University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 12-28-2012 Dark Matter with Density-dependent Interactions Kimberly K. Boddy California Institute of Technology Sean M. Carroll California Institute of Technology Mark Trodden University of Pennsylvania,
[email protected] Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Boddy, K. K., Carroll, S. M., & Trodden, M. (2012). Dark Matter with Density-dependent Interactions. Retrieved from https://repository.upenn.edu/physics_papers/272 Boddy, K. K., Carroll, S. M., & Trodden, M. (2012). Dark Matter with Density-dependent Interactions. Physical Review D, 86(12), 123529. doi: 10.1103/PhysRevD.86.123529 © 2012 American Physical Society This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/272 For more information, please contact
[email protected]. Dark Matter with Density-dependent Interactions Abstract The decay and annihilation cross sections of dark matter particles may depend on the value of a chameleonic scalar field that both evolves cosmologically and takes different values depending on the local matter density. This possibility introduces a separation between the physics relevant for freeze-out and that responsible for dynamics and detection in the late universe. We investigate how such dark sector interactions might be implemented in a particle physics Lagrangian and consider how current and upcoming observations and experiments bound such dark matter candidates. A specific simple model allows for an increase in the annihilation cross section by a factor of 106 between freeze-out and today, while more complicated models should also allow for scattering cross sections near the astrophysical bounds.