Farming and Patterns of Agrobiodiversity on the Amazon Floodplain in the Vicinity of Mamirauá, Amazonas, Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Farming and Patterns of Agrobiodiversity on the Amazon Floodplain in the Vicinity of Mamirauá, Amazonas, Brazil FARMING AND PATTERNS OF AGROBIODIVERSITY ON THE AMAZON FLOODPLAIN IN THE VICINITY OF MAMIRAUÁ, AMAZONAS, BRAZIL By MORGAN J. SCHMIDT A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Morgan J. Schmidt ACKNOWLEDGMENTS This research was supported by a Charles Wagley Research Fellowship through the Center for Latin American Studies and Tropical Conservation and Development Program at the University of Florida. Graduate studies were supported by a Graduate Alumni Fellowship from the University of Florida through the Department of Geography. The research was further supported by the Mamirauá Sustainable Development Institute. I would especially like to thank Jomber Chota Inuma who introduced me to the Mamirauá reserve and contributed much encouragement, advice, and support during the research. I am grateful for the hospitality of Jomber’s family, Dina and Ortila, who gave me a home in Tefé. I would also like to thank Niele Peralta Bezerra, José Márcio Ayres, Edila Moura, and Ana Claudeíse Nascimento for their support of the research; and José Elizon Rocha da Silva, for his tireless efforts in the field. I am grateful to all of the other assistants, informants, farmers, and families (too numerous to name) for their help, cooperation, and wonderful hospitality. Finally, I would like to thank my family, whose support made my graduate career possible; and my committee members (Dr. Nigel Smith, Dr. Hugh Popenoe, and Dr. Michael Heckenberger) for their guidance, advice, and support. iii TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iii LIST OF TABLES............................................................................................................. vi LIST OF FIGURES ........................................................................................................... ix ABSTRACT....................................................................................................................... xi CHAPTER 1 AGRICULTURAL BIODIVERSITY AND SHIFTING CULTIVATION: THE RESEARCH IN CONTEXT.........................................................................................1 Introduction...................................................................................................................1 Our Stake in Agricultural Biodiversity.........................................................................3 Call for Conservation....................................................................................................6 Swidden Model.............................................................................................................9 Why Study Swidden? .................................................................................................12 Swidden Agriculture in Time and Space....................................................................14 2 FOCUSING ON THE MIDDLE SOLIMÕES REGION ...........................................18 Prehistoric Agriculture and Settlement on the Amazon River ...................................18 Practical Aspects of Swidden Research in Amazonia ................................................20 Amazon Caboclo ........................................................................................................27 Middle Solimões Region ............................................................................................28 Connservation of the Várzea Ecosystem: The Mamirauá and Amanã Sustainable Development Reserves...........................................................................................30 Data and Methods.......................................................................................................31 Research Considerations of the Flood Season............................................................36 Life on the Várzea ......................................................................................................38 3 STRATEGIES FOR FARMING ON THE FLOODPLAIN: THE ROÇA ...............43 Characteristics of the Roça .........................................................................................45 Farming Praias and Lamas..........................................................................................49 Diversity and Management of Restinga Baixa Fields ................................................51 Restinga Alta: The Preferred Habitat for Planting .....................................................55 Crop Losses from Flooding, Pests, and Diseases .......................................................62 iv Storage and Loss of Planting Material........................................................................67 4 CAPOEIRAS: ENRICHED FORESTS AND MANAGED FALLOWS..................71 Restinga Baixa............................................................................................................73 Restinga alta................................................................................................................76 Bananal .......................................................................................................................78 Capoeira......................................................................................................................83 Capoeira Bananal........................................................................................................87 Capoeira Cacaual........................................................................................................90 Capoeira Fruteira ........................................................................................................90 Frutal...........................................................................................................................93 Sitio.............................................................................................................................94 5 DIVERSITY IN HOME GARDENS .......................................................................100 Diversity in Middle Solimões Várzea Home Gardens .............................................104 Losses from Flooding ...............................................................................................114 Size of Home Gardens..............................................................................................115 Livestock in Home Gardens .....................................................................................117 Terra Firme Home Gardens......................................................................................118 6 A MORE STABLE ENVIRONMENT: TERRA FIRME........................................126 Field and Fallow Management on Terra Firme ........................................................130 Agrobiodiversity in Terra Firme Roças....................................................................138 Agrobiodiversity in Terra Firme Capoeiras..............................................................143 Other Non-Roças ......................................................................................................148 7 LESSONS FOR CONSERVATION OF AGROBIODIVERSITY IN THE MIDDLE SOLIMÕES..............................................................................................150 Distribution of Agrobiodiversity ..............................................................................151 Theoretical Implications ...........................................................................................155 Directions for further research..................................................................................158 APPENDIX A USEFUL SPECIES OCCURRING IN FIELDS AND FALLOWS.........................166 B USEFUL SPECIES OCCURRING IN HOME GARDENS ....................................174 LIST OF REFERENCES.................................................................................................186 BIOGRAPHICAL SKETCH ...........................................................................................199 v LIST OF TABLES Table page 2-1 Number of home gardens, fields, and fallows visited in 19 communities on uplands and floodplains in the middle Solimões region. .......................................32 3-1 Summary of statistics for low levee fields.............................................................54 3-2 The eight most common species remaining in sixteen harvested fields on low levees......................................................................................................................55 3-3 Summary of statistics for high levee fields............................................................56 3-4 The 19 most common useful species found in planted fields on high levees with corresponding number of harvested fields.....................................................59 3-5 Varieties of bitter manioc (mandioca) growing in 70 fields on high levees..........61 3-6 Varieties of sweet manioc (macaxeira) growing in 70 fields on high levees. .......61 3-7 Varieties of banana growing in 70 fields on high levees.......................................62 3-8 Perennials that were reported lost in fields and fallows. .......................................66 4-1 Summary of statistics for fallows on low levees. ..................................................74 4-2 The 25 useful species occurring in 17 capoeiras on low levees. ...........................75 4-3 Local
Recommended publications
  • SURINAME: COUNTRY REPORT to the FAO INTERNATIONAL TECHNICAL CONFERENCE on PLANT GENETIC RESOURCES (Leipzig,1996)
    S U R I N A M E c o u n t r y r e p o r t 1 SURINAME: COUNTRY REPORT TO THE FAO INTERNATIONAL TECHNICAL CONFERENCE ON PLANT GENETIC RESOURCES (Leipzig,1996) Prepared by: Ministry of Agriculture Animal Husbandry and Fisheries Paramaribo, May 31 1995 S U R I N A M E c o u n t r y r e p o r t 2 Note by FAO This Country Report has been prepared by the national authorities in the context of the preparatory process for the FAO International Technical Conference on Plant Genetic Resources, Leipzig, Germany, 17-23 June 1996. The Report is being made available by FAO as requested by the International Technical Conference. However, the report is solely the responsibility of the national authorities. The information in this report has not been verified by FAO, and the opinions expressed do not necessarily represent the views or policy of FAO. The designations employed and the presentation of the material and maps in this document do not imply the expression of any option whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. S U R I N A M E c o u n t r y r e p o r t 3 Table of contents CHAPTER 1 INTRODUCION TO SURINAME AND ITS AGRICULTURAL SECTOR 5 1.1 GEOGRAPHY AND POPULATION 5 1.2 CLIMATE AND GEOMORPHOLOGICAL LAND-DIVISION 6 1.2.1 Agriculture 7 CHAPTER 2 INDIGENOUS PLANT GENETIC RESOURCES 9 2.1 FORESTRY GENETIC RESOURCES 9 2.2 AGRICULTURAL PLANT GENETIC RESOURCES 10 2.2.1 Ananas
    [Show full text]
  • Rheological Properties of Asphalt Binders Modified with Natural Fibers and Oxidants
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 4 Issue 10, October - 2017 Rheological Properties of Asphalt Binders Modified With Natural Fibers and Oxidants T. M. F. Cunha G. Cardoso C. A. Frota Petrobras – REMAN Federal University of Sergipe Federal University of Amazonas Manaus - AM, Brazil Aracaju - SE, Brazil Manaus - AM, Brazil E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Abstract—The thermal and rheological A. Objective and Scope behaviors of asphalt binder modified with natural The aim of the present work is to improve the fibers and antioxidants obtained from the Amazon rheological characteristics (complex modulus, phase rain forest are analyzed through angle and viscosity) of the asphalt binder AC 50/70, Thermogravimetry (TG), Differential Scanning modifying it with raw materials from the Ama-zon Calorimetry (DSC) and Dynamical Shear biodiversity, with the perspective of sustainable use of Rheometer (DSR) tests. The addition of modifiers natural resources. The mechanical properties of AC alters considerably the physical and rheological 50/70 modified with those materials were compared properties of the modified binders. The main with those of pure AC 50/70 and that modified with results are: a good thermal stability and styrene-butadiene-styrene (SBS) copolymer. miscibility with asphalt cement (AC), significant increase of G* at low frequencies, decrease of As one of the natural modifier material we used and increase of the viscosity. The results are natural fiber obtained from the shell of a fruit compared with that of asphalt binder modified popularly known as Cutia-Chesnut (Couepia Edulis - with SBS polymer.
    [Show full text]
  • Dispersal of a Neotropical Nutmeg (Virola Sebifera) by Birds
    DISPERSAL OF A NEOTROPICAL NUTMEG (VIROLA SEBIFERA) BY BIRDS HENRY F. HOWE Program in Evolutionary Ecologyand Behavior, Department of Zoology, University of Iowa, Iowa City, Iowa 52242 USA Al•ST•CT.--Feeding assemblagesof birds were observedat a Panamanian population of Virola sebifera (Myristicaceae) in order to test the hypothesisthat plants producing especiallynutritious fruits in limited supply should be efficiently dispersedby a small set of obligate frugivores. Virola sebifera producesan encapsulatedarillate seedthat is swallowed by birds shortly after dehiscence. The aril (54% lipid, 7% protein, 8% usable carbohydrate) is retained; the seed is regurgitated intact within 10-30 min. The plant produces 1-96 (Yc= 24) ripe arillate seedseach day, of which 40-89% (Yc= 76%) are taken within a few hours of dawn. The visitor assemblageconsists of six resident frugivores. Three [Chestnut-mandibledToucan (Ramphastosswainsonii), Keel-billed Toucans (R. sulfuratus), and Masked Tityra (Tityra semifasciata)] are "regulars," likely to visit all trees; three [Slaty-tailed Trogon (2•rogonmassena), Rufous Motmot (Baryphthengus martii), and Collared Aracari (Pteroglossustorquatus) are common throughout the Barro Colorado Forest but do not consistently use Virola sebifera. The Chestnut-mandibled Toucan is responsiblefor 43% of the seedsremoved by birds, although it is also responsiblefor more seedwaste (regurgi- tation under the tree crown) than other visitors. Rapid depletion of available fruits each morning and active defense of the crowns by toucans suggest a limited and preferred food resource for "regulars"in the assemblage. A review of recent work indicatesthat the assemblagevisiting Virola sebiferais similar to that frequenting its larger congener (V. surinamensis) but is far smaller and more specialized than those visiting other fruiting trees in the same forest.
    [Show full text]
  • Fam+Fabaceae.Pdf
    Universidad del Zulia Facultad de Agronomía Departamento de Botánica Taxonomía Vegetal Familia Fabaceae Guillermo A. Sthormes-Méndez Taxonomía vegetal Familia Fabaceae Ubicación Taxonómica: • Reino: Vegetabyle • Sub-reino: Embriobionta • División: Magnoliophyta • Clase: Magnoliposida • Orden: Fabales •Familia: Fabaceae (Leguminosae) Taxonomía vegetal Familia Fabaceae Origen: Cosmopolita Número de Géneros: 180. Número de especies: Aproximadamente unas 2500 a 3000 (Heywood, 1979). Divididas en 7, 8 0 9 tribus basadas en el número de caracteres. Taxonomía vegetal Familia Fabaceae LEGUMINOSAS Grupo de gran tamaño (18.000 spp.) Orden Leguminales o Fabales; subclase Rosidae División en tres subfamilias ( Polhill et al. 1981) División en tres familias (Cronquist, 1981) Taxonomía vegetal Familia Fabaceae LEGUMINOSAS División en tres subfamilias ( Polhill et al. 1981): 1. Mimosoideae (4 tribus) 2. Caesalpinioideae (5 tribus) 3. Papilionoideae (47 tribus) Taxonomía vegetal Familia Fabaceae LEGUMINOSAS División en tres familias (Cronquist, 1981) 1. Mimosaceae 2. Caesalpiniaceae 3. Papilionaceae Taxonomía vegetal Familia Fabaceae Polygalaceae Surianaceae Fabales Quillajaceae Tribus Cercideae, Detarieae y el género Duparquetia Fabaceae Caesalpinioideae Mimosoideae Faboideae Distribución geográfica: Los miembros de esta familia se encuentran distribuidos en las zonas Tropicales y subtropicales, sin embargo pocas especies se encuentran en clima templado. (Heywood, 1979) Taxonomía vegetal Familia Fabaceae CAESALPINIACEAE Aprox. 3.500 especies; 125
    [Show full text]
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • An Update on Ethnomedicines, Phytochemicals, Pharmacology, and Toxicity of the Myristicaceae Species
    Received: 30 October 2020 Revised: 6 March 2021 Accepted: 9 March 2021 DOI: 10.1002/ptr.7098 REVIEW Nutmegs and wild nutmegs: An update on ethnomedicines, phytochemicals, pharmacology, and toxicity of the Myristicaceae species Rubi Barman1,2 | Pranjit Kumar Bora1,2 | Jadumoni Saikia1 | Phirose Kemprai1,2 | Siddhartha Proteem Saikia1,2 | Saikat Haldar1,2 | Dipanwita Banik1,2 1Agrotechnology and Rural Development Division, CSIR-North East Institute of Prized medicinal spice true nutmeg is obtained from Myristica fragrans Houtt. Rest spe- Science & Technology, Jorhat, 785006, Assam, cies of the family Myristicaceae are known as wild nutmegs. Nutmegs and wild nutmegs India 2Academy of Scientific and Innovative are a rich reservoir of bioactive molecules and used in traditional medicines of Europe, Research (AcSIR), Ghaziabad, 201002, Uttar Asia, Africa, America against madness, convulsion, cancer, skin infection, malaria, diar- Pradesh, India rhea, rheumatism, asthma, cough, cold, as stimulant, tonics, and psychotomimetic Correspondence agents. Nutmegs are cultivated around the tropics for high-value commercial spice, Dipanwita Banik, Agrotechnology and Rural Development Division, CSIR-North East used in global cuisine. A thorough literature survey of peer-reviewed publications, sci- Institute of Science & Technology, Jorhat, entific online databases, authentic webpages, and regulatory guidelines found major 785006, Assam, India. Email: [email protected] and phytochemicals namely, terpenes, fatty acids, phenylpropanoids, alkanes, lignans, flavo- [email protected] noids, coumarins, and indole alkaloids. Scientific names, synonyms were verified with Funding information www.theplantlist.org. Pharmacological evaluation of extracts and isolated biomarkers Council of Scientific and Industrial Research, showed cholinesterase inhibitory, anxiolytic, neuroprotective, anti-inflammatory, immu- Ministry of Science & Technology, Govt.
    [Show full text]
  • A Review of Animal-Mediated Seed Dispersal of Palms
    Selbyana 11: 6-21 A REVIEW OF ANIMAL-MEDIATED SEED DISPERSAL OF PALMS SCOTT ZoNA Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711 ANDREW HENDERSON New York Botanical Garden, Bronx, New York 10458 ABSTRACT. Zoochory is a common mode of dispersal in the Arecaceae (palmae), although little is known about how dispersal has influenced the distributions of most palms. A survey of the literature reveals that many kinds of animals feed on palm fruits and disperse palm seeds. These animals include birds, bats, non-flying mammals, reptiles, insects, and fish. Many morphological features of palm infructescences and fruits (e.g., size, accessibility, bony endocarp) have an influence on the animals which exploit palms, although the nature of this influence is poorly understood. Both obligate and opportunistic frugivores are capable of dispersing seeds. There is little evidence for obligate plant-animaI mutualisms in palm seed dispersal ecology. In spite of a considerable body ofliterature on interactions, an overview is presented here ofthe seed dispersal (Guppy, 1906; Ridley, 1930; van diverse assemblages of animals which feed on der Pijl, 1982), the specifics ofzoochory (animal­ palm fruits along with a brief examination of the mediated seed dispersal) in regard to the palm role fruit and/or infructescence morphology may family have been largely ignored (Uhl & Drans­ play in dispersal and subsequent distributions. field, 1987). Only Beccari (1877) addressed palm seed dispersal specifically; he concluded that few METHODS animals eat palm fruits although the fruits appear adapted to seed dispersal by animals. Dransfield Data for fruit consumption and seed dispersal (198lb) has concluded that palms, in general, were taken from personal observations and the have a low dispersal ability, while Janzen and literature, much of it not primarily concerned Martin (1982) have considered some palms to with palm seed dispersal.
    [Show full text]
  • Reproductive Success in a Tropical Tree Species, Virola Surinamensis Undergraduate Research Thesis Presented in Partial Fulfillm
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KnowledgeBank at OSU Reproductive success in a tropical tree species, Virola surinamensis Undergraduate Research Thesis Presented in Partial Fulfillment of the Requirements for graduation “with Research Distinction in Evolution, Ecology and Organismal Biology” in the undergraduate colleges of The Ohio State University by Megan Sullivan The Ohio State University March 2014 Project Advisor: Dr. Liza Comita, Department of Evolution, Ecology, and Organismal Biology 1 Introduction Tropical forests are a haven for biodiversity. Determining the driving forces behind this pattern of high diversity in tropical forests has been a question that researchers have been investigating for quite some time. It is thought that violations of the competitive exclusion principle allow for greater diversity (Wright 2002, Connell 1971, Janzen 1970). Tropical tree species violate this principle in different ways and persist in competition against one another through a variety of mechanisms, ultimately, to obtain reproductive success. Reproductive success is when an individual is more successful at surviving and reproducing respective to other individuals of the species (Bergstrom and Dugatkin, 2012). Many different mechanisms can affect reproductive success and many different characteristics can drive these mechanisms. Reproductive success in plants results from a number of processes. Fruit production (the number of seeds that the tree produces initially) is the starting point for measuring reproductive potential. Fruit production in individuals can be affected by factors such as the amount of available resources (e.g., light, water, and nutrients) and competition by the surrounding neighborhood of plants for those resources (Lee and Bazzaz, 1982, Graham and Wright et.
    [Show full text]
  • Myristicaceae
    1762 TROPICAL FORESTS / Myristicaceae Burtt Davy J (1938) Classification of Tropical Woody importance. Fruit of the Myristicaceae, particularly Vegetation Types. Oxford, UK: Imperial Forestry In- the lipid-rich aril surrounding the seed in some stitute. species, are important as food for birds and mam- Champion HG and Seth SK (1968) Revised Survey of the mals of tropical forests. Numerous species are valued Forest Types of India. New Delhi, India: Manager of by humans as sources of food, medicine, narcotics, Publications, Government of India. and timber, including Myristica fragrans, the source Collins NM, Sagyer JA, and Whitmore TC (eds) (1991) of nutmeg and mace, the spices of commerce. The Conservation Atlas of Tropical Forests: Asia and Pacific. London: Macmillan. Throughout the geographical range of Myristica- Edward MV (1950) Burma Forest Types. Indian Forest ceae, aromatic leaves, often stellate pubescence, a Records (new series). Silviculture 7(2). Dehra Dun, India: unique arborescent architecture (Figure 1), and sap Forest Research Institute. the color of blood (Figure 2) are characteristics that Holmer CH (1958) The broad pattern of climate and strongly enhance recognition of this family in the vegetation distribution in Ceylon. In Proceedings of a field. Species of this family are usually dioecious. Symposium on Humid Tropics Vegetation, Kanly. Paris: Flowers are tiny and found in paniculate inflores- UNESCO. cences, with filaments of stamens fused into a IUCN (1988) The Red Data Book. Switzerland: IUCN. column, giving rise to either free or fused anthers Kurz S (1877) Forest Flora of British Burma, 2 vols. (Figures 3 and 4). Fruits are one-seeded, dehiscent or Calcutta, India: Bishen Singh, Dehra Dun.
    [Show full text]
  • Non-Wood Forest Products
    Non-farm income wo from non- od forest prod ucts FAO Diversification booklet 12 FAO Diversification Diversification booklet number 12 Non-farm income wo from non- od forest products Elaine Marshall and Cherukat Chandrasekharan Rural Infrastructure and Agro-Industries Division Food and Agriculture Organization of the United Nations Rome 2009 The views expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders.
    [Show full text]
  • Combined Phylogenetic Analyses Reveal Interfamilial Relationships and Patterns of floral Evolution in the Eudicot Order Fabales
    Cladistics Cladistics 1 (2012) 1–29 10.1111/j.1096-0031.2012.00392.x Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales M. Ange´ lica Belloa,b,c,*, Paula J. Rudallb and Julie A. Hawkinsa aSchool of Biological Sciences, Lyle Tower, the University of Reading, Reading, Berkshire RG6 6BX, UK; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; cReal Jardı´n Bota´nico-CSIC, Plaza de Murillo 2, CP 28014 Madrid, Spain Accepted 5 January 2012 Abstract Relationships between the four families placed in the angiosperm order Fabales (Leguminosae, Polygalaceae, Quillajaceae, Surianaceae) were hitherto poorly resolved. We combine published molecular data for the chloroplast regions matK and rbcL with 66 morphological characters surveyed for 73 ingroup and two outgroup species, and use Parsimony and Bayesian approaches to explore matrices with different missing data. All combined analyses using Parsimony recovered the topology Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). Bayesian analyses with matched morphological and molecular sampling recover the same topology, but analyses based on other data recover a different Bayesian topology: ((Polygalaceae + Leguminosae) (Quillajaceae + Surianaceae)). We explore the evolution of floral characters in the context of the more consistent topology: Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). This reveals synapomorphies for (Leguminosae (Quillajaceae + Suri- anaceae)) as the presence of free filaments and marginal ⁄ ventral placentation, for (Quillajaceae + Surianaceae) as pentamery and apocarpy, and for Leguminosae the presence of an abaxial median sepal and unicarpellate gynoecium. An octamerous androecium is synapomorphic for Polygalaceae. The development of papilionate flowers, and the evolutionary context in which these phenotypes appeared in Leguminosae and Polygalaceae, shows that the morphologies are convergent rather than synapomorphic within Fabales.
    [Show full text]
  • Actives & Extracts
    ACTIVES & EXTRACTS ACTIVES & EXTRACTS >> Açaí Oil Description: Features & Functions INCI: Açaí Oil is a non-refined, high-quality emollient, sustainably sourced from Euterpe Oleracea Pulp Oil the Brazilian Amazon rainforest. It is rich in omega-3, omega-6, omega-9 fatty acids and polyphenols (anthocyanins). Vegetal origin • Anti-ageing • Antioxidant • Hair conditioning • Moisturizing • Nourishing • Skin lightening >> Andiroba Oil Description: Features & Functions INCI: Andiroba Oil is a non-refined, high-quality emollient, sustainably sourced from Carapa Guiamensis Seed Oil the Brazilian Amazon rainforest. It is rich in fatty acids and limonoids. Vegetal origin • Hair conditioning approved by COSMOS • Moisturizing • Soothing • Natural insect repellent >> Babaçu Oil Description: Features & Functions INCI: Babaçu Oil is a non-refined, high-quality emollient, sustainably sourced from Orbignya Oleifera the Brazilian Amazon rainforest. It is rich in lauric acid. Vegetal origin • Moisturizing approved by COSMOS • Hair conditioning >> Buriti Oil Description: Features & Functions INCI: Buriti Oil is a non-refined, high-quality emollient, sustainably sourced from Mauritia Flexuosa Fruit Oil the Brazilian Amazon rainforest. It is rich in oleic/lauric acids and carotenoids. Vegetal origin • Anti-ageing approved by COSMOS • Antioxidant • Hair conditioning • Moisturizing • Soothing ACTIVES & EXTRACTS Cosme�cs and Personal Care >> CITRUE BISABOLOL Description: Features & Functions INCI: CITRUE BISABOLOL is a 100% natural product, sustainably produced. Bisabolol • Anti-acne Vegetal origin • Anti-microbial approved by COSMOS • Soothing >> Copaiba Balm / Copaiba Oil Description: Features & Functions INCI: Copaiba Balm and Copaiba Oil are sustainably sourced from Brazilian biodiversity. Copaifera Species Resin Oil Copaiba Balm is an oil-resin extracted from the Copaiba tree. Copaiba Oil is obtained by steam distillation process of the balm.
    [Show full text]