Sentinel-6/Jason-CS Cal/Val Concept (CVC)

Total Page:16

File Type:pdf, Size:1020Kb

Sentinel-6/Jason-CS Cal/Val Concept (CVC) ESA UNCLASSIFIED – For Official Use estec European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands T +31 (0)71 565 6565 F +31 (0)71 565 6040 www.esa.int Sentinel-6/Jason-CS Cal/Val Concept (CVC) Prepared by Mission Performance Working Group Reference JC-PL-ESA-MI-0500 Issue Issue 2 Revision 1 Date of Issue 18/07/2019 Status Issued Document Type Report Distribution Sentinel 6 Project(s) ESA UNCLASSIFIED – For Official Use 09/02/2019 22/07/2019 Scharroo 18/7/2019 15/8/2019 22/7/2019 22/7/2019 ESA UNCLASSIFIED – For Official Use Reason for change Issue Revision Date Update following MAG, CDR and MPWG review 2 1 18/7/2019 Issue Issue 2 Revision 1 Reason for change Date Pages Paragraph(s) Update following MAG, CDR and MPWG review N/A All 6 Update of Scope 18/7/2019 Update of [RD 44] 8/7/2019 10 Spell check and cosmetic update 18/7/2019 All Author and approval name changes 18/7/2019 2 ESA UNCLASSIFIED – For Official Use Page 3/59 Sentinel-6/Jason-CS Cal/Val Plan Date 18/07/2019 Issue Issue 2 Rev 1 ESA UNCLASSIFIED – For Official Use Table of contents: 1 Introduction ......................................................................................................................................... 6 1.1 Scope ................................................................................................................................................................ 6 1.2 Acronyms and Abbreviations .................................................................................................................. 6 2 Documents .......................................................................................................................................... 10 2.1 Applicable & Reference Documents ................................................................................................... 10 2.1.1 Applicable Documents ......................................................................................................................................... 10 2.1.2 Reference Documents .......................................................................................................................................... 10 3 Mission Overview ............................................................................................................................. 13 3.1 Mission Objectives .................................................................................................................................... 13 3.2 Mission Description ................................................................................................................................. 16 3.2.1 Spacecraft .................................................................................................................................................................. 18 3.2.2 Payload ....................................................................................................................................................................... 19 3.3 Product level Definition ......................................................................................................................... 21 3.4 Data Product Latency .............................................................................................................................. 21 3.4.1 Calibration Products ............................................................................................................................................ 22 3.4.2 Supplementary Products/Reports ................................................................................................................. 23 4 Cal/Val Objectives and Planning ................................................................................................. 24 4.1 Cal/Val Objectives and Requirements ............................................................................................... 24 4.2 Cal/Val Organisation and Responsibilities ...................................................................................... 25 4.2.1 Cal/Val Implementation Plan (CVIP) ............................................................................................................ 25 4.2.2 ReportinG and ArcHival Plans ........................................................................................................................... 26 4.2.3 MeetinG Plan ............................................................................................................................................................ 26 4.3 Post-Launch Verification and Validation Phases ........................................................................... 28 4.3.1 Sentinel-6A Phasing versus Jason-3 .............................................................................................................. 30 4.3.2 Sentinel-6A Phasing versus Sentinel-6B ..................................................................................................... 30 4.3.3 Operational PHase ................................................................................................................................................. 30 5 Sentinel-6/Jason-CS Performance Assessment ...................................................................... 31 5.1 Introduction ............................................................................................................................................... 31 5.2 Performance Assessment ....................................................................................................................... 31 5.2.1 Introduction ............................................................................................................................................................. 31 5.2.2 Individual Measurement Accuracy ................................................................................................................ 32 5.2.3 RanGe Noise .............................................................................................................................................................. 32 5.2.4 Sea-Surface HeiGHt ................................................................................................................................................ 33 5.2.5 Bias and drift ........................................................................................................................................................... 35 5.2.6 Level 2 Wind/Wave Estimates ......................................................................................................................... 37 6 Payload and Product Cal/Val Implementation ....................................................................... 38 6.1 Internal Sensor Calibration ................................................................................................................... 38 6.1.1 Poseidon-4 ................................................................................................................................................................ 38 ESA UNCLASSIFIED – For Official Use Page 4/59 Sentinel-6/Jason-CS Cal/Val Plan Date 18/07/2019 Issue Issue 2 Rev 1 ESA UNCLASSIFIED – For Official Use Advanced Microwave Radiometer-C ............................................................................................................................ 42 6.1.2 DORIS .......................................................................................................................................................................... 43 6.1.3 Laser Retroreflector Array ................................................................................................................................ 44 6.1.4 GNSS POD receiver (GPS and Galileo) ........................................................................................................... 44 6.2 Precise Orbit Determination Verification ........................................................................................ 44 6.3 Global Altimeter Data Analysis ............................................................................................................ 44 6.3.1 Sentinel-6 Global Analysis ................................................................................................................................. 44 6.3.2 Cross Calibration with other missions ......................................................................................................... 46 6.4 In-Situ Techniques for Evaluating the Overall Measurement System .................................... 47 6.4.1 Dedicated calibration sites ................................................................................................................................ 47 6.4.2 Ku-Band Passive and Active Transponders ............................................................................................... 47 6.4.3 Distributed Tide-GauGe Comparison ............................................................................................................ 48 6.4.4 ArGo network and GRACE and GRACE Follow-On ................................................................................... 48 6.5 Altimeter Correction Terms: External Verification ...................................................................... 49 6.5.1 Water Vapour Delay ............................................................................................................................................. 49 6.5.2 IonospHere Delay ..................................................................................................................................................
Recommended publications
  • OSTM/Jason-2 Products Handbook
    OSTM/Jason-2 Products Handbook References: CNES : SALP-MU-M-OP-15815-CN EUMETSAT : EUM/OPS-JAS/MAN/08/0041 JPL: OSTM-29-1237 NOAA : Issue: 1 rev 0 Date: 17 June 2008 OSTM/Jason-2 Products Handbook Iss :1.0 - date : 17 June 2008 i.1 Chronology Issues: Issue: Date: Reason for change: 1rev0 June 17, 2008 Initial Issue People involved in this issue: Written by (*) : Date J.P. DUMONT CLS V. ROSMORDUC CLS N. PICOT CNES S. DESAI NASA/JPL H. BONEKAMP EUMETSAT J. FIGA EUMETSAT J. LILLIBRIDGE NOAA R. SHARROO ALTIMETRICS Index Sheet : Context: Keywords: Hyperlink: OSTM/Jason-2 Products Handbook Iss :1.0 - date : 17 June 2008 i.2 List of tables and figures List of tables: Table 1 : Differences between Auxiliary Data for O/I/GDR Products 1 Table 2 : Summary of error budget at the end of the verification phase 9 Table 3 : Main features of the OSTM/Jason-2 satellite 11 Table 4 : Mean classical orbit elements 16 Table 5 : Orbit auxiliary data 16 Table 6 : Equator Crossing Longitudes (in order of Pass Number) 18 Table 7 : Equator Crossing Longitudes (in order of Longitude) 19 Table 8 : Models and standards 21 Table 9 : CLS01 MSS model characteristics 22 Table 10 : CLS Rio 05 MDT model characteristics 23 Table 11 : Recommended editing criteria 26 Table 12 : Recommended filtering criteria 26 Table 13 : Recommended additional empirical tests 26 Table 14 : Main characteristics of (O)(I)GDR products 40 Table 15 - Dimensions used in the OSTM/Jason-2 data sets 42 Table 16 - netCDF variable type 42 Table 17 - Variable’s attributes 43 List of figures: Figure 1
    [Show full text]
  • Nitrogen Interception and Export by Experimental Salt Marsh Plots Exposed to Chronic Nutrient Addition
    Vol. 400: 3–17, 2010 MARINE ECOLOGY PROGRESS SERIES Published February 11 doi: 10.3354/meps08460 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Nitrogen interception and export by experimental salt marsh plots exposed to chronic nutrient addition Lindsay D. Brin1, 2,*, Ivan Valiela2, Dale Goehringer3, Brian Howes3 1Brown University, Department of Ecology & Evolutionary Biology, 80 Waterman Street, Box G-W, Providence, Rhode Island 02912, USA 2The Ecosystems Center, Marine Biological Laboratory, 7 MBL St., Woods Hole, Massachusetts 02543, USA 3School of Marine Science and Technology, University of Massachusetts, Dartmouth, 706 South Rodney French Blvd., New Bedford, Massachusetts 02744, USA ABSTRACT: Mass balance studies conducted in the 1970s in Great Sippewissett Salt Marsh, New England, showed that fertilized plots intercepted 60 to 80% of the nitrogen (N) applied at several treatment levels every year from April to October, where interception mechanisms include plant uptake, denitrification and burial. These results pointed out that salt marshes are able to intercept land-derived N that could otherwise cause eutrophication in coastal waters. To determine the long-term N interception capacity of salt marshes and to assess the effect of different levels of N input, we measured nitrogenous materials in tidal water entering and leaving Great Sippewissett experimental plots in the 2007 growing season. Our results, from sampling over both full tidal cycles and more inten- sively sampled ebb tides, indicate high interception of Salt marshes limit the amount of land-derived nitrogen externally added N. Tidal export of dissolved inorganic carried by ebbing tides out to receiving coastal waters N (DIN) was small, although it increased with tide + Photo: Ivan Valiela height and at high N input rates.
    [Show full text]
  • Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model
    Washington State Department of Ecology Publication No. 12-03-049 PNNL-20384 Rev 1 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model by T Khangaonkar and W Long of the Pacific Northwest National Laboratory and B Sackmann, T Mohamedali, and M Roberts of the Washington State Department of Ecology November 2012 This page is purposely left blank This page is purposely left blank PNNL-20384 Rev 1 Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model by T Khangaonkar and W Long of the Pacific Northwest National Laboratory B Sackmann, T Mohamedali, and M Roberts of the Washington State Department of Ecology October 2012 Prepared for the Washington State Department of Ecology under an Interagency Agreement with the U.S. Department of Energy Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Any use of product or firm names in this publication is for descriptive purposes only and does not imply endorsement by the authors or the Department of Ecology. If you need this document in a format for the visually impaired, call 360-407-6764. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341. This page is purposely left blank Summary The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own.
    [Show full text]
  • How a Tide Clock Works.Pub
    Conventional time clocks have a 12 hour cycle, with 1 hand for hours, another for minutes. Tide clocks have a single hand, and a cycle of 12 hours 25 minutes, coinciding to an average time of about 6 hours 12 minutes between high and low tides. High tide is indicated when the hand is at the ‘12 o’clock’ position, low tide is indicated with the hand at the ‘6 o’clock’ position. A tide clock is not indicating 6 or 12 o’clock of course. It is merely a convenient reference point on the dial, showing us when our local tide is high or low. 12 is marked as High, 6 is marked as Low. However, the hour markings on the dial between the High and Low tide points do show us the number of hours since the last high or low tide, and the hours before the next high or low tide. A tide clock which has been initially set correctly will continue to display tide predictions quite accurately, requiring resetting only at intervals of about 4 months, depending upon the location. A brief explanation of how the tidal cycle works The Moon is the major cause of the tides. The ‘lunar day’ (the time it takes for the Moon to re-appear at the same place in the sky) is 24 hours and 50 minutes. New Zealand, and many other places in the world, have 2 high tides and 2 low tides each day. These are called semi-diurnal tides. Some areas of the world (eg Freemantle in Australia), have only one tide cycle per day, known as diurnal tides.
    [Show full text]
  • Marine Pollution Bulletin 84 (2014) 191–200
    Marine Pollution Bulletin 84 (2014) 191–200 Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul The effects of river run-off on water clarity across the central Great Barrier Reef ⇑ K.E. Fabricius a, , M. Logan a, S. Weeks b, J. Brodie c a Australian Institute of Marine Science, PMB No. 3, Townsville, Queensland 4810, Australia b Biophysical Oceanography Group, School of Geography, Planning and Environmental Management, University of Queensland, Brisbane 4072, Australia c Centre for Tropical Water & Aquatic Ecosystem Research, James Cook University, Townsville, Queensland 4811, Australia article info abstract Article history: Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were inves- Available online 23 May 2014 tigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and Keywords: tidal effects. Across the 25,000 km2 area, photic depth was strongly related to river freshwater and Turbidity phosphorus loads (R2 = 0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced Photic depth by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After Generalized additive mixed models onset of the seasonal river floods, photic depth was reduced for on average 6–8 months, gradually return- Great Barrier Reef ing to clearer baseline values. Relationships were strongest inshore and midshelf ( 12–80 km from the Nutrient runoff River floods coast), and weaker near the chronically turbid coast.
    [Show full text]
  • Coupling of Repetitive Multibeam Surveys and Hydrodynamic Modelling to Understand Bedform Migration and Delta Evolution by Danar
    Coupling of Repetitive Multibeam Surveys and Hydrodynamic Modelling to Understand Bedform Migration and Delta Evolution by Danar Guruh Pratomo B.Sc.Eng GGE, Institut Teknologi Bandung, 2003 M.Sc.Eng GGE, Institut Teknologi Bandung, 2007 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate Academic Unit of Geodesy and Geomatics Engineering Supervisor: John Hughes Clarke, Ph.D., Geodesy and Geomatics Engineering Examining Board: Susan Haigh, Ph.D., Fisheries and Oceans Canada Katy Haralampides, Ph.D., Civil Engineering Ian Church, Ph.D., University of Southern Mississippi External Examiner: Peter Talling, Ph.D., National Oceanography Course Southampton, UK This dissertation is accepted by the Dean of Graduate Studies THE UNIVERSITY OF NEW BRUNSWICK June, 2016 ©Danar Guruh Pratomo, 2016 ABSTRACT This study addresses channelized delta top sediment transport on the Squamish estuary in Howe Sound, British Columbia. The mechanism of bedform migration and delta evolution is affected by the manner in which the available sediment flux from the feeder fluvial system is distributed. The present study is complementary to a parallel project looking at the sediment migrating on the delta slope as landslides or turbidity currents. The termination of the Squamish River consists of a single channel that flows between flanking intertidal sand bars and over a mouth bar at the lip of the delta. The delta front is growing rapidly with about 1 million m3 of sediment being input from the river system annually. There is a 3 to 5 m tidal range that strongly modulates the flow in the channel and over the adjacent intertidal sand banks.
    [Show full text]
  • Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
    letters to nature 3. Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12, 61± water is created at high latitudes12. It has thus been suggested that 93 (1993). much of the mixing required to maintain the abyssal strati®cation, 4. Fukai, J. et al. Wetting effects on the spreading of a liquid droplet colliding with a ¯at surface: experiment and modeling. Phys. Fluids 7, 236±247 (1995). and hence the large-scale meridional overturning, occurs at 5. Bennett, T. & Poulikakos, D. Splat±quench solidi®cation: estimating the maximum spreading of a localized `hotspots' near areas of rough topography4,16,17. Numerical droplet impacting a solid surface. J. Mater. Sci. 28, 963±970 (1993). modelling studies further suggest that the ocean circulation is 6. Scheller, B. L. & Bous®eld, D. W. Newtonian drop impact with a solid surface. Am. Inst. Chem. Eng. J. 18 41, 1357±1367 (1995). sensitive to the spatial distribution of vertical mixing . Thus, 7. Mao, T., Kuhn, D. & Tran, H. Spread and rebound of liquid droplets upon impact on ¯at surfaces. Am. clarifying the physical mechanisms responsible for this mixing is Inst. Chem. Eng. J. 43, 2169±2179, (1997). important, both for numerical ocean modelling and for general 8. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827±863 (1985). understanding of how the ocean works. One signi®cant energy 9. Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429±438 (1993). source for mixing may be barotropic tidal currents.
    [Show full text]
  • Sustained Global Ocean Observing Systems
    Introduction Goal The ocean, which covers 71 percent of the Earth’s surface, The goal of the Climate Observation Division’s Ocean Climate exerts profound influence on the Earth’s climate system by Observation Program2 is to build and sustain the in situ moderating and modulating climate variability and altering ocean component of a global climate observing system that the rate of long-term climate change. The ocean’s enormous will respond to the long-term observational requirements of heat capacity and volume provide the potential to store 1,000 operational forecast centers, international research programs, times more heat than the atmosphere. The ocean also serves and major scientific assessments. The Division works toward as a large reservoir for carbon dioxide, currently storing 50 achieving this goal by providing funding to implementing times more carbon than the atmosphere. Eighty-five percent institutions across the nation, promoting cooperation of the rain and snow that water the Earth comes directly from with partner institutions in other countries, continuously the ocean, while prolonged drought is influenced by global monitoring the status and effectiveness of the observing patterns of ocean temperatures. Coupled ocean-atmosphere system, and providing overall programmatic oversight for interactions such as the El Niño-Southern Oscillation (ENSO) system development and sustained operations. influence weather and storm patterns around the globe. Sea level rise and coastal inundation are among the Importance of Ocean Observations most significant impacts of climate change, and abrupt Ocean observations are critical to climate and weather climate change may occur as a consequence of altered applications of societal value, including forecasts of droughts, ocean circulation.
    [Show full text]
  • Hurricane Waves in the Ocean
    WAVE-INDUCED SURGES DURING HURRICANE OPAL Chung-Sheng Wu*, Arthur A. Taylor, Jye Chen and Wilson A. Shaffer Meteorological Development Laboratory National Weather Service/NOAA, Silver Spring, Maryland 1. INTRODUCTION Hurricanes storm surges and waves at the coastline Holliday (1977) developed a simple formula relating the have been the cause of damages in the coastal zone. cyclone’s pressure drop to maximum sustained wind for On the U.S. Gulf Coast, for example, Hurricane Opal the Western Pacific. A more general form was (1995) made landfall near the time of low tide and proposed by Holland (1980). The merit of these models resulted in severe flooding by storm surges and waves. is that they are analytical models for the surface wind Storm surge can penetrate miles inland from the coast. profile in a hurricane. A similar formulation was applied Waves ride above the surge levels, causing wave runup to the wave model in the present work. The framework and mean water level set-up. These wave effects are of the hurricane wave model is described below. significant near the landfall area and are affected by the process that hurricane approaches the coastline. 2.1 HURRICANE WIND AND STORM SURGES During 1950-1977, hurricane wave models based on Holland (1980) employed a standard pressure profile for significant wave height and period were developed (e.g. a tropical cyclone and obtained the popular gradient Bretschneider, 1957; Ross, 1976) for marine weather wind profile. Jelesnianski and Taylor (1976) assumed a prediction and offshore oil industry design. Cardone surface wind profile in the pressure equation.
    [Show full text]
  • Chapter 2: Ocean Observations
    Chapter 2. Ocean observations 2.1 Observational methods With the rapid advancement in technology, the instruments and methods for measuring oceanic circulation and properties have been quickly evolving. Nevertheless, it is useful to understand what types of instruments have been available at different points in oceanographic development and their resolution, precision, and accuracy. The majority of oceanographic measurements so far have been made from research vessels, with auxiliary measurements from merchant ships and coastal stations. Fig. 2.1 Research vessel. Accuracy: The difference between a result obtained and the true value. Precision: Ability to measure consistently within a given data set (variance in the measurement itself due to instrument noise). Generally the precision of oceanographic measurements is better than the accuracy. 2.1.1 Measurements of depth. Each oceanographic variable, such as temperature (T), salinity (S), density , and current , is a function of space and time, and therefore a function of depth. In order to determine to which depth an instrument has been deployed, we need to measure ``depth''. Depth measurements are often made with the measurements of other properties, such as temperature, salinity and current. Meter wheel. The wire is passed over a meter wheel, which is simply a pulley of known circumference with a counter attached to the pulley to count the number of turns, thus giving the depth the instrument is lowered. This method is accurate when the sea is calm with negligible currents. In reality, research vessels are moving and currents might be strong, and thus the wire is not straight. The real depth is shorter than the distance the wire paid out.
    [Show full text]
  • Chart Datum and Bathymetry Correction to Support Managing Coral Grouper in Lepar and Pongok Island Waters, South Bangka Regency
    ILMU KELAUTAN Desember 2018 Vol 23(4):179-186 ISSN 0853-7291 Chart Datum and Bathymetry Correction to Support Managing Coral Grouper in Lepar and Pongok Island Waters, South Bangka Regency Sudirman Adibrata1,2*, Fredinan Yulianda3, Mennofatria Boer3, and I Wayan Nurjaya4 1Program of Coastal and Marine Resource Management, Bogor Agricultural University Jl. Agatis Campus IPB Darmaga Bogor 16680, Indonesia 2Program of Aquatic Resource Management, Faculty Agriculture, Fishery and Biology, Bangka Belitung Unversity Jl. Balunijuk Merawang District, Bangka, Bangka Belitung, Indonesia 3Department of Aquatic Resource Management, Fisheries and Marine Science Faculty, Bogor Agricultural University; Jl. Agatis Campus IPB Darmaga Bogor 16680, Indonesia 4Department of Marine Science and Technology, Fisheries and Marine Science, Bogor Agricultural University, Jl. Agatis Campus IPB Darmaga Bogor 16680, Indonesia Email: [email protected] Abstract Corrected bathimetry data is highly required to improve the quality of sea floor map, for a range of purposes including coastal environmental monitoring and management. This research was aimed to know chart datum values used for correctting bathymetry data at Bar-cheeked coral trout grouper (Plectropomus maculates) fishing ground in Lepar and Pongok Island waters 02o57’00”S and 106o50’00”E and 02o53’00”S and 107o03’00”E, respectively, South Bangka Regency, Indonesia. The study was carried out from November 2016 to October 2017, tidal data used for 15 days from September 16–30, 2017 using simple random sampling technique with the total of 845 points of measurements. To calculate tyde harmonic constituents values this study employed admiralty method resulting 10 major components. Results of this research indicated that harmonic coefficient values of M2, M2, S2, N2, K1, O1, M4, MS4, K2, and P1, were 0.0345 m, 0.0608 m, 0.0276 m, 0.4262 m, 0.2060 m, 0.0119 m, 0.0082 m, 0.0164 m, and 0.1406 m, respectively.
    [Show full text]
  • Coastal Tide Gauge Tsunami Warning Centers
    Products and Services Available from NOAA NCEI Archive of Water Level Data Aaron Sweeney,1,2 George Mungov, 1,2 Lindsey Wright 1,2 Introduction NCEI’s Role More than just an archive. NCEI: NOAA's National Centers for Environmental Information (NCEI) operates the World Data Service (WDS) for High resolution delayed-mode DART data are stored onboard the BPR, • Quality controls the data and Geophysics (including tsunamis). The NCEI/WDS provides the long-term archive, data management, and and, after recovery, are sent to NCEI for archive and processing. Tide models the tides to isolate the access to national and global tsunami data for research and mitigation of tsunami hazards. Archive gauge data is delivered to NCEI tsunami waves responsibilities include the global historic tsunami event and run-up database, the bottom pressure recorder directly through NOS CO-OPS and • Ensures meaningful data collected by the Deep-ocean Assessment and Reporting of Tsunami (DART®) Program, coastal tide gauge Tsunami Warning Centers. Upon documentation for data re-use data (analog and digital marigrams) from US-operated sites, and event-specific data from international receipt, NCEI’s role is to ensure • Creates standard metadata to gauges. These high-resolution data are used by national warning centers and researchers to increase our the data are available for use and enable search and discovery understanding and ability to forecast the magnitude, direction, and speed of tsunami events. reuse by the community. • Converts data into standard formats (netCDF) to ease data re-use The Data • Digitizes marigrams Data essential for tsunami detection and warning from • Adds data to inventory timeline the Deep-ocean Assessment and Reporting of to ensure no gaps in data Tsunamis (DART®) stations and the coastal tide gauges.
    [Show full text]