Page 1 of 1 Geometry, Student Text and Homework Helper 11/7/2016

Total Page:16

File Type:pdf, Size:1020Kb

Page 1 of 1 Geometry, Student Text and Homework Helper 11/7/2016 Geometry, Student Text and Homework Helper Page 1 of 1 Skip Directly to Table of Contents | Skip Directly to Main Content Change text size Show/Hide TOC Page Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-5 Parallel Lines and Triangles 3-5 Parallel Lines and Triangles Teks Focus TEKS (6)(D) Verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isosceles triangles, midsegments, and medians, and apply these relationships to solve problems. TEKS (1)(F) Analyze mathematical relationships to connect and communicate mathematical ideas. Additional TEKS (1)(G) Vocabulary • Auxiliary line – a line that you add to a diagram to help explain relationships in proofs • Exterior angle of a polygon – an angle formed by a side and an extension of an adjacent side • Remote interior angles – the two nonadjacent interior angles corresponding to each exterior angle of a triangle • Analyze – closely examine objects, ideas, or relationships to learn more about their nature ESSENTIAL UNDERSTANDING The sum of the angle measures of a triangle is always the same. take note Postulate 3-2 Parallel Postulate Through a point not on a line, there is one and only one line parallel to the given line. There is exactly one line through P parallel to ℓ. take note Theorem 3-11 Triangle Angle-Sum Theorem The sum of the measures of the angles of a triangle is 180. m∠A + m∠B + m∠C = 180 For a proof of Theorem 3-11, see Problem 1. PearsonTEXAS.com Page 111 Copyright 2016 © Pearson Education, Inc. or its affiliate(s). All rights reserved. Privacy Policy | Terms of Use | Rights and Permissions https://media.pearsoncmg.com/curriculum/math/hs2016_tx/html_books/tx_gm/homework_... 11/7/2016 Geometry, Student Text and Homework Helper Page 1 of 1 Skip Directly to Table of Contents | Skip Directly to Main Content Change text size Show/Hide TOC Page Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-5 Parallel Lines and Triangles take note Key Concept Angles of Polygons An exterior angle of a polygon is an angle formed by a side and an extension of an adjacent side. For each exterior angle of a triangle, the two nonadjacent interior angles are its remote interior angles. In each triangle below, ∠1 is an exterior angle and ∠2 and ∠3 are its remote interior angles. Theorem 3-12 Triangle Exterior Angle Theorem The measure of each exterior angle of a triangle equals the sum of the measures of its two remote interior angles. m∠1 = m∠2 + m∠3 You will prove Theorem 3-12 in Exercise 20. Problem 1 TEKS Process Standard (1)(G) Proof Proving the Triangle Angle-Sum Theorem Write a two-column proof to prove the Triangle Angle-Sum Theorem (Theorem 3-11). Plan What could you add to the diagram to help explain relationships in this proof? Add an auxiliary line through Z, ¯¯¯¯¯¯ parallel to XY . Given: ΔAXYZ Prove: m∠X + m∠2 + m∠Y = 180 Statements Reasons ← → ¯¯¯¯¯¯ 1) Draw AB through Z, parallel to XY . 1) Parallel Postulate 2) ∠1 and ∠XZB are supplementary. 2) Linear Pair Postulate 3) m∠1 + m∠XZB = 180 3) Definition of supplementary angles 4) m∠XZB = m∠2 + m∠3 4) Angle Addition Postulate 5) m∠1 + m∠2 + m∠3 = 180 5) Substitution Property 6) ∠1 ≅∠X and ∠3 ≅∠Y 6) If lines are parallel, then alternate interior angles are congruent. 7) m∠1 = m∠X and m∠3 = m∠Y 7) Definition of congruent angles 8) m∠X + m∠2 + m∠Y = 180 8) Substitution Property Page 112 Copyright 2016 © Pearson Education, Inc. or its affiliate(s). All rights reserved. Privacy Policy | Terms of Use | Rights and Permissions https://media.pearsoncmg.com/curriculum/math/hs2016_tx/html_books/tx_gm/homework_... 11/7/2016 Geometry, Student Text and Homework Helper Page 1 of 1 Skip Directly to Table of Contents | Skip Directly to Main Content Change text size Show/Hide TOC Page Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-5 Parallel Lines and Triangles Problem 2 TEKS Process Standard (1)(F) Using the Triangle Angle-Sum Theorem Algebra What are the values of x and y in the diagram at the right? Plan Which variable should you solve for first? d From the diagram, you know two angle measures in ΔADB. The third angle is labeled x°. So Think Write use what you know about the Use the Triangle Angle-Sum Theorem to write an equation involving x. 59 + 43 + x = 180 angle measures in a triangle to solve for x first. 102 + x = 180 Solve for x by simplifying and then subtracting 102 from each side. x = 78 ∠ADB and ∠CDB form a linear pair, so they are supplementary. m∠ADB + m∠CDB = 180 x + y = 180 Substitute 78 for m ADB and y for m CDB in the above equation. ∠ ∠ 78 + y = 180 Solve for y by subtracting 78 from each side. y = 102 Problem 3 Using the Triangle Exterior Angle Theorem A What is the measure of ∠1? Plan m 1 = 80 + 18 Triangle Exterior Angle Theorem ∠ What information can you get m∠1 = 98 Simplify. from the diagram? The diagram shows you which angles are interior or exterior. B What is the measure of ∠2? 124 = 59 + m∠2 Triangle Exterior Angle Theorem 65 = m∠2 Subtract 59 from each side. PearsonTEXAS.com Page 113 Copyright 2016 © Pearson Education, Inc. or its affiliate(s). All rights reserved. Privacy Policy | Terms of Use | Rights and Permissions https://media.pearsoncmg.com/curriculum/math/hs2016_tx/html_books/tx_gm/homework_... 11/7/2016 Geometry, Student Text and Homework Helper Page 1 of 2 Skip Directly to Table of Contents | Skip Directly to Main Content Change text size Show/Hide TOC Page Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-5 Parallel Lines and Triangles Problem 4 Applying the Triangle Theorems Multiple Choice When radar tracks an object, the reflection of signals off the ground can result in clutter. Clutter causes the receiver to confuse the real object with its reflection, called a ghost. At the right, there is a radar receiver at A, an airplane at B, and the airplane's ghost at D. What is the value of x? Plan How can you apply your A 30 skills from Problem 3 here? B 50 Look at the diagram. Notice that you have a triangle and C 70 information about interior and exterior angles. D 80 m∠A + m∠B = m∠BCD Triangle Exterior Angle Theorem x + 30 = 80 Substitute. x = 50 Subtract 30 from each side. The value of x is 50. The correct answer is B. d PRACTICE and APPLICATION EXERCISES Proof 1. Justify Mathematical Arguments (1)(G) Write a paragraph proof to prove the Triangle Angle-Sum Theorem (Theorem 3-11). Begin by drawing an auxiliary line through vertex T. Scan page for a Virtual Given: ΔSTU Nerd™ tutorial video. Prove: m∠S + m∠T + m∠U = 180 For additional support when completing your Find the value of each variable. homework, go to PearsonTEXAS.com . https://media.pearsoncmg.com/curriculum/math/hs2016_tx/html_books/tx_gm/homework_... 11/7/2016 Geometry, Student Text and Homework Helper Page 2 of 2 2. d 3. 4. Find each missing angle measure. 5. 6. Expand this image 7. Expand this image Page 114 Copyright 2016 © Pearson Education, Inc. or its affiliate(s). All rights reserved. Privacy Policy | Terms of Use | Rights and Permissions https://media.pearsoncmg.com/curriculum/math/hs2016_tx/html_books/tx_gm/homework_... 11/7/2016 Geometry, Student Text and Homework Helper Page 1 of 2 Skip Directly to Table of Contents | Skip Directly to Main Content Change text size Show/Hide TOC Page Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-5 Parallel Lines and Triangles 8. A ramp forms the angles shown at the right. What are the values of a and b? 9. Analyze Mathematical Relationships (1)(F) What is the measure of each angle of a triangle with three congruent angles? Explain. 10. A beach chair has different settings that change the angles formed by its parts. Suppose m∠2 = 71 and m∠3 = 43. Find m∠1. Use the given information to find the unknown angle measures in the triangle. 11. The ratio of the angle measures of the acute angles in a right triangle is 1 : 2. 12. The measure of one angle of a triangle is 40. The measures of the other two angles are in a ratio of 3 : 4. 13. The measure of one angle of a triangle is 108. The measures of the other two angles are in a ratio of 1 : 5. 14. Analyze Mathematical Relationships (1)(F) The angle measures of ΔRST are represented by 2x, x + 14, and x − 38. What are the angle measures of ΔRST? Proof 15. Prove the following theorem: The acute angles of a right triangle are complementary. Given: ΔABC with right angle C Prove: ∠A and ∠B are complementary. Find the values of the variables and the measures of the angles. 16. 17. 18. https://media.pearsoncmg.com/curriculum/math/hs2016_tx/html_books/tx_gm/homework_... 11/7/2016 Geometry, Student Text and Homework Helper Page 2 of 2 d 19. Expand this image PearsonTEXAS.com Page 115 Copyright 2016 © Pearson Education, Inc. or its affiliate(s). All rights reserved. Privacy Policy | Terms of Use | Rights and Permissions https://media.pearsoncmg.com/curriculum/math/hs2016_tx/html_books/tx_gm/homework_..
Recommended publications
  • Neutral Geometry
    Neutral geometry And then we add Euclid’s parallel postulate Saccheri’s dilemma Options are: Summit angles are right Wants Summit angles are obtuse Was able to rule out, and we’ll see how Summit angles are acute The hypothesis of the acute angle is absolutely false, because it is repugnant to the nature of the straight line! Rule out obtuse angles: If we knew that a quadrilateral can’t have the sum of interior angles bigger than 360, we’d be fine. We’d know that if we knew that a triangle can’t have the sum of interior angles bigger than 180. Hold on! Isn’t the sum of the interior angles of a triangle EXACTLY180? Theorem: Angle sum of any triangle is less than or equal to 180º Suppose there is a triangle with angle sum greater than 180º, say anglfle sum of ABC i s 180º + p, w here p> 0. Goal: Construct a triangle that has the same angle sum, but one of its angles is smaller than p. Why is that enough? We would have that the remaining two angles add up to more than 180º: can that happen? Show that any two angles in a triangle add up to less than 180º. What do we know if we don’t have Para lle l Pos tul at e??? Alternate Interior Angle Theorem: If two lines cut by a transversal have a pair of congruent alternate interior angles, then the two lines are parallel. Converse of AIA Converse of AIA theorem: If two lines are parallel then the aliilblternate interior angles cut by a transversa l are congruent.
    [Show full text]
  • Geometry ­ Ch 5 ­ Exterior Angles & Triangle Inequality December 01, 2014
    Geometry ­ Ch 5 ­ Exterior Angles & Triangle Inequality December 01, 2014 The “Three Possibilities” Property: either a>b, a=b, or a<b The Transitive Property: If a>b and b>c, then a>c The Addition Property: If a>b, then a+c>b+c The Subtraction Property: If a>b, then a‐c>b‐c The Multiplication Property: If a>b and c>0, then ac>bc The Division Property: If a>b and c>0, then a/c>b/c The Addition Theorem of Inequality: If a>b and c>d, then a+c>b+d The “Whole Greater than Part” Theorem: If a>0, b>0, and a+b=c, then c>a and c>b Def: An exterior angle of a triangle is an angle that forms a linear pair with an angle of the triangle. A In ∆ABC, exterior ∠2 forms a linear pair with ∠ACB. The other two angles of the triangle, ∠1 (∠B) and ∠A are called remote interior angles with respect to ∠2. 1 2 B C Theorem 12: The Exterior Angle Theorem An Exterior angle of a triangle is greater than either remote interior angle. Find each of the following sums. 3 4 26. ∠1+∠2+∠3+∠4 2 1 6 7 5 8 27. ∠1+∠2+∠3+∠4+∠5+∠6+∠7+ 9 12 ∠8+∠9+∠10+∠11+∠12 11 10 28. ∠1+∠5+∠9 31. What does the result in exercise 30 indicate about the sum of the exterior 29. ∠3+∠7+∠11 angles of a triangle? 30. ∠2+∠4+∠6+∠8+∠10+∠12 1 Geometry ­ Ch 5 ­ Exterior Angles & Triangle Inequality December 01, 2014 After proving the Exterior Angle Theorem, Euclid proved that, in any triangle, the sum of any two angles is less than 180°.
    [Show full text]
  • M2.1 - Transformation Geometry
    RHODES UNIVERSITY Grahamstown 6140, South Africa Lecture Notes CCR M2.1 - Transformation Geometry Claudiu C. Remsing DEPT. of MATHEMATICS (Pure and Applied) 2006 ‘Beauty is truth, truth beauty’ – that is all Ye know on earth, and all ye need to know. John Keats Imagination is more important than knowledge. Albert Einstein Do not just pay attention to the words; Instead pay attention to meaning behind the words. But, do not just pay attention to meanings behind the words; Instead pay attention to your deep experience of those meanings. Tenzin Gyatso, The 14th Dalai Lama Where there is matter, there is geometry. Johannes Kepler Geometry is the art of good reasoning from poorly drawn figures. Anonymous What is a geometry ? The question [...] is metamathematical rather than mathematical, and consequently mathematicians of unquestioned competence may (and, indeed, do) differ in the answer they give to it. Even among those mathematicians called geometers there is no generally accepted definition of the term. It has been observed that the abstract, postulational method that has permeated nearly all parts of modern mathematics makes it difficult, if not meaningless, to mark with precision the boundary of that mathematical domain which should be called geometry. To some, geometry is not so much a subject as it is a point of view – a way of loking at a subject – so that geometry is the mathematics that a geometer does ! To others, geometry is a language that provides a very useful and suggestive means of discussing almost every part of mathematics (just as, in former days, French was the language of diplomacy); and there are, doubtless, some mathematicians who find such a query without any real significance and who, consequently, will disdain to vouchsafe any an- swer at all to it.
    [Show full text]
  • Chapter 4 Euclidean Geometry
    Chapter 4 Euclidean Geometry Based on previous 15 axioms, The parallel postulate for Euclidean geometry is added in this chapter. 4.1 Euclidean Parallelism, Existence of Rectangles De¯nition 4.1 Two distinct lines ` and m are said to be parallel ( and we write `km) i® they lie in the same plane and do not meet. Terminologies: 1. Transversal: a line intersecting two other lines. 2. Alternate interior angles 3. Corresponding angles 4. Interior angles on the same side of transversal 56 Yi Wang Chapter 4. Euclidean Geometry 57 Theorem 4.2 (Parallelism in absolute geometry) If two lines in the same plane are cut by a transversal to that a pair of alternate interior angles are congruent, the lines are parallel. Remark: Although this theorem involves parallel lines, it does not use the parallel postulate and is valid in absolute geometry. Proof: Assume to the contrary that the two lines meet, then use Exterior Angle Inequality to draw a contradiction. 2 The converse of above theorem is the Euclidean Parallel Postulate. Euclid's Fifth Postulate of Parallels If two lines in the same plane are cut by a transversal so that the sum of the measures of a pair of interior angles on the same side of the transversal is less than 180, the lines will meet on that side of the transversal. In e®ect, this says If m\1 + m\2 6= 180; then ` is not parallel to m Yi Wang Chapter 4. Euclidean Geometry 58 It's contrapositive is If `km; then m\1 + m\2 = 180( or m\2 = m\3): Three possible notions of parallelism Consider in a single ¯xed plane a line ` and a point P not on it.
    [Show full text]
  • Basic Theorems of Euclidean Geometry
    Basic Theorems of Euclidean Geometry We finally adopt the Euclidean Parallel Postulate and explore geometry under this assumption. The result is Euclidean Geometry and its major results are similarity, the Pythagorean Theorem, and trigonometry, although there is of course much more. Axiom (The Euclidean Parallel Postulate): For every line l and for every point P that does not lie on l, there is exactly one line m such that P lies on m and m is parallel to l. We now have as theorems all those statements that we proved equivalent to EPP earlier, including: 1. If two parallel lines are cut by a transversal, alternate interior angles are congruent. 2. (Euclid’s Postulate V) If two lines in the same plane are cut by a transversal so that the sum of the measures of a pair of interior angles on the same side of the transversal is less than 180, then the lines will meet on that side of the transversal. 3. (Proclus’s Axiom) A third line intersecting one of two parallel lines intersects the other. 4. A line perpendicular to one of two parallel lines is perpendicular to the other. 5. The perpendicular bisectors of the sides of a triangle are concurrent. 6. There exists a circle passing through any three noncollinear points. 7. (Angle Sum Postulate) The sum of measures of the angles of a triangle is 180. 8. There exists one triangle such that the sum of measures of the angles is 180. 9. There exists a rectangle. 10. There exist two lines l and m such that l is equidistant from m.
    [Show full text]
  • Neutral Geometry
    NEUTRAL GEOMETRY If only it could be proved ... that "there is a Triangle whose angles are together not less than two right angles"! But alas, that is an ignis fatuus that has never yet been caught! c. L. DODGSON (LEWIS CARROLL) GEOMETRY WITHOUT THE PARALLELL AXIOM In the exercises of the previous chapter you gained experience in proving some elementary results from Hilbert's axioms. Many of these results were taken for granted by Euclid. You can see that filling in the gaps and rigorously proving every detail is a long task. In any case, we must show that Euclid's postulates are consequences of Hilbert's. We have seen that Euclid's first postulate is the same as Hilbert's Axiom 1-1. In our new language, Euclid's second postulate says the following: given segments AB and CD, there exists a point E such that A * B * E and CD == BE. This follows immediately from Hilbert's Axiom C-1 applied to the ray emanating from B opposite to -+ . BA (see Figure 4.1). The third postulate of Euclid becomes a definition in Hilbert's system. The circle with center 0 and radius OA is defined as the set of all points P such that OP is congruent to OA. Axiom C-1 then guaran­ tees that on every ray emanating from 0 there exists such a point P. The fourth postulate of Euclid-all right angles are congruent­ becomes a theorem in Hilbert's system, as was shown in Proposition 3.23. 116 III Neutral Geometry c o • • • • • FIGURE 4.1 A B E Euclid's parallel postulate is discussed later in this chapter.
    [Show full text]
  • Theorems About Parallel Lines
    3.2 Lesson What You Will Learn English Language Learners Use properties of parallel lines. Prove theorems about parallel lines. Notebook Development A Is it possible for consecutive Core VocabularyVocabulary Solve real-life problems.14. HOW DO YOU SEE IT? B 19. CRITICAL THINKING Use the diagram. interior angles to be congruent? Explain. Have students record Theorems 3.1, PreviousDynamicDynamic TeachingTeaching ToolsTools D DynamicDynamic Assessment3.2 & ProProgressgress LessonMonitorinMonitoringg TooTooll What You Will Learn C The postulates and theorems English Language Learners corresponding angles 20. THOUGHT PROVOKING 3.2, 3.3, and 3.4 in their notebooks. Use properties of parallel lines. in this book represent Euclidean geometry. In InteractiveInteractive Whiteboard Lesson LibrarLibraryyUsing Properties a. of Name Parallel two pairs of congruent Lines angles when AD — and parallel lines Prove— theorems about parallel lines. spherical geometry, all points are points on the surface Notebook Development BC are parallel. Explain your reasoning. Include a sketch, the full theorem DynamicDynamic CClassroomlassroom witwithCoreh DDynamicy namicVocabularyVocabu InvestiInvestigationslagrationy s Solve real-life problems. of a sphere. A line is a circle on the sphere whose Have students record Theorems 3.1, Previous — supplementary angles b. Name two pairs of supplementary angles when AB diameter is equal to the diameter of the sphere. In 3.2, 3.3, and 3.4 in their notebooks. corresponding angles name, and an example for each Usingand Properties DC — are parallel. Explain of Parallel your reasoning. Lines spherical geometry, is it possible that a transversal Include a sketch, the full theorem verticalPROOFS angles WITHparallel linesPARALLELTheorems LINES (3.3) supplementary angles intersects two parallel lines? Explain your reasoning.
    [Show full text]
  • Neutral Geometry. the Neutral Plane Geometry, the Geometry Without A
    Neutral Geometry. The neutral plane geometry, the geometry without a parallel line axiom, is built up of some incidence/containment axioms, betweenness axioms, con- gruency axioms and one important axiom about triangles. (These axioms are in addition to the standard assumptions of logic.) Undefined quantities include: points, lines, sets, etc. ... The following are sample axioms and are not meant to be all inclusive. Incidence Axioms: 1: For each pair of points there is a unique line containing them. 2: Every line contains at least two points. 3: There exist three non co-linear points. Betweenness axioms. 1: If the point P is between the points A and B then they are co-linear. 2: Given two points P and Q there exist three points A, B and C so that: P is between A and Q; C is between P and Q; Q is between P and C. 3: Given three points contained in a line, exactly one is between the other two. An axiom about a line separating the plane. The congruency axioms tell us that congruent line segments can be found on different lines with certain (intuitive) properties and that there exist con- gruent angles with sides on the same or different lines with certain properties. Finally the SAS condition is assumed by axiom: Given two triangles with corresponding sides and angles so that two sides with the included angle of one triangle is congruent to the corresponding sides and included angle of the other triangle, then the triangles themselves are congruent. From these axioms the following well known theorems follow.
    [Show full text]
  • V : Introduction to Non – Euclidean Geometry
    V : Introduction to non – Euclidean geometry Over the course of the nineteenth century , under pressure of developments within mathematics itself , the accepted answer [ to questions like , “What is geometry ?” ] dramatically broke down . … Not since the ancient Greeks , if then , had there been such an irruption [or incursion] of philosophical ideas into the very heart of mathematics . … Mathematicians of the first rank … found themselves obliged to confront questions about … the status of geometry … The answers they gave did much to shape the mathematics of the twentieth century . W. Ewald (1954 –), Bulletin (New Series) of the American Mathematical Society , Vol. 40 (2002) , pp. 125 – 126 . We have already mentioned in Section I I.5 that the final assumption in Euclid ’s Elements (the so – called Fifth Postulate ) is far more complicated than the others . Furthermore , the proofs of the first 28 results in the Elements do not use the Fifth Postulate . In addition , there are general questions whether this postulate corresponds to physical reality because it involves objects which are too distant to be observed or questions about measurements that cannot necessarily be answered conclusively because there are always limits to the precision of physical measurements . For these and other reasons , it is natural to speculate about the extent to which the exceptional Fifth Postulate is necessary or desirable as an assumption in classical geometry . Historical evidence suggests that such questions had been raised and debated extensively before Euclid ’s time , and for centuries numerous mathematicians tried to prove the Fifth Postulate from the others , or at least to find a simpler and more strongly intuitive postulate to replace it .
    [Show full text]
  • Topic 12 Theorems About Circles
    Topic 12 Theorems About Circles TOPIC OVERVIEW VOCABULARY 12-1 Tangent Lines English/Spanish Vocabulary Audio Online: 12-2 Chords and Arcs English Spanish 12-3 Inscribed Angles chord, p. 492 cuerda 12-4 Angle Measures and Segment inscribed angle, p. 499 ángulo inscrito Lengths intercepted arc, p. 499 arco interceptor point of tangency, p. 486 punto de tangencia secant, p. 505 secante tangent to a circle, p. 486 tangente de un círculo DIGITAL APPS PRINT and eBook Access Your Homework . ONLINE HOMEWORK You can do all of your homework online with built-in examples and “Show Me How” support! When you log in to your account, you’ll see the homework your teacher has assigned you. HOMEWORK TUTOR APP YOUR DIGITAL Do your homework anywhere! You can access the Practice and RESOURCES Application Exercises, as well as Virtual Nerd tutorials, with this PearsonTEXAS.com Homework Tutor app, available on any mobile device. STUDENT TEXT AND HOMEWORK HELPER Access the Practice and Application Exercises that you are assigned for homework in the Student Text and Homework Helper, which is also available as an electronic book. 484 Topic 12 Theorems About Circles Earth Watch Scientists estimate that there are currently about 3000 operational man-made Math satellites orbiting the Earth. These satellites serve different purposes, from communication Act Math Act Act - - to navigation and global 3 3 positioning. Some are weather satellites that collect environmental information. The International Space Station is the largest man-made satellite that orbits the Earth. It serves as a space environment research facility, and it also offers astronauts amazing views of the Earth.
    [Show full text]
  • Foundations of Neutral Geometry
    CHAPTER 12 Foundations of Neutral Geometry The play is independent of the pages on which it is printed, and “pure geometries” are independent of lecture rooms, or of any other detail of the physical world. – G. H. Hardy in A Mathematician’s Apology [10] (1877 – 1947) 12.1 TRIANGLES AND PARALLELS As mentioned at the end of Chapter 11, Hilbert’s incidence, betweenness, congruence, and Dedekind axioms form a basis for Euclidean, Hyper- bolic, and Elliptic geometry. As such we say these axioms form a basis for Universal geometry. As shown in Chapter 11, the theorems of Uni- versal geometry include Euclid’s Propositions 1-15, 23, and ASA triangle congruence. Continuing from Proposition 15, there is another set of re- sults that are not universal, but interestingly enough, are still common to two of our geometries —Euclidean and Hyperbolic. Traditionally, the set of results common to these two geometries has been called Neutral or Absolute geometry. 12.1.1 Exterior Angle Theorem The first of Euclid’s Propositions that does not hold in Universal geom- etry is the Exterior Angle Theorem (Proposition 16). 75 76 Exploring Geometry - Web Chapters Definition 12.1. Given triangle ∆ABC, the angles \CBA, \BAC, and \ACB are called interior angles of the triangle. Their supplementary angles are called exterior angles. The two angles of a triangle that are not supplementary to an exterior angle are called remote interior angles relative to the exterior angle. The statement of the Exterior Angle Theorem is as follows: Theorem 12.1. (Exterior Angle Theorem) An exterior angle of a triangle is greater than either remote interior angle.
    [Show full text]
  • 2 Euclidean Geometry
    2 Euclidean Geometry 2.1 Euclid’s Postulates and Book I of the Elements Euclid’s Elements (c. 300 BC) was a core part of European and Arabic curricula until the mid 20th century. Pictures of the oldest fragment and full copy are below, along with various textbook editions. Earliest Fragment c. AD 100 Full copy, Vatican, 9thC Pop-up edition, 1500’s Latin translation, 1572 Color edition, 1847 Textbook, 1903 Euclid’s proofs can be found online, and you can read Byrne’s 1847 edition here: the cover is Euclid’s proof of Pythagoras’ Theorem. We now turn to Euclid’s system itself and an overview of Book I. Undefined Terms E.g., point, line, etc.1 Axioms/Postulates A1 If a = b and b = c then a = c (= is transitive) A2 If a = b and c = d then a + c = b + d A3 If a = b and c = d then a c = b d − − A4 Things that coincide are equal (in magnitude) A5 The whole is greater than the part P1 A pair of points may be joined to create a line P2 A line may be extended P3 Given a center and a radius, a circle may be drawn P4 All right angles are equal P5 If a straight line crosses two others and the angles on one side sum to less than two right angles then the two lines (when extended) meet on that side. 1In fact Euclid attempted to define these: ‘A point is that which has no part,’ and ‘A line has length but no breadth.’ 1 Euclid’s system doesn’t quite fit the modern standard of an axiomatic system.
    [Show full text]