Axel Heiberg Island, Canadian Arctic Archipelago
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volcanology and Mineral Deposits
THESE TERMS GOVERN YOUR USE OF THIS DOCUMENT Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use. Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever. Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”). -
Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D
ARCTIC VOL. 54, NO. 2 (JUNE 2001) P. 157– 161 Extending the Late Holocene White River Ash Distribution, Northwestern Canada STEPHEN D. ROBINSON1 (Received 30 May 2000; accepted in revised form 25 September 2000) ABSTRACT. Peatlands are a particularly good medium for trapping and preserving tephra, as their surfaces are wet and well vegetated. The extent of tephra-depositing events can often be greatly expanded through the observation of ash in peatlands. This paper uses the presence of the White River tephra layer (1200 B.P.) in peatlands to extend the known distribution of this late Holocene tephra into the Mackenzie Valley, northwestern Canada. The ash has been noted almost to the western shore of Great Slave Lake, over 1300 km from the source in southeastern Alaska. This new distribution covers approximately 540000 km2 with a tephra volume of 27 km3. The short time span and constrained timing of volcanic ash deposition, combined with unique physical and chemical parameters, make tephra layers ideal for use as chronostratigraphic markers. Key words: chronostratigraphy, Mackenzie Valley, peatlands, White River ash RÉSUMÉ. Les tourbières constituent un milieu particulièrement approprié au piégeage et à la conservation de téphra, en raison de l’humidité et de l’abondance de végétation qui règnent en surface. L’observation des cendres contenues dans les tourbières permet souvent d’élargir notablement les limites spatiales connues des épisodes de dépôts de téphra. Cet article recourt à la présence de la couche de téphra de la rivière White (1200 BP) dans les tourbières pour agrandir la distribution connue de ce téphra datant de l’Holocène supérieur dans la vallée du Mackenzie, située dans le Nord-Ouest canadien. -
AN OVERVIEW of the GEOLOGY of the GREAT LAKES BASIN by Theodore J
AN OVERVIEW OF THE GEOLOGY OF THE GREAT LAKES BASIN by Theodore J. Bornhorst 2016 This document may be cited as: Bornhorst, T. J., 2016, An overview of the geology of the Great Lakes basin: A. E. Seaman Mineral Museum, Web Publication 1, 8p. This is version 1 of A. E. Seaman Mineral Museum Web Publication 1 which was only internally reviewed for technical accuracy. The Great Lakes Basin The Great Lakes basin, as defined by watersheds that drain into the Great Lakes (Figure 1), includes about 85 % of North America’s and 20 % of the world’s surface fresh water, a total of about 5,500 cubic miles (23,000 cubic km) of water (1). The basin covers about 94,000 square miles (240,000 square km) including about 10 % of the U.S. population and 30 % of the Canadian population (1). Lake Michigan is the only Great Lake entirely within the United States. The State of Michigan lies at the heart of the Great Lakes basin. Together the Great Lakes are the single largest surface fresh water body on Earth and have an important physical and cultural role in North America. Figure 1: The Great Lakes states and Canadian Provinces and the Great Lakes watershed (brown) (after 1). 1 Precambrian Bedrock Geology The bedrock geology of the Great Lakes basin can be subdivided into rocks of Precambrian and Phanerozoic (Figure 2). The Precambrian of the Great Lakes basin is the result of three major episodes with each followed by a long period of erosion (2, 3). Figure 2: Generalized Precambrian bedrock geologic map of the Great Lakes basin. -
New Constraints on the Age, Geochemistry
New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada. -
Evolution of the Western Avalon Zone and Related Epithermal Systems
Open File NFLD/3318 GEOLOGICAL ASSOCIATION OF CANADA NEWFOUNDLAND AND LABRADOR SECTION FALL FIELD TRIP FOR 2013 (September 27 to September 29) EVOLUTION OF THE WESTERN AVALON ZONE AND RELATED EPITHERMAL SYSTEMS Field Trip Guide and Background Material Greg Sparkes Geological Survey of Newfoundland and Labrador Department of Natural Resources PO Box 8700 St. John’s, NL, A1B 4J6 Canada September, 2013 GAC Newfoundland and Labrador Section – 2013 Fall Field Trip 2 Table of Contents SAFETY INFORMATION .......................................................................................................................... 4 General Information .................................................................................................................................. 4 Specific Hazards ....................................................................................................................................... 4 INTRODUCTION ........................................................................................................................................ 6 Regional Geology of the Western Avalon Zone ....................................................................................... 7 Epithermal-Style Mineralization: a summary ........................................................................................... 8 Trip Itinerary ........................................................................................................................................... 10 DAY ONE FIELD TRIP STOPS ............................................................................................................... -
Seismic Reflection Profiles from Kane to Hall Basin, Nares Strait: Evidence for Faulting
Polarforschung 74 (1-3), 21 – 39, 2004 (erschienen 2006) Seismic Reflection Profiles from Kane to Hall Basin, Nares Strait: Evidence for Faulting by H. Ruth Jackson1, Tim Hannon1, Sönke Neben2, Karsten Piepjohn2 and Tom Brent3 Abstract: Three major tectonic boundaries are predicted to be present beneath durch eine folgende kompressive Phase reaktiviert wurde. Als Arbeitshypo- the waters of this segment of Nares Strait: (1) the orogenic front of the Paleo- these fassen wir die oberflächennahen Teile dieses Systems als Stirn der Plat- zoic Ellesmerian Foldbelt between thrust sheets on Ellesmere Island and flat- tengrenze zwischen Nordamerika und Grönland auf. lying foreland rocks on Greenland, (2) the supposed sinistral strike-slip plate boundary of Paleocene age between the Ellemere Island section of the North America plate and the Greenland plate, and (3) the orogenic front of the Eocene to Oligocene Eurekan Foldbelt that must lie between thrust tectonics INTRODUCTION on Ellesmere Island and undeformed rocks of Greenland. To understand this complicated situation and to look for direct evidence of the plate boundary, The Late Cretaceous and Tertiary deformation on Ellesmere new seismic reflection profiles were collected and, together with industry data in the south, interpreted. The profiles are clustered in three areas controlled by Island (Fig. 1) called the Eurekan Orogeny has been attributed the distribution of the sea ice. Bathymetry is used to extrapolate seismic to the counter clockwise rotation of Greenland (e.g., OKULITCH features with a topographic expression between the regions. Based on high- & TRETTIN 1991). However reconciling the geology on oppo- resolution boomer and deeper penetration airgun profiles five seismic units are mapped. -
A Hans Krüger Arctic Expedition Cache on Axel Heiberg Island, Nunavut ROBERT W
ARCTIC VOL. 60, NO. 1 (MARCH 2007) P. 1–6 A Hans Krüger Arctic Expedition Cache on Axel Heiberg Island, Nunavut ROBERT W. PARK1 and DOUGLAS R. STENTON2 (Received 13 June 2006; accepted in revised form 31 July 2006) ABSTRACT. In 1999 a team of geologists discovered an archaeological site near Cape Southwest, Axel Heiberg Island. On the basis of its location and the analysis of two artifacts removed from the site, the discoverers concluded that it was a hastily abandoned campsite created by Hans Krüger’s German Arctic Expedition, which was believed to have disappeared between Meighen and Amund Ringnes islands in 1930. If the attribution to Krüger were correct, the existence of this site would demonstrate that the expedition got farther on its return journey to Bache Peninsula than previously believed. An archaeological investigation of the site by the Government of Nunavut in 2004 confirmed its tentative attribution to the German Arctic Expedition but suggested that it is not a campsite, but the remains of a deliberately and carefully constructed cache. The finds suggest that one of the three members of the expedition may have perished before reaching Axel Heiberg Island, and that the survivors, in order to lighten their sledge, transported valued but heavy items (including Krüger’s geological specimens) to this prominent and well-known location to cache them, intending to return and recover them at some later date. Key words: German Arctic Expedition, Hans Krüger, archaeology, geology, Axel Heiberg Island, Nunavut RÉSUMÉ. En 1999, une équipe de géologues a découvert un lieu d’importance archéologique près du cap Southwest, sur l’île Axel Heiberg. -
(Late Tertiary) As Seen from Prince Patrick Island, Arctic Canada’ JOHN G
ARCTIC WL. 43, NO. 4 (DECEMBER 1990) P. 393-403 Beaufort Formation (Late Tertiary) as Seen from Prince Patrick Island, Arctic Canada’ JOHN G. FYLES’ (Received 20 March 1990; accepted in revked form 14 June 1990) ABSTRACT. The Beaufort Formation, in its typearea on Prince Patrick Island, is a single lithostratigraphicunit, a few tens of metres thick, consisting of unlithified sandy deposits of braided rivers. Organicbeds in the sand have yielded more than 200 species of plants and insects and probably originated during the Pliocene, when the area supported coniferous forest. ThisBeaufort unit forms the thin eastern edge of a northwest-thickeningwedge of sand and gravel beneath the western part of the island. These largely unexposed beds,up to several hundred metres thick, include the Beaufort unit and perhaps other older or younger deposits.On the islands northeast and southwest of PrincePatrick Island (MeighenIsland to Banks Island),the name BeaufortFormation has been appliedto similar deposits of late Rrtiary age. Most recorded Beaufort beds on these islands are stratigraphically and paleontologically equivalentto the “type” Beaufort, but a few sites that have been called Beaufort (suchas Duck Hawk Bluffsand the lower unit at Ballast Brook,on Banks Island) differ stratigraphicallyand paleontologically from the “type” Beaufort. This paper recommends that these deposits (probably middle Miocene) and others like them be assigned new stratigraphic names and not be included in the Beaufort Formation as now defined. Informal names Mary Sachs gravel (Duck HawkBluffs) and Ballast Brookbeds are proposed as an initial step. Formal use of the name Beaufort Formation shouldrestricted be to the western Arctic Islands. -
Hot Rocks from Cold Places: a Field, Geochemical and Geochronological Study from the High Arctic Large Igneous P Rovince (HALIP) at Axel Heiberg Island, Nunavut
! !"#$%"&'($)*"+$,"-.$/-0&1(2$3$451-.6$71"&81+5&0-$09.$ 71"&8*"9"-":5&0-$;#<.=$)*"+$#81$!5:8$3*&$>0*:1$ ?:91"<($/*"@59&1$A!3>?/B$0#$3C1-$!15D1*:$?(-09.6$ E<90@<#$ $ $ by Cole Girard Kingsbury A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Earth Sciences Ottawa – Carleton Geoscience Centre and Carleton University Ottawa, Ontario © 2016 Cole Girard Kingsbury ! ! !"#$%&'$() ) ) ) ) ) ) ) ) ) ) The geology of the Arctic is greatly influenced by a period of widespread Cretaceous magmatic activity, the High Arctic Large Igneous Province (HALIP). Two major tholeiitic magmatic pulses characterize HALIP: an initial 120 -130 Ma pulse that affected Arctic Canada and formally adjacent regions of Svalbard (Norway) and Franz Josef Land (Russia). In Canada, this pulse fed lava flows of the Isachsen Formation. A second 90-100 Ma pulse that apparently only affected the Canadian side of the Arctic, fed flood basalts of the Strand Fiord Formation. The goal of this thesis is to improve understanding of Arctic magmatism of the enigmatic HALIP through field, remote sensing, geochemical and geochronology investigations of mafic intrusive rocks collected in the South Fiord area of Axel Heiberg Island, Nunavut, and comparison with mafic lavas of the Isachsen and Strand Fiord Formations collected from other localities on the Island. Ground-based and remote sensing observations of the South Fiord area reveal a complex network of mafic sills and mainly SSE-trending dykes. Two new U-Pb baddeleyite ages of 95.18 ± 0.35 Ma and 95.56 ± 0.24 Ma from South Fiord intrusions along with geochemical similarity confirm these intrusions (including the SSE-trending dykes) are feeders for the Strand Fiord Formation lavas. -
Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait
Polarforschung 74 (1-3), 129 – 160, 2004 (erschienen 2006) In Search of the Wegener Fault: Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait by J. Christopher Harrison1 Abstract: A total of 28 geological-geophysical markers are identified that lich der Bache Peninsula und Linksseitenverschiebungen am Judge-Daly- relate to the question of strike slip motions along and bordering Nares Strait. Störungssystem (70 km) und schließlich die S-, später SW-gerichtete Eight of the twelve markers, located within the Phanerozoic orogen of Kompression des Sverdrup-Beckens (100 + 35 km). Die spätere Deformation Kennedy Channel – Robeson Channel region, permit between 65 and 75 km wird auf die Rotation (entgegen dem Uhrzeigersinn) und ausweichende West- of sinistral offset on the Judge Daly Fault System (JDFS). In contrast, eight of drift eines semi-rigiden nördlichen Ellesmere-Blocks während der Kollision nine markers located in Kane Basin, Smith Sound and northern Baffin Bay mit der Grönlandplatte zurückgeführt. indicate no lateral displacement at all. Especially convincing is evidence, presented by DAMASKE & OAKEY (2006), that at least one basic dyke of Neoproterozoic age extends across Smith Sound from Inglefield Land to inshore eastern Ellesmere Island without any recognizable strike slip offset. INTRODUCTION These results confirm that no major sinistral fault exists in southern Nares Strait. It is apparent to both earth scientists and the general public To account for the absence of a Wegener Fault in most parts of Nares Strait, that the shape of both coastlines and continental margins of the present paper would locate the late Paleocene-Eocene Greenland plate boundary on an interconnected system of faults that are 1) traced through western Greenland and eastern Arctic Canada provide for a Jones Sound in the south, 2) lie between the Eurekan Orogen and the Precam- satisfactory restoration of the opposing lands. -
From the Late Cretaceous (Campanian) Kanguk Formation of Axel Heiberg Island, Nunavut, Canada, and Its Ecological and Geographical Implications MATTHEW J
ARCTIC VOL. 67, NO. 1 (MARCH 2014) P. 1 – 9 A Hadrosaurid (Dinosauria: Ornithischia) from the Late Cretaceous (Campanian) Kanguk Formation of Axel Heiberg Island, Nunavut, Canada, and Its Ecological and Geographical Implications MATTHEW J. VAVREK,1 LEN V. HILLS2 and PHILIP J. CURRIE3 (Received 1 October 2012; accepted in revised form 30 May 2013) ABSTRACT. A hadrosaurid vertebra was recovered during a palynological survey of the Upper Cretaceous Kanguk Formation in the eastern Canadian Arctic. This vertebra represents the farthest north record of any non-avian dinosaur to date. Although highly abraded, the fossil nonetheless represents an interesting biogeographic data point. During the Campanian, when this vertebra was deposited, the eastern Canadian Arctic was likely isolated both from western North America by the Western Interior Seaway and from more southern regions of eastern North America by the Hudson Seaway. This fossil suggests that large-bodied hadrosaurid dinosaurs may have inhabited a large polar insular landmass during the Late Cretaceous, where they would have lived year-round, unable to migrate to more southern regions during winters. It is possible that the resident herbivorous dinosaurs could have fed on non-deciduous conifers, as well as other woody twigs and stems, during the long, dark winter months when most deciduous plant species had lost their leaves. Key words: Appalachia, Arctic, Campanian, dinosaur, Laramidia, palaeobiogeography RÉSUMÉ. La vertèbre d’un hadrosauridé a été retrouvée pendant l’étude palynologique de la formation Kanguk remontant au Crétacé supérieur, dans l’est de l’Arctique canadien. Il s’agit de la vertèbre appartenant à un dinosaure non avien qui a été recueillie la plus au nord jusqu’à maintenant. -
Queen Elizabeth Islands: Problems Associated with Water Balance Research
Northern Research Basins Water Balance (Proceedings of a workshop held at Victoria, Canada, March 2004). IAHS Publ. 290, 2004 Queen Elizabeth Islands: problems associated with water balance research KATHY L. YOUNG1 & MING-KO WOO2 1 Geography Department, York University, 4700 Keele Street, Toronto, Ontario, M3JIP3, Canada klyoung(S>.vorku.ca 2 School of Geography and Geology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada Abstract The Queen Elizabeth Islands in Arctic Canada are in an extremely remote region with long, cold winters, and 2- to 3-month summers, with 24-h daylight. Snow is a major part of annual precipitation, but there are few Arctic weather stations and precipitation data accuracy is hampered by gauge undercatch. Large spatial variations in snowmelt and evaporation make it difficult to extend point calculations over a basin. Currently no official hydrometric station exists in the Islands and the short-term available records are afflicted by stream gauging problems during peak flows. Annual water balances are often not closed, as not all the components are measured or calculated; this applies to early studies and to all glacierized catchments. Given the sensitivity of polar regions to climatic change and the likely importance of freshwater input to the Arctic Ocean, performing proper water balances for the basins in the Arctic Archipelago is a challenge. Key words Canadian Arctic; evaporation; permafrost; precipitation; Queen Elizabeth Islands; runoff; storage; water balance INTRODUCTION In the early 1970s, interest in Arctic hydrological research was largely stimulated by the planning of megaprojects in the Canadian Arctic Islands, such as the opening of mines and the designing of gas pipelines.