ATP Depletion, a Possible Role in the Pathogenesis of Hyperuricemia in Glycogen Storage Disease Type I

Total Page:16

File Type:pdf, Size:1020Kb

ATP Depletion, a Possible Role in the Pathogenesis of Hyperuricemia in Glycogen Storage Disease Type I ATP Depletion, a Possible Role in the Pathogenesis of Hyperuricemia in Glycogen Storage Disease Type I Harry L. Greene, … , Thomas H. Claus, Ian M. Burr J Clin Invest. 1978;62(2):321-328. https://doi.org/10.1172/JCI109132. Research Article Other investigators have shown that fructose infusion in normal man and rats acutely depletes hepatic ATP and Pi and increases the rate of uric acid formation by the degradation of preformed nucleotides. We postulated that a similar mechanism of ATP depletion might be present in patients with glucose-6-phosphatase deficiency (GSD-I) as a result of ATP consumption during glycogenolysis and resulting excess glycolysis. The postulate was tested by measurement of: (a) hepatic content of ATP, glycogen, phosphorylated sugars, and phosphorylase activities before and after increasing glycolysis by glucagon infusion and (b) plasma urate levels and urate excretion before and after therapy designed to maintain blood glucose levels above 70 mg/dl and thus prevent excess glycogenolysis and glycolysis. Glucagon infusion in seven patients with GSD-I caused a decrease in hepatic ATP from 2.25 ± 0.09 to 0.73 ± 0.06 μmol/g liver (P <0.01), within 5 min, persisting in one patient to 20 min (1.3 μmol/g). Three patients with GSD other than GSD-I (controls), and 10 normal rats, showed no change in ATP levels after glucagon infusion. Glucagon caused an increase in hepatic phosphorylase activity from 163 ± 21 to 311 ± 17 μmol/min per g protein (P <0.01), and a decrease in glycogen content from 8.96 ± 0.51 to 6.68 ± 0.38% weight (P <0.01). Hepatic content of phosphorylated hexoses measured in […] Find the latest version: https://jci.me/109132/pdf ATP Depletion, a Possible Role in the Pathogenesis of Hyperuricemia in Glycogen Storage Disease Type I HARRY L. GREENE, FREDERICK A. WILSON, PATRICK HEFFERAN, ANNIE B. TERRY, JOSE ROBERTO MORAN, ALFRED E. SLONIM, THOMAS H. CLAUS, and IAN M. BURR, Departments of Pediatrics, Medicine, and Physiology, Vanderbilt Medical Center, Nashville, Tennessee 37232 A B S T R A C T Other investigators have shown that except for glucose-6-phosphate, returned toward pre- fructose infusion in normal man and rats acutely de- infusion levels within 20 min. pletes hepatic ATP and Pi and increases the rate of uric Treatment consisted of continuous intragastric feed- acid formation by the degradation of preformed nucleo- ings of a high glucose dietary mixture. Such treatment tides. We postulated that a similar mechanism of ATP increased blood glucose from a mean level of 62 (range depletion might be present in patients with glucose-6- 28-96) to 86 (range 71-143) mg/dl (P < 0.02), decreased phosphatase deficiency (GSD-I) as a result of ATP con- plasma glucagon from a mean of 190 (range 171-208) sumption during glycogenolysis and resulting excess to 56 (range 30-70) pg/ml (P < 0.01), but caused no sig- glycolysis. The postulate was tested by measurement nificant change in insulin levels. Urate output meas- of: (a) hepatic content of ATP, glycogen, phosphoryl- ured in three patients showed an initial increase, coin- ated sugars, and phosphorylase activities before and ciding with a decrease in plasma lactate and triglyceride after increasing glycolysis by glucagon infusion and levels, then decreased to normal within 3 days after (b) plasma urate levels and urate excretion before and treatment. Normalization of urate excretion was asso- after therapy designed to maintain blood glucose levels ciated with normalization of serum uric acid. above 70 mg/dl and thus prevent excess glycogenolysis We suggest that the maintenance of blood glucose and glycolysis. levels above 70 mg/dl is effective in reducing serum Glucagon infusion in seven patients with GSD-I urate levels and that transient and recurrent depletion caused a decrease in hepatic ATP from 2.25±0.09 to of hepatic ATP due to glycogenolysis is contributory 0.73±0.06 ,umol/g liver (P < 0.01), within 5 min, per- in the genesis of hyperuricemia in untreated patients sisting in one patient to 20 min (1.3 ,mol/g). Three pa- with GSD-I. tients with GSD other than GSD-I (controls), and 10 normal rats, showed no change in ATP levels after glu- INTRODUCTION cagon infusion. Glucagon caused an increase in hepatic phosphorylase activity from 163±21 to 311±17 ,umol/ The hyperuricemia associated with glycogen storage min per g protein (P < 0.01), and a decrease in glycogen disease type I (GSD-I)' or glucose-6-phosphatase de- content from 8.96±0.51 to 6.68±0.38% weight (P < 0.01). ficiency, is often of such severity that it produces gout Hepatic content of phosphorylated hexoses measured and its ensuing complications (1, 2). Although several in two patients, showed the following mean increases investigators have demonstrated an excess production in response to glucagon; glucose-6-phosphate (from of uric acid from increased synthesis of purines de novo 0.25 to 0.98 ,umol/g liver), fructose-6-phosphate (from (2-7), the precise mechanism giving rise to this anom- 0.17 to 0.45,umol/g liver), and fructose-1,6-diphosphate aly has not been elucidated. (from 0.09 to 1.28 within 5 min. These changes, Roe and Kogut (6) recently showed that within 30 min tmol/g) after an injection of glucagon, patients with GSD-I were unique in showing a significant increase in plasma Dr. Burr and Dr. Wilson are investigators for the Howard uric acid levels and a two to threefold increase in excre- Hughes Medical Institute. Dr. Terry's present address is the tion of urate. This observation suggested that such a Department of Pediatrics, University of Oregon Health in Science Center, Portland, Oreg. 97201. Dr. Hefferan's present rapid increase urate levels resulted primarily from address is the Department of Pediatrics, University of Texas, enhanced nucleotide catabolism rather than from a Houston, Tex. Received for publication 15 July 1977 and in revised form IAbbreviations used in this paper: G-6-P, glucose-6-phos- 3 April 1978. phate; GSD-I, glycogen storage disease type I. J. Clin. Invest. © The American Society for Clinical Investigation, Inc., 0021-9738/78/0801-321 $1.00 321 direct effect on the rate of purine synthesis as originally of hypoglycemia, we have used glucagon administra- suggested by Howell (7). Thus, the observed increase tion to simulate some of the biochemical changes re- in de novo synthesis of purines in GSD-I would ap- sulting from hypoglycemia: e.g., activation of phos- pear to be secondary to the increased rate of purine phorylase, and reduction in hepatic glycogen. In addi- catabolism. Such a sequence has been shown to occIur tion to the glucagon-induced changes, glucose therapy after fructose infusions in normal man (8-10) and rats given in quantities to prevent frequent and recurrent (11-13). Although the metabolic sequences are com- episodes of low blood glucose concentrations, should plex, a series of publications has shown that phosphoryl- decrease the elevated seruim uric acid levels (16). This ation of large amounts of fructose leads to acute de- report presents the results of glucagon-indtuced changes pletion of hepatic ATP and Pi levels, which in turn in glycogen content, phosphorylase activity, and ATP favor degradation of preformed AMP to uric acid (8-13). concentration in seven patients with GSD-I, two of The similarity between the blood chemistries of pa- which also had measiurements of G-6-P, fiuctose-6- tients with GSD-I and subjects infused with fructose phosphate, and fructose-1, 6-diphosphate. In addition, (hypertriglyceridemia lacticacidemia, hypophospha- the effect of continuouis glucose therapy on uric acid temia, and hyperuricemia), prompted the hypothesis excretion and plasma uirate levels was meassured. The that the mechanism for hyperuricemia in these two findings provide stupport for the hypothesis that in- conditions might be analogous (6, 14). For example, creased degradation of preformed purines is important patients with GSD-I can degrade glycogen to glucose- in the genesis of hyperuiricemia in GCSD-I. 6-phosphate (G-6-P) but because of the enzyme defect, hydrolysis to glucose and Pi is impaired. Frequent peri- METHODS ods of hypoglycemia should therefore stimulate the for- Patient .studies. The patient group consisted of 10 pa- mation of large amounts of G-6-P which escapes pri- tients (ages 18 mo to 19 yr) with hepatic glycogen accumula- marily through the Embden-Meyerhof pathway to be tion. Seven patients had the clinical and laboratory features further phosphorylated utilizing equimolar amounts of of GS D-I and deficient glucose-6-phosphatase activity (group I). ATP (15) (see Fig. 1). Thus, both fructose infusion in Of the remaining three patients, one had debrancher enzyme normal man and (amylo-1-4,1-6-glucosidase) deficiency (type III-GSD) and the hypoglycemia in patients with GSD-I other two had excessive hepatic glycogen content without a should result in an increase in phosphorylated stugars detectable defect in glycogenolytic enzyme activities (group and a decrease in ATP and Pi in the liver. II). These latter patients showed the expected glycemic re- Demonstration that patients with GSD-I have low sponse to glucagon. All patients were admitted to the Clinical hepatic levels of ATP and and high levels of phos- Research Center of Vanderbilt University Hospital for de- Pi finitive diagnosis and treatment of GSD. They were main- phorylated sugars, during periods of hypoglycemia, tained on a diet consisting of 60% starch or glucose and <50 would support this postulate. Since it is not medically mg purine/100 g of food daily (17). Daily calorie-protein in- feasible to obtain hepatic tisssue samples during periods take varied letween patients because of age differences; the range was between 45 and 65 kcal/kg body wt.
Recommended publications
  • MEDICAL DIRECTIVE Point of Care Glucose Meter Testing And
    MEDICAL DIRECTIVE Point of Care Glucose Meter Testing and Treatment for Out-Patients with Suspected Hypoglycemia in the Diabetes Education Program Approved by/Date: Medical Advisory Comm. – June 25, 2013 Authorizing physician(s) Dr. Rachel Chong Dr. Angeline Chong Dr. Theodore Monchesky Authorized to whom Nurses and dietitians working in the diabetes education program at LH who have received education and validation of glucose meter testing according to Ontario Laboratory Accreditation Standards (OLA). Patient Description / Population Any outpatient 18 years of age or older at LH exhibiting signs or symptoms of hypoglycemia. Any outpatient 18 years of age or older suspected of having hypoglycemia. Medical Directive Description/Physician’s Order The nurse/dietitian will obtain a capillary blood sample from a patient’s finger upon suspecting hypoglycemia. The nurse/dietitian will perform a blood glucose meter test, and treat hypoglycemia as per protocol outlined below. Patient/Population Description: All LH Patients 18 years and over registered with the LH Diabetes Education Program. Contraindications to implementing the Protocol: • Patients unwilling or unable to provide blood sample. • Patient less than 18 years of age • Refusal of patient/family consent for testing and/or treatment; call code blue and 911 immediately Originating Committee: RNS Program Council – Feb 26, 2013 Medical Advisory Committee: June 25, 2013 This material has been prepared solely for the use at Lakeridge Health. Lakeridge Health accepts no responsibility for use of this material by any person or organization not associated with Lakeridge Health. No part of this document may be reproduced in any form for publication without the permission of Lakeridge Health.
    [Show full text]
  • Diabetes Control in Thyroid Disease
    In Brief Thyroid disease is commonly found in most types of diabetes. This article defines the prevalence of thyroid disease in diabetes and elucidates through case studies the assessment, diagnosis, and clinical management of thyroid disease in diabetes. Diabetes Control in Thyroid Disease Thyroid disease is a pathological state abnormality. Several studies, including that can adversely affect diabetes con- the Colorado study, have documented trol and has the potential to negative- a higher prevalence of thyroid disease Jennal L. Johnson, MS, RNC, FNP, ly affect patient outcomes. Thyroid in women, with prevalence rates rang- BC-ADM, CDE disease is found commonly in most ing from 4 to 21%, whereas the rate in forms of diabetes and is associated men ranges from 2.8 to 16%.1 with advanced age, particularly in Thyroid disease increases with age. In type 2 diabetes and underlying the Colorado study, the 18-year-olds autoimmune disease in type 1 dia- had a prevalence rate of 3.5% com- betes. This article defines the preva- pared with a rate of 18.5% for those lence of thyroid disease in diabetes, ≥ 65 years of age. discusses normal physiology and The prevalence of thyroid disease in screening recommendations for thy- diabetes has been estimated at 10.8%,2 roid disease, and elucidates through with the majority of cases occurring as case studies the assessment, diagnosis, hypothyroidism (~ 30%) and subclini- and clinical management of thyroid cal hypothyroidism (~ 50%).2 Hyper- disease and its impact on diabetes. thyroidism accounts for 12%, and postpartum thyroiditis accounts for Thyroid Disease Prevalence 11%.2 Of the female patients with The prevalence of thyroid disease in type 1 diabetes, 30% have thyroid dis- the general population is estimated to ease, with a rate of postpartum thy- be 6.6%, with hypothyroidism the roid disease three times that of the most common malady.1 Participants normal population.
    [Show full text]
  • Refractory Hypoglycemia in T-Cell Lymphoma
    Open Access Austin Oncology Case Reports Case Report Refractory Hypoglycemia in T-Cell Lymphoma Buyukaydina B1*, Tunca M1, Alayb M2, Kazanciogluc R3 and Reha E3 Abstract 1Bezmialem Vakif University, Department of Internal Hypoglycemia is commonly seen in diabetes mellitus patients; whereas it Medicine, Turkey is rarely seen in a healthy person. In this case, we reported a male patient 2Yuzuncu Yil University, Department of Endocrinology, with a treatment-resistant hypoglycemia. A 53 years old male patient admitted Turkey to our clinic with debility, nausea and vomiting. Physical examination revealed 3Bezmialem Vakif University, Department of Nephology, lymphadenopathies in the left axilla and inguinal regions; and presence of right Turkey upper quadrant tenderness. Biochemical results revealed severe hypoglycemia, *Corresponding author: Banu Buyukaydin, azotemia and elevation of liver enzymes. Histological result of the excisional Bezmialem Vakif University, Department of Internal lymph node biopsy was compatible with peripheral T cell lymphoma. In ward, Medicine, Turkey the patient has repeated recurrent hypoglycemia, which did not resolve with all treatment given. His general condition deteriorated and he died due to sepsis. Received: June 01, 2016; Accepted: July 10, 2016; This case highlighted the need to rule out hematologic malignancies; precisely Published: July 13, 2016 T-cell lymphoma in a patient who presented with resistant hypoglycemia in the presence of lymphadenopathy. Keywords: Hypoglycemia, Lymphoma, IGF-II Introduction approximately fifty percent of proliferation index. CD3 was positive. This finding was compatible to histological diagnosis of peripheral Hypoglycemia is defined as the occurrence of a variety of T-cell lymphoma with partial involvement of lymph ganglia. symptoms in association with plasma glucose concentration of 50mg/dl or less.
    [Show full text]
  • CANINE INSULINOMA: DIAGNOSIS, TREATMENT, & STAGING Eliza Reiss Grant, DVM, and Kristine E
    Peer Reviewed PRACTICAL ONCOLOGY CANINE INSULINOMA: DIAGNOSIS, TREATMENT, & STAGING Eliza Reiss Grant, DVM, and Kristine E. Burgess, DVM, Diplomate ACVIM (Oncology) Tufts University An insulinoma is a malignant pancreatic tumor that DIAGNOSIS inappropriately secretes excessive insulin, resulting in Aside from a histologic confirmation of insulinoma, profound hypoglycemia.1 no currently available diagnostic test provides a de- Pancreatic tumors are classified as: finitive diagnosis of insulinoma. Existing techniques • Exocrine, which includes adenocarcinomas of may help increase suspicion for an insulin-secreting ductular or acinar origin tumor but, with most diagnostic testing, it is im- • Endocrine, which arise from the islets of perative to interpret all results in the context of the Langerhans. coexisting clinical signs. Insulinomas are functional neuroendocrine tumors that originate in the beta cells of the islets Differential Diagnosis of Langerhans.1 A complete work-up, including careful patient history, physical examination, bloodwork, and PRESENTATION diagnostic imaging tests, should be performed to Signalment rule out other causes of hypoglycemia, such as Any breed of dog can be affected, but large sepsis, hepatic failure, adrenal cortical insufficiency, breeds tend to be overrepresented.1 While, in toxin ingestion, and other forms of neoplasia. humans, insulinomas affect females far more frequently than males, there is no apparent sex Laboratory Tests predilection in dogs.1-3 Dogs also commonly Blood Glucose present with a malignant variant, while humans A simple fasting blood glucose level of less than often have a benign adenoma (80%).1 Insulino- 40 mg/dL can suggest hyperinsulinemia, although ma is rare in cats.4 careful monitoring of a fasted dog with suspected insulinoma is strongly recommended due to high Clinical Signs risk for seizure activity.
    [Show full text]
  • Hypoglycemia, Hepatic Dysfunction, Muscle Weakness, Cardiomyopathy
    Pediatr. Res. 17: 319-326 (1983) Hypoglycemia, Hepatic Dysfunction, Muscle Weakness, Cardiomyopathy, Free Carnitine Deficiency and Long-Chain Acylcarnitine Excess Responsive to Medium Chain Triglyceride Diet ALLEN M. GLASGOW,'~~'ANDREW G. ENGEL, DENNIS M. BIER, LOWELL W. PERRY, MARY DICKIE, JANE TODARO, BARBARA I. BROWN, AND MERTON F. UTTER Departments of Endocrinology and Metabolism [A.M.G.], Gastroenterology [J. TI, Cardiology [L. W.P.] and Dietary [M.B.], Children's Hospital National Medical Center, Washington, D.C.; Department of Neurology, and the Neuromuscular Research Laboratory [A. G.E.], Mayo Clinic and Mayo Foundation, Rochester, Minnesota USA; Departments of Medicine and Pediatrics [D. M. B.] and Biochemistry [B. I. B.], Washington University, School of Medicine, St. Louis, Missouri, USA; and Department of Biochemistry [MI U.],Case Western Reserve, Cleveland, Ohio, USA Summary Hepatic long-chain acyl CoA carnitine transferase deficiency (4), multiple acyl CoA dehydrogenase deficiency (glutaric aciduria Fraternal twins who had fasting hypoglycemia, hypoketonemia, type 11) (18), and systemic carnitine deficiency (3,9, 12, 17, 24, 37, muscle weakness, and hepatic dysfunction are reported. The he- 43), all of which are associated with impaired fatty acid oxidation, patic dysfunction occurred only during periods of caloric depriva- have hypoglycemia as a major clinical manifestation. tion. The surviving patient developed a cardiomyopathy. In this The purpose of this paper is twofold: (1) to report fraternal sibling, muscle weakness and cardiomyopathy were markedly im- proved by a diet high in medium chain triglycerides. There was a twins with free carnitine deficiency and long-chain acylcarnitine marked deficiency of muscle total carnitine and a mild deficiency excess in whom hypoglycemia, hepatic dysfunction, muscle weak- of hepatic total carnitine.
    [Show full text]
  • Of Treatment of Hyperuricemia on Effect
    Faculty of Medicine Institutional Review Board (IRB) • Research Proposal Form This section is for Official Use Only Reference Code: Date of application (dd/mm/yyyy): NCT ID: Not yet assigned 15/09/2020 Revision 1: 10/12/2020 20/02/2021 Revision 2: This section is for the applicant to fill. • About 2000 word limit applies, excluding references. • Use Times New Romans Font, size 11 and adjust line spacing to 1.5 all through the application form • Do not CAPITALIZE all words Part 1: General Master Degree b. MD c. Independent Research/Project 1.1 Applicant Name (responsible for all correspondences and accuracy of data): Department: Nephrology Mohamed Ragab Eldremi e­mail address: [email protected] Mobile Phone: 01114430050 EFFECT OF TREATMENT OF HYPERURICEMIA ON Home Phone: 0863553849 PROGRESSION OF DIABETIC NEPHROPATHY IN PATIENTS WITH TYPE 2 DIABETES MELLITUS AND STAGE 3 CHRONIC KIDNEY DISEASE. Assiut Medical School Research Proposal Form 1 Faculty of Medicine Institutional Review Board (IRB) 1.2 English Title of research project: EFFECT OF TREATMENT OF HYPERURICEMIA ON PROGRESSION OF DIABETIC NEPHROPATHY IN PATIENTS WITH TYPE 2 DIABETES MELLITUS AND STAGE 3 CHRONIC KIDNEY DISEASE. 1.3 Do you need funding from Assiut Medical School Grants Office? Yes No (If no, skip and delete Part 4) Mention other sponsoring agent(s) if any: ………………no…………………………... Part 2: Research Details Assiut Medical School Research Proposal Form 2 Faculty of Medicine Institutional Review Board (IRB) 2.1 Background (Research Question, Available Data from the literature, Current strategy for dealing with the problem, Rationale of the research that paves the way to the aim(s) of the work).
    [Show full text]
  • A Study of the Correlation Between Altered Blood Glucose and Serum Uric Acid Levels in Diabetic Patients
    Jebmh.com Original Research Article A Study of the Correlation between Altered Blood Glucose and Serum Uric Acid Levels in Diabetic Patients Simbita A. Marwah1, Mihir D. Mehta2, Ankita K. Pandya3, Amit P. Trivedi4 1Associate Professor, Department of Biochemistry, Parul Institute of Medical Sciences & Research, Vadodara, Gujarat, India. 2Associate Professor, Department of Biochemistry, Parul Institute of Medical Sciences and Research, Vadodara, Gujarat, India. 3Student, Department of Biochemistry, Pramukhswami Medical College, Karamsad, Gujarat, India. 4Associate Professor, Department of Biochemistry, Pramukhswami Medical College, Karamsad, Gujarat, India. ABSTRACT BACKGROUND The prevalence of diabetes mellitus ranges from 0.4 - 3.9% in rural areas to 9.3 - Corresponding Author: 16.6% in urban areas, in India. Diabetes causes long term dysfunction of various Dr. Mihir Mehta, Associate Professor, organs like heart, kidneys, eyes, nerves, and blood vessels. Hyperuricemia is Department of Biochemistry, defined as serum uric acid concentration in excess of urate solubility. In non- Parul Institute of Medical Sciences and diabetic subjects, an elevated level of uric acid has been shown to be an Research, Vadodara, Gujarat, India. independent predictor of coronary heart disease and total mortality. Also elevated E-mail: [email protected] levels of uric acid is a risk factor for peripheral arterial disease. DOI: 10.18410/jebmh/2020/268 METHODS Financial or Other Competing Interests: This is a cross sectional study conducted over a period of 1 year. 565 individuals None. visiting the routine health check-up were included in the study. Serum uric acid, glycated haemoglobin (HbA1c) and glucose were estimated on Siemens Dimension How to Cite This Article: auto analyser.
    [Show full text]
  • National Coverage Determination Procedure Code: 82977 Gamma Glutamyl Transferase CMS Policy Number: 190.32 Back to NCD List
    National Coverage Determination Procedure Code: 82977 Gamma Glutamyl Transferase CMS Policy Number: 190.32 Back to NCD List Description: Gamma glutamyl transferase (GGT) is an intracellular enzyme that appears in blood following leakage from cells. Renal tubules, liver, and pancreas contain high amounts, although the measurement of GGT in serum is almost always used for assessment of Hepatobiliary function. Unlike other enzymes which are found in heart, skeletal muscle, and intestinal mucosa as well as liver, the appearance of an elevated level of GGT in serum is almost always the result of liver disease or injury. It is specifically useful to differentiate elevated alkaline phosphatase levels when the source of the alkaline phosphatase increase (bone, liver, or placenta) is unclear. The combination of high alkaline phosphatase and a normal GGT does not, however, rule out liver disease completely. As well as being a very specific marker of Hepatobiliary function, GGT is also a very sensitive marker for hepatocellular damage. Abnormal concentrations typically appear before elevations of other liver enzymes or biliuria are evident. Obstruction of the biliary tract, viral infection (e.g., hepatitis, mononucleosis), metastatic cancer, exposure to hepatotoxins (e.g., organic solvents, drugs, alcohol), and use of drugs that induce microsomal enzymes in the liver (e.g., cimetidine, barbiturates, phenytoin, and carbamazepine) all can cause a moderate to marked increase in GGT serum concentration. In addition, some drugs can cause or exacerbate liver dysfunction (e.g., atorvastatin, troglitazone, and others as noted in FDA Contraindications and Warnings.) GGT is useful for diagnosis of liver disease or injury, exclusion of hepatobiliary involvement related to other diseases, and patient management during the resolution of existing disease or following injury.
    [Show full text]
  • Relationship Between Diabetes Mellitus and Serum Uric Acid Levels
    Int. J. Pharm. Sci. Rev. Res., 39(1), July – August 2016; Article No. 20, Pages: 101-106 ISSN 0976 – 044X Review Article Relationship between Diabetes Mellitus and Serum Uric Acid Levels J. Sarvesh Kumar*, Vishnu Priya V1, Gayathri R2 *B.D.S I ST YEAR, Saveetha Dental College, 162, P.H road, Chennai, Tamilnadu, India. 1Associate professor, Department of Biochemistry, Saveetha Dental College, 162, P.H Road, Chennai, Tamilnadu, India. 2Assistant professor, Department of Biochemistry, Saveetha Dental College, 162, P.H Road, Chennai, Tamilnadu, India. *Corresponding author’s E-mail: [email protected] Accepted on: 03-05-2016; Finalized on: 30-06-2016. ABSTRACT The aim of the study is to review the association between diabetes Mellitus and serum uric acid levels. The objective is to review how uric acid level is related to diabetes Mellitus. Diabetes is an increasingly important disease globally. New data from IDF showed that there are 336 million people with diabetes in 2011 and this is expected to rise to 552 million by 2030. It has been suggested that, diabetic epidemic will continue even if the level of obesity remains constant. The breakdown of foods high in protein into chemicals known as purines is responsible for the production of uric acid in the body. If there is too much of uric acid in the body it causes variety of side effects. Thus identifying risk factors of serum uric acid is required for the prevention of diabetes. The review was done to relate how serum uric acid level is associated with the risk of diabetes.
    [Show full text]
  • Can Hyperuricemia Predict Glycogen Storage Disease (Mcardle's Disease) in Rheumatology Practice? (Myogenic Hyperuricemia)
    Clinical Rheumatology (2019) 38:2941–2948 https://doi.org/10.1007/s10067-019-04572-8 CASE BASED REVIEW Can hyperuricemia predict glycogen storage disease (McArdle’s disease) in rheumatology practice? (Myogenic hyperuricemia) Döndü Üsküdar Cansu1 & Bahattin Erdoğan2 & Cengiz Korkmaz1 Received: 25 March 2019 /Revised: 17 April 2019 /Accepted: 18 April 2019 /Published online: 1 May 2019 # International League of Associations for Rheumatology (ILAR) 2019 Abstract Gout disease is an inflammatory arthritis that arises due to the accumulation of monosodium urate crystals (MSU) around the joints and in tissues. Clinical manifestation of metabolic diseases leading to secondary hyperuricemia most predominantly occurs in the form of gouty arthritis. Hyperuricemia and gout may develop during the course of glycogen storage diseases (GSD), particularly in GSD type I, which involves the liver. On the other hand, during the course of GSD type V (GSDV, McArdle’s disease), which merely affects the muscle tissue due to the deficiency of the enzyme myophosphorylase, hyperuricemia and/or gout is rarely an expected symptom. These patients may mistakenly be diagnosed as having idiopathic hyperuricemia and associated gout, leading to the underlying secondary causes be overlooked and thus, diagnostic delays may occur. In this case report, we present a premenopausal female patient who experienced flare-ups of chronic arthritis while on disease-modifying antirheumatic drugs and intraarticular steroids due to a diagnosis of undifferentiated arthritis. The patient was initially suspected of having gouty arthritis because elevated concentrations of uric acid were incidentally detected, but then, a diagnosis of asymptomatic GSDV was made owing to elevated concentrations of muscle enzymes during colchicine use.
    [Show full text]
  • Biomarkers in Serum, Uric Acid As a Risk Factor for Type 2 Diabetes Associated with Hypertension
    Online - 2455-3891 Vol 9, Issue 2, 2016 Print - 0974-2441 Research Article BIOMARKERS IN SERUM, URIC ACID AS A RISK FACTOR FOR TYPE 2 DIABETES ASSOCIATED WITH HYPERTENSION TRIPATHI GK1*, RACHNA SHARMA2, MANISH KUMAR VERMA3, PREETI SHARMA4, PRADEEP KUMAR4 1Department of Medicine, Hind Institute of Medical Sciences, Barabanki, Uttar Pradesh, India. 2Department of Biochemistry, TSM Medical College and Hospital, Lucknow, Uttar Pradesh, India. 3Department of Biochemistry, Integral Institute of Medical Sciences & Research, Lucknow, Uttar Pradesh, India. 4Department of Biochemistry, Santosh Medical College & Hospital, Santosh University, Ghaziabad, Uttar Pradesh, India. Email: [email protected] Received: 27 January 2016, Revised and Accepted: 30 January 2016 ABSTRACT Objectives: Uric acid (UA) is the end product of purine metabolism in humans. UA is the final oxidation product of purine catabolism and has been implicated in diabetes mellitus (DM) as well as in hyperlipidemias. Hyperuricemia can cause serious health problems including renal insufficiency. Hyperuricemia is associated with many diseases including hypertension (HTN), DM, hypertriglyceridemia, and obesity. The aim was to determine the serum UA (SUA) level in Patients of Type 2 DM with HTN. Methods: Out of 100 samples, 50 were found as cases of Type 2 diabetic with HTN, and the 50 control samples were without Type 2 diabetic HTN. Results: SUA, glycosylated hemoglobin, and low-density lipoprotein of male and female cases of Type 2 DM with HTN compared to control were (p<0.05) highly significant and also serum triglycerides and total cholesterol of both sex groups of Type 2 DM with HTN compared to control were found to be (p<0.05) highly significance.
    [Show full text]
  • Fasting Study for the Evaluation of Hypoglycemia in Pediatric Patients: Inpatient Unit Management Clinical Guideline
    Fasting Study for the Evaluation of Hypoglycemia in Pediatric Patients: Inpatient Unit Management Clinical Guideline This guideline was developed to ensure the proper diagnostic evaluation of hypoglycemia in pediatric patients. Please direct questions and patient referrals to Dr. Alan Morris or Dr. Jerry Olshan, Pediatric Endocrinologists at The Barbara Bush Children’s Hospital and Maine Pediatric Specialty Group, 207.662.5522. For management of neonatal hypoglycemia, see the guideline entitled “Newborn Hypoglycemia Guideline.” Autonomic Neuroglycopenic Definition: The definition of hypoglycemia in infants and children Symptoms Symptoms continues to be controversial. The physiologic nadir of plasma glucose occurs in the first 2 - 4 hours life, but, normally, increases • Sweating • Fatigue to values > 60 mg/dL by 6 hours of life. Any documented plasma • Hunger • Weakness glucose level ≤ 40 mg/dL at any time after the physiologic nadir • Paresthesias • Dizziness warrants further evaluation. • Tremors • Confusion • Pallor • Headache • Normal > 70 mg/dL • Anxiety • Irritability • Hypoglycemia < 60 mg/dL • Nausea • Coma • With illness or fasting < 50 mg/dL • Seizures Duration of Predominant Purpose of the fasting study: The Disorders Fasting Fuel purpose of a fasting study is to systematically pinpoint the etiology of the 0 - 2 hours Sugars from meals Malabsorption hypoglycemia (first, by confirming the Hyperinsulinism hypoglycemic state and, then, by obtaining 2 - 6 hours Glycogen Glycogen storage disease critical blood and urine samples). The key (GSD) historical clue to the etiology of Hyperinsulinism hypoglycemia is the duration of fasting Glucagon Deficiency before hypoglycemia occurs. The duration 6 - 12 hours Gluconeogenesis Hyperinsulinism of fasting may direct the laboratory studies Gluconeogenesis disorder you order.
    [Show full text]