Compressed Chewing Gum Tablet Komprimierte Kaugummitablette Tablette De Chewing Gum Comprimé

Total Page:16

File Type:pdf, Size:1020Kb

Compressed Chewing Gum Tablet Komprimierte Kaugummitablette Tablette De Chewing Gum Comprimé (19) TZZ __T (11) EP 2 229 157 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/68 (2006.01) A61K 9/20 (2006.01) 10.08.2016 Bulletin 2016/32 (86) International application number: (21) Application number: 07846432.8 PCT/DK2007/000562 (22) Date of filing: 20.12.2007 (87) International publication number: WO 2009/080021 (02.07.2009 Gazette 2009/27) (54) COMPRESSED CHEWING GUM TABLET KOMPRIMIERTE KAUGUMMITABLETTE TABLETTE DE CHEWING GUM COMPRIMÉ (84) Designated Contracting States: • ARENT, Nicolai AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-8700 Horsens (DK) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE • THORENGAARD, Bitten SI SK TR DK-7120 Vejle Øst (DK) • WITTORFF, Helle (43) Date of publication of application: DK-7120 Vejle Øst (DK) 22.09.2010 Bulletin 2010/38 (74) Representative: Patentgruppen (73) Proprietor: Fertin Pharma A/S Aaboulevarden 31, 4 7100 Vejle (DK) 8000 Aarhus C (DK) (72) Inventors: (56) References cited: • ANDERSEN, Carsten EP-A- 1 554 935 EP-A- 1 693 086 DK-7100 Vejle (DK) WO-A-2006/002622 WO-A-2006/079343 •LORENZEN,Gitte DK-7120 Vejle Ost (DK) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 229 157 B1 Printed by Jouve, 75001 PARIS (FR) EP 2 229 157 B1 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to the field of compressed chewing gum. In particular, the present invention provides improved possibilities of controlling the release of active ingredients from a compressed chewing gum tablet. TECHNICAL BACKGROUND 10 [0002] Some compressed chewing gum tablets are known in the art. [0003] One example is European patent application EP 1 693 086 A1, which discloses compressed chewing gum tablets comprising a first and a second chewing gum module with CaCO3 in a first module and menthol in a second module. [0004] Another example is international patent application WO 2006/002622 A1, which discloses compressed chewing gum tablets comprising two GB-containing modules and one GB-free module. 15 [0005] A problem related to compressed chewing gum is that it may be difficult to obtain the same prolonged release of active ingredients as may be obtained in conventionally mixed chewing gum as compressed chewing gum tends to release active ingredients relatively fast. [0006] A further problem related to conventional compressed chewing gum is that active ingredients may differ sig- nificantly in nature as the active ingredients may be contained in different delivery systems if such systems are applied. 20 A further problem is that the desired release of the individual active ingredient may be difficult to control, thereby resultin g in a non-synchronized release of different active ingredients which need to be synchronized. [0007] It is therefore an object of the present invention to provide improved possibilities of designing a release profile according to a present desire. 25 SUMMARY [0008] The invention relates to a compressed chewing gum tablet comprising at least a first and a second chewing gum module, said first chewing gum module comprising a first chewing gum composition comprising at least a first active ingredient 30 and chewing gum granules containing gum base, said second chewing gum module comprising a second chewing gum composition comprising at least a second active ingredient and chewing gum granules containing gum base, wherein said first active ingredient is a pharmaceutically active ingredient, wherein said pharmaceutically active ingredient is nicotine and/or varenicline, and 35 said second active ingredient is selected from the group of enhancers and wherein in said enhancer comprises a pH control agent, wherein the gum base content of said first and second chewing gum modules is different. [0009] The invention facilitates that different pharmaceutically active ingredients in different modules may be affected individually by the content of gum base contained in the different respective modules, thereby obtaining an improved 40 administration of different pharmaceutically active ingredients with respect to a desired release and according to a desired synchronism. The desired synchronism may both involve that two different active ingredients are released at the same time and may also involve an offset. In some embodiments it may be desired to have a fast release of a first active ingredient and a slower release of a second active ingredient. 45 [0010] The release may be controlled by the different gum base content of the modules, whereby a number of possi- bilities arise of designing a release profile of the active ingredients as desired. [0011] According to the invention, the first and second active ingredients are different. [0012] Using different active ingredients may e.g. be advantageous when the two ingredients are collaborating, e.g. the one active ingredient enhances the uptake of the other, or the first ensures an advantageous pH-level for the second 50 active ingredient. However in some embodiments it may also be advantageous to have two or more independent active ingredients in the same chewing gum tablet. [0013] In an embodiment of the invention, said first chewing gum composition comprises a further active ingredient different from said first active ingredient. [0014] According to embodiments of the invention two or more active ingredients may be present in said first chewing 55 gum composition. In this manner a number of combinations of active ingredients may be delivered from a single chewing gum tablet. [0015] In an embodiment of the invention, wherein said second chewing gum composition comprises a further active ingredient different from said second active ingredient. 2 EP 2 229 157 B1 [0016] According to embodiments of the invention two or more active ingredients may be present in said second chewing gum composition. In this manner a number of combinations of active ingredients may be delivered from a single chewing gum tablet. [0017] In an embodiment of the invention, wherein said active ingredients in said first chewing gum module are at 5 least partly contained within said chewing gum granules. [0018] In an embodiment of the invention, wherein said active ingredients in said second chewing gum module are at least partly contained within said chewing gum granules. [0019] In an embodiment of the invention, the gum base content is different with respect to composition. [0020] With a gum base content different with respect to composition, release profiles may be adjusted in that an 10 active ingredient contained within a chewing gum granule will be released slower than an active ingredient which is added to the chewing gum layer outside the granules prior to compression. Hereby a desired amount of an active ingredient which is to be released relatively slowly may be added into the granules of the composition and another amount of the same or another active ingredient which is to be released relatively slowly may be added to the composition outside the granules, whereby a faster release of these are ensured. 15 [0021] In an embodiment of the invention, the gum base content is different with respect to weight. [0022] With a gum base content different with respect to weight, release profiles may be adjusted in that e.g. an active ingredient in a module without any gum base may tend to release faster than an active ingredient in a module with a relatively large amount of gum base. Hence it seems that release profile control may be controlled by selecting a certain amount of gum base for each module. 20 [0023] In an embodiment of the invention, the gum base content is different with respect to the size of applied chewing gum granules. [0024] With a gum base content different with respect to the size of applied chewing gum granules, release profiles may be adjusted in that indications have been seen that the release rate is different depending on an average size of the granules of the module, in which the active ingredient is positioned. 25 [0025] In an embodiment of the invention, wherein the size of the applied chewing gum granules is less in said first chewing gum module than in said second chewing gum module. [0026] In an embodiment of the invention, the gum base content is different with respect to the degree of mixing with the active ingredient. [0027] A further way to have different gum base content of two modules is to mix the two compositions with active 30 ingredients differently, e.g. mixing the active ingredient more thoroughly into one composition than into the other. [0028] In an embodiment of the invention, at least one of said first and second chewing gum composition facilitates a bi-phasic release of said second active ingredient. [0029] In an embodiment of the invention, wherein said compressed chewing gum tablet comprises control means to at least partly synchronize the release of said at least one pharmaceutically active ingredient and the release of said pH 35 control agen. [0030] In some embodiments nicotine is added as a salt such as nicotine bitartrate, nicotine pftalate, nicotine polacrilex, nicotine sulphate, nicotine tartrate, nicotine citrate, or nicotine lactate. Varenicline is often added as varenicline tartrate . [0031] In an embodiment of the invention, pharmaceutically active ingredients are selected from the group consisting of antihistamines, anti-smoking agents, agents used for diabetes, decongestrants, peptides, pain-relieving agents, ant- 40 acids, nausea-relieving agents, statines, or any combination thereof.
Recommended publications
  • How to Fortify Beverages with Calcium by Dr
    Ingredients How to Fortify Beverages With Calcium by Dr. Gerhard Gerstner Along with current developments of the overall functional foods market, the use of minerals and especially calcium salts is expected to exhibit strong growth rates. In contrary to other functional ingredients, calcium is widely known as being beneficial for human health and there is no need to explain its nutritional ad- vantages to the customer. According to Leatherhead International, future trends include growing consumer concern regarding osteoporosis and bone health, leading to increased sales of calcium salts. The con- observation is seen as being one of tinuous market growth drives mineral the main factors causing osteo- Common calium sources salt suppliers to offer not only one porosis 2 .As a consequence, national for beverage fortification product but rather a range of different authorities all over the world have calcium salts and granulations to be recently reconsidered recommend- Table 1 shows a typical range of able to tune them to industrial cus- ations in order to take remedial calcium fortified beverages which tomers’ applications. This article measures against calcium deficiency have been seen in European and US discusses important nutritional, and accordingly, to reduce the risk of supermarkets recently. Practically technological as well as economical osteoporosis. In this respect, the US every type of beverage such as aspects of calcium in beverages with National Institute of Health (NIH) has mineral water, soy milk, energy drink, a focus on our company’s products increased the amounts of optimal nectar or juice does have a fortified Tricalcium Citrate, Calcium Gluconate daily calcium intake and defined product line already.
    [Show full text]
  • Buffered Mag Glycinate W L-Taurine P.Pub
    Magnesium BisGlycinate TM buffered w/L-Taurine 90 Veggie Capsules NPN80026983 Matrix Nutritional Series Cardiac, Neurological & Musculo-Skeletal Support Matrix Nutritionals Series was designed as an eclectic offering for the Physica Energetics line of remedies primarily to assist in the “reactivation of the mesenchyme” (Dr. Reinhold Voll), via the nutritional complement pathways. These pathways are present in every system throughout the body and require balanced attention. In keeping with the principles of BioEnergetic Medicine, the remedies nourish and support these systems without punishing them with overstimulation or imbalancing factors, which, ultimately, is counterproductive. This approach has been carefully and respectfully designed to provide the necessary natural (organic where available), synergistic factors in proper energetic and biochemical ratios, to ensure assistance towards yielding a deep and lasting result. They are not to be confused with replacement therapy nutraceuticals that may seem to help for the moment, until the patient stops taking them or the condition is driven deeper. These remedies honour The Legacy of BioEnergetic Medicine, and are known by both patient and practitioner to be exceptionally effective. In 2006, the World Health Organization reached consensus experience twitches (in the eyelids as well!), cramps, muscle that a majority of the world's population is magnesium tension, muscle soreness, including back aches, neck pain, deficient. Likewise, in 1995, the Gallop Organization conducted a tension headaches and jaw joint (or TMJ) dysfunction. Also, one survey and found that 95% of adult Americans are magnesium may experience chest tightness or a peculiar sensation that one deficient! can't take a deep breath. Sometimes a person may sigh a lot.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Factors Affecting Precipitation of Calcium Lactate from Fermentation Broths and from Aqueous Solution
    https://doi.org/10.3311/PPch.14043 Creative Commons Attribution b |533 Periodica Polytechnica Chemical Engineering, 63(4), pp. 533–540, 2019 Factors Affecting Precipitation of Calcium Lactate from Fermentation Broths and from Aqueous Solution Aladár Vidra1, Áron Németh1*, András Salgó1 1 Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Budafoki út 6-8, Hungary * Corresponding author, e-mail: [email protected] Received: 19 March 2019, Accepted: 22 May 2019, Published online: 28 June 2019 Abstract Lactic acid is one of the most important organic acids which is being extensively used around the globe in a range of industrial and biotechnological applications. Lactic acid can be produced either by fermentation or by chemical synthesis but the biotechnological fermentation process has several advantages compared to the other one. However fermentation broth contains a number of impurities which must be removed from the broth in order to achieve more pure lactic acid. Efficiency of recovery is crucial to the economy of the whole process as well since the costs of separation and recovery are responsible for more than half of the entire cost of production. In the traditional procedure, the heated and filtered fermentation broth is concentrated to allow crystallization or precipitation of calcium lactate, followed by addition of sulphuric acid to remove the calcium in form of calcium sulphate. The disadvantage of this procedure is the relatively high solubility of calcium lactate which causes product loss in the crystallization step. Therefore we investigated the effects of four operating parameters of the crystallization/precipitation process from two different fermentation broths and from an aqueous solution.
    [Show full text]
  • No. 747 for Calcium Lactate in Potato and Vegetable Snacks and Sweetened Crackers
    GRAS Notice (GRN) No. 747 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm Exponent 11 50 Connecticut Ave., NW EXponenr Suite 11 00 Washington, DC 20036 telephone 202-772-4900 facsim ile 202-772-4979 www.exponent.com November 14, 2017 Office ofFood Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 500 l Campus Drive College Park, MD 20740 Subject: GRAS Notification for the Use of Calcium Lactate in Potato and Vegetable Snacks and Sweetened Crackers Project No. 1607280.000 Dear Sir/Madam: In accordance with 2 1 CFR part 170, subpart E, PepsiCo, hereby provides a notice of a claim that the food ingredient described in the enclosed notification document is excluded from the premarket approval requirement ofthe Federal Food, Drug, and Cosmetic Act because the notifier has concluded such use to be generally recognized as safe (GRAS), based on scientific procedures. One paper copy of the notification is provided as required; we also have provided a copy ofthe notification on the enclosed CD-ROM. Ifyou have any questions or require additional information, please do not hesitate to contact me at 202-772-4915, or [email protected]. Sincerely, (b) (6) Nga Tran, DrPH, MPH Principal Scientist ~~©~U~~~ 1607280.000- 04 16 NOV 16 20'7 000001 OFFICE OF FOOD A001TlVE SAFEi'Y ( GRAS Conclusion for the Use of Calcium Lactate in Potato and Vegetable Snacks and Sweetened Crackers SUBMITTED BY: PepsiCo, Inc 700 Anderson Hill Road Purchase, NY 10577 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park, MD 20740-3835 CONTACT FOR TECHNICAL OR OTHER INFORMATION: Nga Tran Principal Scientist Exponent, Inc.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,253,711 Mondshine (45) Date of Patent: Oct
    USOO525371 1A United States Patent (19) 11 Patent Number: 5,253,711 Mondshine (45) Date of Patent: Oct. 19, 1993 54) PROCESS FOR DECOMPOSING 2,268,215 12/1941 Kerr ...................................... 127/33 POLYSACCHARDES IN ALKALINE 3,167,510 /1965 Alter ..... sa as A8 a X8 a P. 252/8.551 3,655,644 4/1972 Durand ........................... 106/21 X AQUEOUS SYSTEMS 3,935,187 1/1976 Speakman ........................... 536/102 75 Inventor: Thomas C. Mondshine, Houston, 4,202,795 5/1980 Burnham et al. ............... 166/308 X Tex. 4,552,668 11/1985 Brown et al. ................... 166/300X Lachenal et al. ..................... 162/25 Assignee: Texas United Chemical Corp., 4,787,959 11/1988 (73) Primary Examiner-George A. Suchfield Houston, Tex. Attorney, Agent, or Firm-Roy F. House 21 Appl. No.: 844,167 57 ABSTRACT 22 Filed: Mar. 2, 1992 Alkaline earth metal or transition metal peroxides are (51) int. Cli.............................................. E21B 43/26 used as a delayed breaker in alkaline aqueous fluids 52) U.S. C. .................................... 166/300; 166/308; containing a water soluble hydrophilic polysaccharide 252/8.551; 252/326 polymer hydrated therein. The peroxide is activated by (58) Field of Search ............................... 166/300, 308; increasing the temperature of the fluid. The invention is 252/8.551, 326,358; 536/41, 80, 88 particularly useful for the delayed break of hydraulic 56) References Cited fracturing fluids containing hydroxypropyl guar poly c. U.S. PATENT DOCUMENTS i,953,398 4/1934 Eskew ................................... 536/41 10 Claims, No Drawings 5,253,711 1. 2 G. W. Hawkins, and H. D. Brannon, Feb.
    [Show full text]
  • GHS Calcium Lactate Gluconate MSDS.Pdf
    Safety Data Sheet (Calcium Lactate Gluconate) DATE PREPARED: 7/9/2015 Section 1. Product and Company Identification Product Name Calcium Lactate Gluconate CAS Number 11116-97-5 Parchem - fine & specialty chemicals EMERGENCY RESPONSE NUMBER 415 Huguenot Street CHEMTEL New Rochelle, NY 10801 Toll Free US & Canada: 1 (800) 255-3924 (914) 654-6800 (914) 654-6899 All other Origins: 1 (813) 248-0585 parchem.com [email protected] Collect Calls Accepted Section 2. Hazards Identification Classification of the substance or mixture Classification according to Directive 67/548/EEC or 1999/45/EC as amended: This preparation does not meet the criteria for classification according to Directive 1999/45/EC as amended. Classification according to Regulation (EC) No 1272/2008 as amended: This mixture does not meet the criteria for classification according to Regulation (EC) 1272/2008 as amended. Hazard and precautionary statements Hazard statements: The substance does not meet the criteria for classification. Precautionary statements: Not available. Appearance & Odor: White powder with no odor. Fire & Explosion Hazards Potential for dust explosion may exist. This product is not defined as flammable or combustible. However, the product may decompose under fire conditions to produce toxic oxides of carbon. Depending upon conditions, dusts may be sensitive to static discharge. Avoid possibility of dry powder and friction causing static electricity in presence of flammables (See NFPA-77, Chpt. 6) Primary Route of Exposure: Skin and eye contact are the primary routes of exposure to this product. Inhalation Acute Exposure: Inhalation of dust may cause mild irritation. Skin Contact - Acute: Skin contact is not expected to cause irritation.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Fine Biocompatible Powders Synthesized from Calcium Lactate and Ammonium Sulfate
    ceramics Article Fine Biocompatible Powders Synthesized from Calcium Lactate and Ammonium Sulfate Maksim Kaimonov 1,* , Tatiana Shatalova 1,2 , Yaroslav Filippov 1,3 and Tatiana Safronova 1,2 1 Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; [email protected] (T.S.); fi[email protected] (Y.F.); [email protected] (T.S.) 2 Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia 3 Research Institute of Mechanics, Lomonosov Moscow State University, Michurinsky pr., 1, 119192 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-952-889-11-43 Abstract: Fine biocompatible powders with different phase compositions were obtained from a 0.5 M solution of ammonium sulfate (NH4)2SO4 and calcium lactate Ca(C3H5O3)2. The powder ◦ after synthesis and drying at 40 C included calcium sulfate dehydrate CaSO4·2H2O and calcite ◦ CaCO3. The powder after heat treatment at 350 C included β-hemihydrate calcium sulfate β- CaSO4·0.5H2O, γ-anhydrite calcium sulfate γ-CaSO4 and calcite CaCO3. The phase composition of ◦ powder heat-treated at 600 C was presented as β-anhydrate calcium sulfate β-CaSO4 and calcite ◦ CaCO3. Increasing the temperature up to 800 C leads to the sintering of a calcium sulfate powder β β consisting of -anhydrite calcium sulfate -CaSO4 main phase and a tiny amount of calcium oxide CaO. The obtained fine biocompatible powders of calcium sulfate both after synthesis and after heat Citation: Kaimonov, M.; Shatalova, treatment at temperature not above 600 ◦C can be recommended as a filler for producing unique T.; Filippov, Y.; Safronova, T.
    [Show full text]
  • Evaluating the Efficacy of Commonly Used Topical Anesthetics
    Scientic Article Evaluating the efficacy of commonly used topical anesthetics Shiva Roghani, DDS Donald F. Duperon, DDS, MS, MRCD Nazanine Barcohana, DDS Dr. Roghani is in private practice in Orange County, California; Dr. Duperon is Professor and Chair; and Dr. Barcohana is a resident, Department of Pediatric Dentistry, University of California, Los Angeles, California. Abstract Purpose: This study compared the efficacy of commonly used with 5% EMLA cream was also measured. It was found to be topical anesthetics using an objective measuring scale. insufficient. The first study investigating the application of Methods: The following were tested: 5% EMLA cream, 10% EMLA cream in the oral cavity was performed in Sweden by cocaine, 10% lidocaine, 10% benzocaine, 1% dyclonine, and a comparing its pain reduction effect during a needle insertion placebo. A special instrument was designed to serve the purpose of to a placebo. EMLA was found to be very effective in reducing pressure application on the gingiva to obtain a threshold discom- pain experience.4 fort level in grams before and after the topical delivery. The Rosivack et al.5 used a visual analogue scale in adult patients medicaments, in the quantity of 20 µL (2–3 drops) were placed to compare 20% Benzocaine, 5% Lidocaine, and a placebo on the maxillary anterior region using Beckman paper wicks in (saline) in reducing pain when a needle was inserted. In this the form of discs. The topical anesthetics were left on the gingiva study both 5% Lidocaine and 20% Benzocaine were found to for 3 min and off for another 3 min.
    [Show full text]
  • Polymeric Liquid Dressing for Skin
    Europaisches Paten tamt J European Patent Office 00 Publication number: 0 409 550 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION A61L A61 K 9/70 © Application number: 90307785.7 © int. a* 25/00, @ Date of filing: 17.07.90 © Priority: 18.07.89 US 381556 © Applicant: ETHICON INC. U.S. Route 22 @ Date of publication of application: Somerville New Jersey 08876(US) 23.01.91 Bulletin 91/04 @ Inventor: Shah, Kishore R. © Designated Contracting States: 568 Cabot Hill Road FR GB IT Bridgewater NJ 08807(US) Inventor: Ovington, Liza G. 1288 Stuart Road Princeton, NJ 08540(US) Inventor: Doshi, Uday B. 97 Marvin Lane Piscataway, NJ 08854(US) Inventor: Shalaby, Shalaby W. 328A Longview Road, Rd 2 Lebanon NJ 08833(US) © Representative: Fisher, Adrian John et al CARPMAELS & RANSFORD 43 Bloomsbury Squareare London WC1A 2RA(GB) © Polymeric liquid dressing for skin. © There is described a polymeric formulation suitable for applying to the skin in a thin layer to form a protective coating thereon, which formulation comprises a sterile liquid formulation comprising an ethylene/vinyl acetate copolymer which preferably includes paraffin wax, and an organic liquid solvent for said copolymer. in in o> o o Q. LU Xerox Copy Centre EP 0 409 550 A1 POLYMERIC LIQUID DRESSING FOR SKIN The invention relates to the art of liquid polymeric dressings for skin. Background of the Invention 5 Liquid polymeric preparations that can be sprayed on or otherwise thinly applied to the intact or injured skin as protective coatings and/or as carriers for medicaments have been suggested for many years.
    [Show full text]
  • Treating Thyroid Disease: a Natural Approach to Healing Hashimoto's
    Treating Thyroid Disease: A Natural Approach to Healing Hashimoto’s Melissa Lea-Foster Rietz, FNP-BC, BC-ADM, RYT-200 Presbyterian Medical Services Farmington, NM [email protected] Professional Disclosures I have no personal or professional affiliation with any of the resources listed in this presentation, and will receive no monetary gain or professional advancement from this lecture. Talk Objectives • Define hypothyroidism and Hashimoto’s. • Discuss various tests used to identify thyroid disease and when to treat based on patient symptoms • Discuss potential causes and identify environmental factors that contribute to disease • Describe how the gut (food sensitivities) and the adrenals (chronic stress) are connected to Hashimoto’s and how we as practitioners can work to educate patients on prevention before the need for treatment • How the use of adaptogens can enhance the treatment of Hashimoto’s and identify herbs that are showing promise in the research. • How to use food, exercise, and relaxation to improve patient outcomes. Named for Hakuro Hashimoto, a physician working in Europe in the early 1900’s. Hashimoto’s was the first autoimmune disease to be recognized in the scientific literature. It is estimated that one in five people suffer from an autoimmune disease and the numbers continue to rise. Women are more likely than men to develop an autoimmune disease, and it is believed that 75% of individuals with an autoimmune disease are female. Thyroid autoimmune disease is the most common form, and affects 7-8% of the population in the United States. Case Study Ms. R is a 30-year-old female, mother of three, who states that after the birth of her last child two years ago she has felt the following: • Loss of energy • Difficulty losing weight despite habitual eating pattern • Hair loss • Irregular menses • Joints that ache throughout the day • A general sense of sadness • Cold Intolerance • Joint and Muscle Pain • Constipation • Irregular menstruation • Slowed Heart Rate What tests would you run on Ms.
    [Show full text]