rodriguez & E. Perez Martell (Editors) © 2000 WIT Press, www.witpress.com, ISBN 1-85312-827-9 Combatting nutrient spillage in the Archipelago Sea—a model system for coastal management support H. Lauri% H. Ylinen*, J. Koponen*, H. Helminen* & P. Laihonen* ' Environmental Impact Assessment Centre of Finland Ltd, Finland ^ South-West Finland Regional Environment Centre, Finland Abstract The Archipelago Sea is a sea area in the Baltic Sea between Aland and the Finnish mainland strongly influenced by the Baltic Sea forcing. Archipelago Sea waters are relatively clean but threatened from the southern and eastern sides by more nutrient rich waters from the Gulf of Finland and the Baltic Proper, and also from local nutrient loads from Finnish mainland and fish farming. In order to find out the relative impact of different nutrient sources a hydrodynamic model was applied to the area. Modelling the Archipelago Sea required taking into account large scale variations of the Baltic Sea as well as the small scale topography created by the numerous islands, therefore a nested three- dimensional grid with three grid refinement levels was used. Flows in the Archipelago Sea are dominantly wind-induced but affected by salinity and temperature gradients. Computed flows were compared to flow measurements performed in the Archipelago Sea during the open water periods of 1993 and 1994. These simulated flows were then used to model transport in the area to investigate the effect of local nutrient sources and water exchange between the Archipelago Sea and neighbouring sea areas. Transport computations were further verified using salinity measurements. In order to make the model more usable a model management system was constructed. The system simplifies model input data handling, model computation, and result visualisation. As a basis of the user interaction a map- based view of the modelled area is shown, including a set of interactive symbols that allow geographic location-based data access and model parameter manipulation. Environmental Coastal Regions III, C.A. Brebbia, G.R. Rodriguez & E. Perez Martell (Editors) © 2000 WIT Press, www.witpress.com, ISBN 1-85312-827-9 194 Environmental Coastal Regions HI Introduction Archipelago Sea is one of the most complicated archipelago areas in the world, numerous small and big islands and rocks make the archipelago highly fractal in character. Large open water area and main channels form the central part of the archipelago that is strongly influenced by the Baltic Sea forcing, while intermediate and inner archipelago areas surround the central part on the Aland Island and Finnish mainland sides. Inner archipelago areas are to a large extent isolated from the main Baltic Sea influence, storm events, however, can be important for the exchange of the inner archipelago waters. Figure 1. Archipelago Sea The Archipelago Sea is affected by nutrient transport from the surrounding seas, mainly Baltic Proper, and nutrient loads from land runoff and point sources, and internal bottom load from sediments. Some areas of the Archipelago Sea suffer from excessive eutrofication demonstrating itself as sliming, extensive growth of filamentous algae, oxygen depletion and algae blooms. In order to better understand the origin nutrients causing the eutrofication, the influence of the surrounding seas to the Archipelago sea was investigated by computing the water flows in the area and water exchange with the neighbouring seas. The goal was to achieve information on the relative importance of local nutrient sources compared to long distance transport (Helminen 1998). The flow computations were verified using set of flow measurements performed during open water period in several locations on years 1993 and 1994. In addition to computation results a modelling support system was built to enable generation and investigation of computation results by the end users, that is, the local environmental office. The complete modelling system consist of a hydrodynamic and water quality models, and a model management system Environmental Coastal Regions III, C.A. Brebbia, G.R. Rodriguez & E. Perez Martell (Editors) © 2000 WIT Press, www.witpress.com, ISBN 1-85312-827-9 Environmental Coastal Regions HI 195 helping users in the complex task of input data management, model running and result visualisation (Lauri 1998). Computational model The hydrodynamic model used is a 3D primitive equation, z-coordinate, free surface model, with constant eddy viscosity coefficients (Koponen 1992, Simons 1980). The model grid covers the whole Baltic Sea with two nestings that locally increase the model resolution. The grid box sizes used are 24, 6 and 1.5 km, where the finest grid covers the Archipelago Sea. Vertically there are ten layers with thickness of one meter at the surface and increasing downwards. Figure 2. Part of the model grid showing the two finest grid nestings. As the whole Baltic Sea was modelled there are no open boundaries. The water exchange through the Danish straits and fresh water river inputs were either neglected or taken into account as constant concentrations, and in the model initial state. As the tide in the Baltic Sea is negligible, the main current driving forcing in is wind. Comparison of computed and measured flows To investigate model reliability model results were compared to measured flows performed with recording current meters at ten-minute intervals. There were three point measurements from summer -93 and four from summer -94. The measurement points were mostly located on straits on the Archipelago Sea. The comparison between computed and measured flows were performed using along the strait flow component, typically the cross-strait flow components were significantly smaller in magnitude. Environmental Coastal Regions III, C.A. Brebbia, G.R. Rodriguez & E. Perez Martell (Editors) © 2000 WIT Press, www.witpress.com, ISBN 1-85312-827-9 196 Environmental Coastal Regions III Goodness of fit of computed flow to measured flow was estimated using goodness of fit (R?) coefficient. For the two whole measurement periods the R varied from negative values to 0.51 at different points. Below a figure showing comparisons performed using a moving one-week time range for year -94 data, from which periods of good and bad model fit can be identified. As a reference the lighter colored line in the figures identifies the values of R? achieved when using a constant zero as the computed flow. 940606 940613 940620 940627 940704 940711 940718 940603 940605 940607 940600 940611 940613 940615 940617 940619 Bano Kumlinge Figure 3. Time-dependent R2 coefficient between computed and measured flows The model performance goes in some cases below the reference line. However, in this kind of comparison a slight phase error may cause poor values for the R* coefficient. Also this comparison was done with measured point flow data, while the model always computes average flow of 1.5 x 1.5 km grid box. Generally the modelled results compared to measured values rather well, and in some cases the model fit could be called good, taking into account the above limitations. Water exchange Water exchange was computed using an initial state where Baltic, Gulf of Finland, Bothnian Bay and Archipelago Sea were marked individually. The movement of these waters was then followed for eight months in different years. The water exchange varied greatly between different years, mainly due to strong winds occurring most often during spring and autumn. A difference between outer (left) and inner archipelago is demonstrated in the figure below. 1 Gulf of Finlad 0.8 Baltic proper 0.6 Bothnian Bay Archipelago Sea 0.4 0.2 0 940402940502940601940701940731940830940929941029941128 Kihti, outer archipelago Turku, inner archipelago Figure 4. Water exchange timeseries for eight-month simulation. Environmental Coastal Regions III, C.A. Brebbia, G.R. Rodriguez & E. Perez Martell (Editors) © 2000 WIT Press, www.witpress.com, ISBN 1-85312-827-9 Environmental Coastal Regions HI 197 Nutrient dispersion To find out the relative importance of local nutrient sources in different areas of Archipelago Sea the local nutrient sources were mapped and divided into three main categories: 1. loads from Finnish shoreline including river discharges as well as municipal and industrial sources, 2. Loads in eastern archipelago including mostly fish farming, and 3. Loads in Ahvenanmaa archipelago. In the figure below the load locations are shown on the map. Distribution of nutrients was then estimated by letting the released tracker spread with the computed flow and plotting timeseries of tracker concentrations on given locations for the eight month simulation period. A clear distinction can be seen between the inner archipelago, where local source are significant due to smaller water exchange and large loads from shore, and the outer archipelago, where local loading disperse quickly. # Ahvenanmaa archipelago m. Finnish shore O Eastern achipelago Point loads on the Finnish shore, Eastern and Ahvenanmaa archipelago • Ahvenanmaa archipelago I I Finnish shore Eastern achipelago 12 140*01 MO701 940731 MM30 140921 M10M Mil Turku, inner archipelago Kihti, outer archipelago Figure 5. Simulated relative active phosphorous fractions from different load areas in two points on Archipelago Sea during eight-month simulation. Environmental Coastal Regions III, C.A. Brebbia, G.R. Rodriguez & E. Perez Martell (Editors) © 2000 WIT Press, www.witpress.com, ISBN 1-85312-827-9
Recommended publications
  • A 1500-Year Multiproxy Record of Coastal Hypoxia from the Northern Baltic Sea Indicates Unprecedented Deoxygenation Over the 20Th Century
    Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-25 Manuscript under review for journal Biogeosciences Discussion started: 16 January 2018 c Author(s) 2018. CC BY 4.0 License. A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century Sami A. Jokinen1, Joonas J. Virtasalo2, Tom Jilbert3, Jérôme Kaiser4, Olaf Dellwig4, Helge W. Arz4, Jari 5 Hänninen5, Laura Arppe6, Miia Collander7, Timo Saarinen1 10 15 20 25 30 1Department of Geography and Geology, University of Turku, 20014 Turku, Finland 2Marine Geology, Geological Survey of Finland (GTK), P.O. Box 96, 02151 Espoo, Finland 3Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland 4Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, 18119 Rostock, Germany 35 5Archipelago Research Institute, University of Turku, 20014 Turku, Finland 6Finnish Museum of Natural History, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland 7Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland Correspondence to: Sami A. Jokinen ([email protected]) 1 Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-25 Manuscript under review for journal Biogeosciences Discussion started: 16 January 2018 c Author(s) 2018. CC BY 4.0 License. Abstract. The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies.
    [Show full text]
  • Thermodynamic and Dynamic Ice Thickness Contributions in the Canadian Arctic Archipelago in NEMO-LIM2 Numerical Simulations
    The Cryosphere, 12, 1233–1247, 2018 https://doi.org/10.5194/tc-12-1233-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Thermodynamic and dynamic ice thickness contributions in the Canadian Arctic Archipelago in NEMO-LIM2 numerical simulations Xianmin Hu1,a, Jingfan Sun1,b, Ting On Chan1,c, and Paul G. Myers1 1Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2E3, Canada anow at: Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada bnow at: School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA cnow at: Skytech Solutions Ltd., Canada Correspondence: Xianmin Hu ([email protected]) Received: 6 September 2017 – Discussion started: 10 October 2017 Revised: 16 March 2018 – Accepted: 19 March 2018 – Published: 10 April 2018 Abstract. Sea ice thickness evolution within the Canadian is found in the northern CAA and Baffin Bay while a de- Arctic Archipelago (CAA) is of great interest to science, as cline (r2 ≈ 0:6, p < 0:01) is simulated in Parry Channel re- well as local communities and their economy. In this study, gion. The two main contributors (thermodynamic growth and based on the NEMO numerical framework including the lateral transport) have high interannual variabilities which LIM2 sea ice module, simulations at both 1=4 and 1=12◦ hor- largely balance each other, so that maximum ice volume can izontal resolution were conducted from 2002 to 2016. The vary interannually by ±12 % in the northern CAA, ±15 % in model captures well the general spatial distribution of ice Parry Channel, and ±9 % in Baffin Bay.
    [Show full text]
  • Eastern Gulf of Finland-1
    Template for Submission of Information, including Traditional Knowledge, to Describe Areas Meeting Scientific Criteria for Ecologically or Biologically Significant Marine Areas EASTERN GULF OF FINLAND Abstract The area is a shallow (mean 24 m, max 95 m deep) archipelago area in the northeastern Baltic Sea. It is characterized by hundreds of small islands and skerries, coastal lagoons and boreal narrow inlets, as well as a specific geomorphology, with clear signs from the last glaciation. Due to the low salinity (0- 5 permille), the species composition is a mixture of freshwater and marine organisms, and especially diversity of aquatic plants is high, Many marine species, including habitat forming key species such as bladderwrack (Fucus vesiculosus) and blue mussel (Mytilus trossulus), live on the edge of their geographical distribution limits, which makes them vulnerable to human disturbance and effects of climate change. The area has a rich birdlife and supports one of the most important populations of the ringed seal (Pusa hispida botnica), an endangered species. Introduction to the area The proposed area (Fig. 1 & 2) is situated on the north-eastern part of the Gulf of Finland, in the Baltic Sea, which is the largest brackish water area in the World. The proposed area is an archipelago with hundreds of small islands and skerries, coastal lagoons and boreal narrow inlets, as well as a specific geomorphology, with clear signs from the last glaciation (ca. 18.000 – 9.000 BP). Coastal areas freeze over still freeze over every winter for at least a few weeks. The scenery in the area ranges from sheltered inner archipelago with lagoons, shallow bays and boreal inlets, through middle archipelago, with few larger islands, to wave exposed outer archipelago with open sea, small islands and skerries.
    [Show full text]
  • International Council for the Exploration of the Sea FINLAND J. Lassig Institute of Marine Research C. H. 1982/L: L/Corr. Admini
    \ International Council for C. H. 1982/L: l/Corr. the Exploration of the Sea Administrative Report Addendum 'BiologicalOceanography Committee FINLAND 6/0 J. Lassig Institute of Marine Research Phytoplankton, primary production, chlorophyll a and related parameters were studied every second week (twice during the ice period) at one station in the western part of the Gulf of Finland and at 15 stations in the entire Baltic Sea as stipula­ ted in theBaltic Monitoring Programme (Helsinki:Commission). Zooplankton was sampled (Hensen net) three times a month (once during the ice period) at two coastal stations in the Gulf of Finland, one station in the Archipelago Sea and one in the Bothnian Bay. Zooplankton was sampled (WP-2 net) at 26 stations in the entire Baltic Sea according to the Baltic Monitoring Programme·, I Benthic macrofauna communities were studied in the deep areas of the Baltic Sea. The stations of the Baltic Monitoring Pr~gramme were included in the survey. The produciton and decomposition of organie matter in the pela­ gial were studied in the Gulf of Finland in eooperation with Tvärminne Zoologieal Station of the University of Helsinki. Institute of Radiation Proteetion, Helsinki Benthos studies were carried out in the vieinity of two nuclear power plants, one in the Gulf of Finland and one in the Bothnian Bay. SampIes have been taken twiee at 9 stations at each plant. Phytoplankton, .ehlorophyll a and primary produetion studies were performed onee or twiee a month during the ice-free period around both plants. National Board of Waters, Water Research Office, Helsinki The influence of industrial pollution on the composition of th~ benthic macrofauna was studied in 4 areas in the Gulf of Finland, in 4 areas in~ the Bothnian Sea and in 3 areas in the Bothnian Bay.
    [Show full text]
  • Arctic Report Card 2018 Effects of Persistent Arctic Warming Continue to Mount
    Arctic Report Card 2018 Effects of persistent Arctic warming continue to mount 2018 Headlines 2018 Headlines Video Executive Summary Effects of persistent Arctic warming continue Contacts to mount Vital Signs Surface Air Temperature Continued warming of the Arctic atmosphere Terrestrial Snow Cover and ocean are driving broad change in the Greenland Ice Sheet environmental system in predicted and, also, Sea Ice unexpected ways. New emerging threats Sea Surface Temperature are taking form and highlighting the level of Arctic Ocean Primary uncertainty in the breadth of environmental Productivity change that is to come. Tundra Greenness Other Indicators River Discharge Highlights Lake Ice • Surface air temperatures in the Arctic continued to warm at twice the rate relative to the rest of the globe. Arc- Migratory Tundra Caribou tic air temperatures for the past five years (2014-18) have exceeded all previous records since 1900. and Wild Reindeer • In the terrestrial system, atmospheric warming continued to drive broad, long-term trends in declining Frostbites terrestrial snow cover, melting of theGreenland Ice Sheet and lake ice, increasing summertime Arcticriver discharge, and the expansion and greening of Arctic tundravegetation . Clarity and Clouds • Despite increase of vegetation available for grazing, herd populations of caribou and wild reindeer across the Harmful Algal Blooms in the Arctic tundra have declined by nearly 50% over the last two decades. Arctic • In 2018 Arcticsea ice remained younger, thinner, and covered less area than in the past. The 12 lowest extents in Microplastics in the Marine the satellite record have occurred in the last 12 years. Realms of the Arctic • Pan-Arctic observations suggest a long-term decline in coastal landfast sea ice since measurements began in the Landfast Sea Ice in a 1970s, affecting this important platform for hunting, traveling, and coastal protection for local communities.
    [Show full text]
  • South of the Åland Islands
    2014 3 ECT J RO P EA S C I T L A B Oceana proposal for a Marine Protected Area South of the Åland Islands INTRODUCTION TO THE AREA The autonomous region of the Åland Islands, which is made up of more than 6,500 islands, forms part of the Archipelago Sea. It is situated between Finland and Sweden at the entrance to the Gulf of Bothnia (Figure 1). The coastal area has a complex topography, with many small islands and skerries, and experiences up to 90 ice days during the winter1. The seabed in the region is characterized mainly by hard bottoms, including boulders and stones, but patches of sand occur as well. In deeper waters, mud dominates the seabed. Physical factors, like water temperature, dissolved oxygen saturation and the organic content of sediment, control benthic life in the area. Some marine protected areas, including Natura 2000 areas and a Ramsar (The Convention on Wetlands) site called Signilsär‑Märket Archipelago2, exist in the Åland region, but the offshore waters in particular, lack protection. 1 3 South of the Åland Islands Oceana conducted underwater surveys with an underwater robot (ROV) and scuba dives, at different depths from the coast to offshore waters in the area south of the Åland Islands in 2011, 2012 and 2013. DESCRipTION OF THE AREA The area south of the Åland Islands hosts a unique biodiversity consisting of marine, brackish and freshwater species. The inner coastal waters of the archipelago have a relatively high organic content, and thus suffer from occasional oxygen depletion, while the offshore waters have a lower organic content and generally high oxygen saturation3.
    [Show full text]
  • Intercalibration of Sediment Data from the Archipelago Sea
    Title BALANCE Interim Report No.14 Intercalibration of sediment data from the Archipelago Sea Authors Date Reijonen, A. May 2007 Kotilainen, A.T. Approved by Geological Survey of Finland Johnny Reker Revisi Description By Checked Approved Date 1 Final report AK JYR JYR 19/8-06 0 Draft report AK AR JYR 19/5-06 Front page illustration Box corer sample from the Archipelago Sea, Image: GTK, 2005 Key words Classification BALANCE; sediment classification & harmonization, Open Archipelago Sea Internal Proprietary Distribution No of copies BALANCE Secretariat 3 + pdf BALANCE partnership 20 + pdf BSR INTERREG IIB Joint Secretariat 1 Archive 1 BALANCE Interim Report No. 14 i CONTENTS 0 PREFACE .......................................................................................................................3 1 STUDY AREA.................................................................................................................4 2 METHODS ......................................................................................................................6 2.1 Local scale......................................................................................................................7 2.2 Detailed scale..................................................................................................................8 3 RESULTS......................................................................................................................10 4 DISCUSSION ................................................................................................................11
    [Show full text]
  • Seaweed Resources of the Baltic Sea, Kattegat and German and Danish
    Botanica Marina 2020; 63(1): 61–72 Review Florian Weinberger*, Tiina Paalme and Sofia A. Wikström Seaweed resources of the Baltic Sea, Kattegat and German and Danish North Sea coasts https://doi.org/10.1515/bot-2019-0019 Received 30 March, 2019; accepted 8 October, 2019; online first 12 Introduction November, 2019 This publication provides an update to an earlier article by Abstract: Due to low salinity and lack of hard substrata, Schramm (1998), who already gave a detailed description the Baltic Sea and Kattegat area and German and Dan- of the macroalgal species distribution and diversity along ish North Sea coasts are characterized by a relatively SE North Sea and Baltic Sea coasts. During the last two low diversity of seaweeds. At the same time the areas decades several species introductions into the region have are severely eutrophicated, which has caused extensive been recorded [for example, approximately 10 on German shifts in macroalgal communities toward opportunistic coasts (Lackschewitz et al. 2014, Steinhagen et al. 2018)] species. Unattached seaweed communities dominated and also range shifts of species were observed within the by Furcellaria lumbricalis, which have been a resource area (Kovtun et al. 2009, Steinhagen et al. 2018). None- for hydrocolloid production since the 1940s, have been theless, the general distribution patterns outlined by severely reduced due to eutrophication and unsustain- Schramm (1998) still remain valid. At the German and able harvesting and are nowadays only exploited com- Danish West coasts, natural hard substratum that would mercially in Estonia. On the other hand, the biomass of allow for algal settlement is extremely rare and is almost opportunistic seaweeds of various red, green and brown only available around the German island of Helgoland, algal genera has increased.
    [Show full text]
  • The Northern Bothnian Bay
    Template for Submission of Scientific Information to Describe Areas Meeting Scientific Criteria for Ecologically or Biologically Significant Marine Areas THE NORTHERN BOTHNIAN BAY Abstract The Bothnian Bay forms the northernmost part of the Baltic Sea. It is the most brackish part of the Baltic, greatly affected by the combined river discharge from most of the Finnish and Swedish Lapland. The sea area is shallow and the seabed consists mostly of sand. The area displays arctic conditions: in winter the whole area is covered with sea ice, which is important for the reproduction of the grey seal (Haliochoerus grypus) and a prerequisite nesting habitat for the ringed seal (Pusa hispida botnica). In summer the area is productive and due to the turbidity of the water the primary production is compressed to a narrow photic zone (between 1 to 5 meters). Due to the extreme brackish water the number of marine species is low, but at the same time the number of endemic and threatened species is high. It is an important reproduction area for coastal fish and an important gathering area for several anadromous fish species. River Tornionjoki, which discharges into the northern part of the area, is the most important spawning river for the Baltic population of the Atlantic salmon (Salmo salar), a vulnerable species in the Baltic Sea. Introduction The Northern Bothnian Bay is a large, shallow and tideless sea area with a seabed consisting mostly of sand and silt, forming the northernmost part of the Baltic Sea. The topography is a result of the last glaciation (10,000 BP) and the isostatic land uplift is still ongoing (ca.
    [Show full text]
  • Initial Risk Assessment of Alien Species in Nordic Coastal Waters
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OceanRep Initial Risk Assessment of Alien Species Initial Risk Assessment of Alien Species in Nordic Coastal Waters in Nordic Coastal Waters InitialInitial RiskRisk AssessmentAssessment ofof AlienAlien SpeciesSpecies inin Stowaways of the sea! NordicNordic CoastalCoastal WatersWaters Some 3000 to 4000 marine species of plants and animals travel at any given time from one of the world's seas to another, most of them in the ballast water tanks of ships. Alien water-living organisms are known to cause considerable ecological and economic damages in the new areas and ecosystems they are introduced to. There are several What's and Why's to be answered: Why did they arrive now and not tens of years ago? Are they here to stay? Why are some port areas more open to alien species than others? Why do some of them spread dramatically and become pests? Some of them have appeared to be beneficial - are they a potential resource or a threat? This report provides a first attempt to assess the environ- mental risks related to alien invasions into the Nordic seas. These invasions are a present and future concern for shipping industries and maritime authorities and a challenge for marine biologists. Nord 1999:8 NORDIC COUNCIL OF MINISTERS Nord 1999:8 Nord Initial Risk Assessment of Alien Species in Nordic Coastal Waters Initial Risk Assessment of Alien Species in Nordic Coastal Waters Stephan Gollasch & Erkki Leppäkoski Port profiles authored by: %HUJHQÃDUHD: Helge Botnen, Veronica Skjævested & Heming Hagen 6WHQXQJVXQGÃDUHD: Anna Godhe .ODLSHGD: Sergej Olenin, Irina Olenina, Darius Daunys & Zita Gasiunaite 7XUNXÃDUHD: Magnus Östman & Erkki Leppäkoski 6WÃ3HWHUVEXUJ: Vadim E.
    [Show full text]
  • Projected Change in Atmospheric Nitrogen Deposition to the Baltic Sea Towards 2020
    Supporting Information for: Projected change in atmospheric nitrogen deposition to the Baltic Sea towards 2020 C. Geels 1, K. M. Hansen 1, J. H. Christensen 1, C. Ambelas Skjøth 2, T. Ellerman 1, G. B. Hedegaard 1,3 , O. Hertel 1,4 , L. M. Frohn 1, A. Gross 1, A. B. Hansen 1 and J. Brandt 1 [1] {Department of Environmental Science, Aarhus University, Roskilde, Denmark} [2] {Faculty of Science, Lund University, Sweden} [3] {Danish Climate Center, Danish Meteorological Institute, Copenhagen, Denmark} [4] {Department for Environmental, Social and Spatial Change, Roskilde University, Denmark} Correspondence to: K. M. Hansen ( [email protected] ) or C. Geels ( [email protected] ) One figure Five tables Figure S1. Map of the Baltic Sea with names of the different basins and sub-basins. Table S1. Calculated N depositions [kg/km 2] to the basins and sub-basins of the Baltic Sea in 2007 for all countries in Europe and from the nine countries around the Baltic Sea as well as for ships. The Sea areas are defined in Figure S1. All Σ Baltic Area Sources countries Denmark Germany Sweden Finland Poland Estonia Latvia Lithuania Russia Ships Gulf of Bothnia 304 148 9 22 24 33 19 4 3 4 30 27 Bothnian Bay 257 115 5 13 14 39 9 2 2 2 29 17 The Quark 265 129 5 14 17 51 11 3 2 3 24 20 Bothnian Sea 299 151 9 22 27 29 22 4 4 5 30 29 Archipelago Sea 457 216 18 47 28 37 32 6 5 7 36 45 Åland Sea 373 189 14 32 37 20 35 5 5 7 35 36 Gulf of Finland 516 215 9 36 13 22 30 18 6 6 75 31 Gulf of Riga 391 197 13 48 15 8 39 12 25 16 21 32 Baltic Proper 533 283 30 98 32 8 67 3 5 11 29 47
    [Show full text]
  • A 1500-Year Multiproxy Record of Coastal Hypoxia from the Northern Baltic Sea Indicates Unprecedented Deoxygenation Over the 20Th Century
    Biogeosciences, 15, 3975–4001, 2018 https://doi.org/10.5194/bg-15-3975-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. A 1500-year multiproxy record of coastal hypoxia from the northern Baltic Sea indicates unprecedented deoxygenation over the 20th century Sami A. Jokinen1, Joonas J. Virtasalo2, Tom Jilbert3, Jérôme Kaiser4, Olaf Dellwig4, Helge W. Arz4, Jari Hänninen5, Laura Arppe6, Miia Collander7, and Timo Saarinen1 1Department of Geography and Geology, University of Turku, 20014 Turku, Finland 2Marine Geology, Geological Survey of Finland (GTK), P.O. Box 96, 02151 Espoo, Finland 3Department of Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland 4Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestrasse 15, 18119 Rostock, Germany 5Archipelago Research Institute, University of Turku, 20014 Turku, Finland 6Finnish Museum of Natural History, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland 7Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland Correspondence: Sami A. Jokinen (sami.jokinen@utu.fi) Received: 12 January 2018 – Discussion started: 16 January 2018 Revised: 1 June 2018 – Accepted: 6 June 2018 – Published: 5 July 2018 Abstract. The anthropogenically forced expansion of coastal the vulnerability to hypoxia. Importantly, the eutrophication hypoxia is a major environmental problem affecting coastal of coastal waters in our study area began decades earlier than ecosystems and biogeochemical cycles throughout the world. previously thought, leading to a marked aggravation of hy- The Baltic Sea is a semi-enclosed shelf sea whose central poxia in the 1950s. We find no evidence of similar anthro- deep basins have been highly prone to deoxygenation during pogenic forcing during the MCA.
    [Show full text]