Cosmic Acceleration: Past and Present

Total Page:16

File Type:pdf, Size:1020Kb

Cosmic Acceleration: Past and Present COSMIC ACCELERATION: PAST AND PRESENT A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Nishant Agarwal May 2011 c 2011 Nishant Agarwal ALL RIGHTS RESERVED COSMIC ACCELERATION: PAST AND PRESENT Nishant Agarwal, Ph.D. Cornell University 2011 Our Universe has an exciting history of accelerated expansion. Following its in- ception in an event known as the big bang, the Universe underwent a phase of exponential expansion called inflation. Although precise observations of the cos- mic microwave background (CMB) radiation and large-scale structure support the inflationary paradigm, the absence of a firm physical mechanism for inflation has led to a plethora of theoretical embarkments attempting to understand its genesis. Inflation lasted only for a fraction of a second, but observations suggest that thir- teen billion years after inflation, the Universe began accelerating once again. This acceleration, which continues till date, is attributed to a mysterious component, dubbed dark energy, that fills up our Universe and accounts for almost 73% of the total energy density in the Universe. In this thesis we study and develop models of inflation and dark energy, in the light of current observations. We begin, in Chapter 1, with a detailed introduction to cosmic acceleration, and discuss various models of inflation and dark energy that have been studied in the literature in the recent years. In Chapter 2, we discuss how a hierarchy of Hubble flow parameters, extended to include the evolution of the inflationary sound speed, can be applied to compare a general, single-field inflationary action with cosmological observational data. In Chapter 3, we study the six-field dynamics of D3-brane inflation for a general scalar potential on the conifold, finding simple, universal behavior, such as a power law dependence for the probability of Ne e-folds of inflation. Subsequent chapters study modifications to the theory of gravity in an attempt to understand dark energy. In Chapter 4, we establish the dynamical attractor behavior in scalar-tensor theories of gravity, providing a powerful framework to analyze such theories, predicting common evolutionary characteristics that can be compared against cosmological constraints. Chapter 5 develops a cascading cosmology framework in order to study the cosmological implications of a six- dimensional (6D) theory of gravity. We find that cascading cosmology can indeed lead to an accelerating Universe. Finally, in Chapter 6, we study the issue of ghostlike instabilities in the cascading framework, and propose a mechanism to obtain flat brane and bulk solutions. We conclude in Chapter 7 with a discussion of the main results presented in this thesis. BIOGRAPHICAL SKETCH Nishant Agarwal was born in 1984 in a beautiful village called Maun in the South- ern African country of Botswana. Shortly after, his family moved to Gaborone. He had his early education in Northside Primary School there. When he was seven years old, his family moved to India, and he completed his schooling from Oxford Senior Secondary School in New Delhi. In 2001 he joined St. Stephen's College in the University of Delhi for a bache- lor's degree in physics. On completing his under-graduation in 2004, he went to the Indian Institute of Technology at Kanpur to pursue a master's degree in physics. In 2006 he came to the U.S.A. to begin his graduate studies in cosmology at the Department of Astronomy in Cornell University. iii To, my family. iv ACKNOWLEDGEMENTS I would like to begin by thanking my advisor Rachel Bean for her incessant support through the years of my Ph.D. She has always given me the freedom to explore the exciting field of cosmology, while her guidance has prevented me from ever getting lost in its complexities. I admire the expanse and depth of her knowledge in cosmology, and thank her for all of her patience and encouragement. I also thank her for building extremely enjoyable collaborations from which I have benefitted immensely. It has been a great pleasure to work with her for my Ph.D. I have been fortunate to work with the most amazing people in the course of my research. I would like to thank Justin Khoury and Mark Trodden, who have so greatly influenced my understanding of theoretical physics. I thank them for a wonderful collaboration filled with enthusiasm and opportunity, and for all of their hospitality during my visits to the University of Pennsylvania. I would also like to thank Liam McAllister for an exciting opportunity to work on string cosmology. I thank him and Gang Xu for their patient and thorough guidance in string theory. Gang's imperturbable zeal made research all the more enjoyable and I thank her for the countless discussions that we have had in order to remove any discrepancies between our results. I also thank my other collaborators | Pankaj Jain, John Ralston, Douglas McKay, and Archana Kamal (who is also my wife) | my work with whom is not included as a part of this thesis. Pankaj introduced me to the exciting field of pseudoscalar-photon mixing while I was studying for my master's degree in physics in India. I have learned a lot in cosmology from him and thank him for a great collaboration. I thank my committee members | David Chernoff, Eanna Flanagan, and Terry Herter | for their interest in my research, their patience during my presentations, v and their brilliant questions that have helped me better understand my work. I am also thankful to have had great office-mates and friends like Istvan Laszlo, without whom life in Cornell would not have been half as much fun. Coming back to my wife, Archana | without her this thesis would just not have been possible. She has always been there for me with all of her love, care, and support, and has helped maintain sanity in life at crazy times. She has helped me through discussions in every project, and also as a collaborator in some of my research. I would also like to express my heartfelt gratitude towards my parents for all of their love and affection and for their rigid support throughout my career. My sister has always been an inspiration for me and I have many times just wanted to be like her. Without her support I would possibly not be doing Astronomy at all. My brother-in-law has guided me not only professionally but also personally and I can not imagine how I would have achieved anything without his support. My brother, who has taught me how to excel without ever panicking, has always been there for any help I have ever needed. I dedicate this thesis to my family. vi TABLE OF CONTENTS Biographical Sketch . iii Dedication . iv Acknowledgements . .v Table of Contents . vii List of Tables . .x List of Figures . xi 1 Introduction 1 1.1 Inflation . .4 1.1.1 Evidence in support of inflation . .4 1.1.2 The physics of inflation . .6 1.1.3 Models of inflation . 11 1.2 Dark energy . 15 1.2.1 Observational evidence for dark energy . 15 1.2.2 The physics of dark energy . 18 1.2.3 Dark energy models . 20 2 General, single-field inflation 27 2.1 Introduction . 27 2.2 The Hubble flow formalism . 29 2.3 Primordial perturbations . 32 2.3.1 Calculating the power spectrum . 32 2.3.2 Scalar and tensor perturbation initial conditions . 34 2.3.3 Calculating the primordial power spectrum . 36 2.4 Observable predictions of inflation . 40 2.4.1 Monte-Carlo simulations of inflationary trajectories . 41 2.4.2 Constraints from cosmological observational data . 45 2.4.3 Reconstruction of viable inflationary trajectories . 50 2.5 Conclusions . 51 3 D-brane inflation 61 3.1 Introduction . 61 3.2 Review of warped D-brane inflation . 63 3.3 Methodology . 68 3.3.1 Setup . 68 3.3.2 Constructing an ensemble of potentials . 70 3.3.3 Initial conditions . 72 3.3.4 Parameters summarized . 73 3.4 Results for the homogeneous background . 74 3.4.1 The probability of inflation . 74 3.4.2 An analytic explanation of the exponent α = 3 . 80 3.4.3 Dependence on initial conditions . 81 vii 3.4.4 The DBI effect . 84 3.5 Towards the primordial perturbations . 87 3.5.1 Angular kinetic energy and bending trajectories . 87 3.5.2 Single-field treatment of the perturbations . 90 3.6 Conclusions . 94 4 Scalar-tensor theories of dark energy 98 4.1 Introduction . 98 4.2 Cosmic evolution . 100 4.2.1 Evolution in the Einstein frame . 100 4.2.2 Evolution in the Jordan frame . 101 4.2.3 The Einstein frame vs. Jordan frame perspectives . 102 4.2.4 The form of the scalar potential . 104 4.3 Dynamical critical points . 105 4.3.1 Jordan frame autonomous phase plane equations . 105 4.3.2 Einstein frame autonomous phase plane equations . 107 4.3.3 Mapping between the Einstein and Jordan frame phase planes108 4.3.4 Critical points and calculating their stability . 109 4.4 Solving the autonomous phase plane equations . 112 4.4.1 The critical points . 112 4.4.2 Comparison with other dynamical analysis of f(R) and cou- pled CDM theories . 118 4.4.3 Stability criteria for the dynamical attractors . 119 4.4.4 Classification of F (Φ)R scalar-tensor theories . 124 4.4.5 Criteria for viable models with saddle acceleration . 129 4.5 Conclusions . 130 5 Cascading cosmology 133 5.1 Introduction . 133 5.2 A proxy theory for cascading gravity .
Recommended publications
  • PRESS RELEASE Solved: the Mystery of the Expansion of the Universe
    PRESS RELEASE Geneva | March 10th, 2020 The earth, solar system, entire Milky Way and the few thousand ga- Solved: laxies closest to us move in a vast “bubble” that is 250 million light years in diameter, where the average density of matter is half as large the mystery as for the rest of the universe. This is the hypothesis put forward by a theoretical physicist from the University of Geneva (UNIGE) to solve of the expansion a conundrum that has been splitting the scientific community for a decade: at what speed is the universe expanding? Until now, at least of the universe two independent calculation methods have arrived at two values that are different by about 10% with a deviation that is statistically A UNIGE researcher has irreconcilable. This new approach, which is set out in the journal Phy- solved a scientific sics Letters B, erases this divergence without making use of any “new controversy about the speed physics”. of the expansion The universe has been expanding since the Big Bang occurred 13.8 bil- of the universe by lion years ago – a proposition first made by the Belgian canon and suggesting that it is not physicist Georges Lemaître (1894-1966), and first demonstrated by Edwin Hubble (1889-1953). The American astronomer discovered in totally homogeneous on a 1929 that every galaxy is pulling away from us, and that the most dis- large scale. tant galaxies are moving the most quickly. This suggests that there was a time in the past when all the galaxies were located at the same spot, a time that can only correspond to the Big Bang.
    [Show full text]
  • The Influence of Copernicus on Physics
    radiosources, obJects believed to be extremely distant. Counts of these The influence of Copernicus sources indicate that their number density is different at large distances on physics from what it is here. Or we may put it differently : the number density of B. Paczynski, Institute of Astronomy, Warsaw radiosources was different a long time ago from what it is now. This is in This month sees the 500th Anniver­ tific one, and there are some perils contradiction with the strong cosmo­ sary of the birth of Copernicus. To associated with it. logical principle. Also, the Universe mark the occasion, Europhysics News Why should we not make the cos­ seems to be filled with a black body has invited B. Paczynski, Polish Board mological principle more perfect ? microwave radiation which has, at member of the EPS Division on Phy­ Once we say that the Universe is the present, the temperature of 2.7 K. It is sics in Astronomy, to write this article. same everywhere, should we not also almost certain that this radiation was say that it is the same at all times ? produced about 1010 years ago when Once we have decided our place is the Universe was very dense and hot, Copernicus shifted the centre of and matter was in thermal equilibrium the Universe from Earth to the Sun, not unique, why should the time we live in be unique ? In fact such a with radiation. Such conditions are and by doing so he deprived man­ vastly different from the present kind of its unique position in the Uni­ strong cosmological principle has been adopted by some scientists.
    [Show full text]
  • Cosmology Timeline
    Timeline Cosmology • 2nd Millennium BCEBC Mesopotamian cosmology has a flat,circular Earth enclosed in a cosmic Ocean • 12th century BCEC Rigveda has some cosmological hymns, most notably the Nasadiya Sukta • 6th century BCE Anaximander, the first (true) cosmologist - pre-Socratic philosopher from Miletus, Ionia - Nature ruled by natural laws - Apeiron (boundless, infinite, indefinite), that out of which the universe originates • 5th century BCE Plato - Timaeus - dialogue describing the creation of the Universe, - demiurg created the world on the basis of geometric forms (Platonic solids) • 4th century BCE Aristotle - proposes an Earth-centered universe in which the Earth is stationary and the cosmos, is finite in extent but infinite in time • 3rd century BCE Aristarchus of Samos - proposes a heliocentric (sun-centered) Universe, based on his conclusion/determination that the Sun is much larger than Earth - further support in 2nd century BCE by Seleucus of Seleucia • 3rd century BCE Archimedes - book The Sand Reckoner: diameter of cosmos � 2 lightyears - heliocentric Universe not possible • 3rd century BCE Apollonius of Perga - epicycle theory for lunar and planetary motions • 2nd century CE Ptolemaeus - Almagest/Syntaxis: culmination of ancient Graeco-Roman astronomy - Earth-centered Universe, with Sun, Moon and planets revolving on epicyclic orbits around Earth • 5th-13th century CE Aryabhata (India) and Al-Sijzi (Iran) propose that the Earth rotates around its axis. First empirical evidence for Earth’s rotation by Nasir al-Din al-Tusi. • 8th century CE Puranic Hindu cosmology, in which the Universe goes through repeated cycles of creation, destruction and rebirth, with each cycle lasting 4.32 billion years. • • 1543 Nicolaus Copernicus - publishes heliocentric universe in De Revolutionibus Orbium Coelestium - implicit introduction Copernican principle: Earth/Sun is not special • 1609-1632 Galileo Galilei - by means of (telescopic) observations, proves the validity of the heliocentric Universe.
    [Show full text]
  • States with Regards to Finding If the Cosmological Constant Is, Or Is Not a ‘Vacuum’ Field Andrew Beckwith, [email protected]
    Consequences of squeezing initially coherent (semi classical) states with regards to finding if the cosmological constant is, or is not a ‘vacuum’ field Andrew Beckwith, [email protected], Abstract The following document is to prepare an analysis on if the cosmological constant is a vacuum field. Candidates for how to analyze this issue come up in terms of brane theory, modified treatments of WdM theory (pseudo time component added) and/ or how to look at squeezing of vacuum states, as initially coherent semi classical constructions, or string theory versions of coherent states. The article presents a thought experiment if there is a non zero graviton mass, and at the end, in the conclusion states experimental modeling criteria which may indicate if a non zero graviton mass is measurable, which would indicate the existence, de facto of a possible replacement for DE, based upon non zero mass gravitons, and indications for a replacement for a cosmological constant. Introduction: Dr. Karim1 mailed the author with the following question which will be put in quotes: The challenge of resolving the following question: At the Big Bang the only form of energy released is in the form of geometry – gravity. intense gravity field lifts vacuum fields to positive energies, So an electromagnetic vacuum of density 10122 kg/m3 should collapse under its own gravity. But this does not happen - that is one reason why the cosmological constant cannot be the vacuum field. Why? Answering this question delves into what the initial state of the universe should be, in terms of either vacuum energy, or something else.
    [Show full text]
  • Dark Matter with Density-Dependent Interactions
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 12-28-2012 Dark Matter with Density-dependent Interactions Kimberly K. Boddy California Institute of Technology Sean M. Carroll California Institute of Technology Mark Trodden University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Boddy, K. K., Carroll, S. M., & Trodden, M. (2012). Dark Matter with Density-dependent Interactions. Retrieved from https://repository.upenn.edu/physics_papers/272 Boddy, K. K., Carroll, S. M., & Trodden, M. (2012). Dark Matter with Density-dependent Interactions. Physical Review D, 86(12), 123529. doi: 10.1103/PhysRevD.86.123529 © 2012 American Physical Society This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/272 For more information, please contact [email protected]. Dark Matter with Density-dependent Interactions Abstract The decay and annihilation cross sections of dark matter particles may depend on the value of a chameleonic scalar field that both evolves cosmologically and takes different values depending on the local matter density. This possibility introduces a separation between the physics relevant for freeze-out and that responsible for dynamics and detection in the late universe. We investigate how such dark sector interactions might be implemented in a particle physics Lagrangian and consider how current and upcoming observations and experiments bound such dark matter candidates. A specific simple model allows for an increase in the annihilation cross section by a factor of 106 between freeze-out and today, while more complicated models should also allow for scattering cross sections near the astrophysical bounds.
    [Show full text]
  • Arxiv:Hep-Th/0209231 V1 26 Sep 2002 Tbs,Daai N Uigi Eurdfrsae Te Hntetemlvcu Olead to Vacuum Thermal the Anisotropy
    SLAC-PUB-9533 BRX TH-505 October 2002 SU-ITP-02/02 Initial conditions for inflation Nemanja Kaloper1;2, Matthew Kleban1, Albion Lawrence1;3;4, Stephen Shenker1 and Leonard Susskind1 1Department of Physics, Stanford University, Stanford, CA 94305 2Department of Physics, University of California, Davis, CA 95616 3Brandeis University Physics Department, MS 057, POB 549110, Waltham, MA 02454y 4SLAC Theory Group, MS 81, 2575 Sand Hill Road, Menlo Park, CA 94025 Free scalar fields in de Sitter space have a one-parameter family of states invariant under the de Sitter group, including the standard thermal vacuum. We show that, except for the thermal vacuum, these states are unphysical when gravitational interactions are arXiv:hep-th/0209231 v1 26 Sep 2002 included. We apply these observations to the quantum state of the inflaton, and find that at best, dramatic fine tuning is required for states other than the thermal vacuum to lead to observable features in the CMBR anisotropy. y Present and permanent address. *Work supported in part by Department of Energy Contract DE-AC03-76SF00515. 1. Introduction In inflationary cosmology, cosmic microwave background (CMB) data place a tanta- lizing upper bound on the vacuum energy density during the inflationary epoch: 4 V M 4 1016 GeV : (1:1) ∼ GUT ∼ Here MGUT is the \unification scale" in supersymmetric grand unified models, as predicted by the running of the observed strong, weak and electromagnetic couplings above 1 T eV in the minimal supersymmetric standard model. If this upper bound is close to the truth, the vacuum energy can be measured directly with detectors sensitive to the polarization of the CMBR.
    [Show full text]
  • Exotic Acceleration Mechanisms
    Exotic Acceleration Mechanisms Mark Trodden U.Penn/Syracuse University Stanford Linear Accelerator Center SLAC Summer Institute 8/11/2008 Outline • Introduction. • A Disclaimer • Topological Defects (I’ll focus on these) - Overview - Classification and Formation - Dynamics - Examples - cusps, superconducting strings, cosmic necklaces • Superheavy Dark Matter (Briefly) - Generation - Preheating - Annihilations and Decays • Lorentz Violations (Even more briefly) • Summary and Conclusions Mark Trodden, U.Penn/Syracuse University SLAC Summer Institute Exotic Acceleration Mechanisms Stanford Linear Accelerator Center, 8/11/2008 Disclaimer • I am not a cosmic ray physicist! • I don’t write papers on this topic! • I really am not a cosmic ray expert in any way! • Honestly! But ... • My particular topic isn’t really about cosmic rays. • It is really about the types of beyond the standard model physics, (both particle physics and cosmology) that can give rise to tremendously high particles in today’s universe. • I do know a bit about that. • Hopefully! Mark Trodden, U.Penn/Syracuse University SLAC Summer Institute Exotic Acceleration Mechanisms Stanford Linear Accelerator Center, 8/11/2008 Main Point We seek extremely high energy particles in today’s universe There are really two broad ways in which one can imagine getting these • Astrophysics: Interacting matter in today’s universe conspires to accelerate particles to high velocities. • Cosmology: Here there is a problem - the universe cools! No simple equilibrium process leads to high energy particles being produced cosmologically in today’s universe. • To get around this need to somehow “preserve” some of the early, high-energy universe, and then persuade it to give up its energy as highly-accelerated particles today.
    [Show full text]
  • Neutrino Cosmology and Large Scale Structure
    Neutrino cosmology and large scale structure Christiane Stefanie Lorenz Pembroke College and Sub-Department of Astrophysics University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2019 Neutrino cosmology and large scale structure Christiane Stefanie Lorenz Pembroke College and Sub-Department of Astrophysics University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2019 The topic of this thesis is neutrino cosmology and large scale structure. First, we introduce the concepts needed for the presentation in the following chapters. We describe the role that neutrinos play in particle physics and cosmology, and the current status of the field. We also explain the cosmological observations that are commonly used to measure properties of neutrino particles. Next, we present studies of the model-dependence of cosmological neutrino mass constraints. In particular, we focus on two phenomenological parameterisations of time-varying dark energy (early dark energy and barotropic dark energy) that can exhibit degeneracies with the cosmic neutrino background over extended periods of cosmic time. We show how the combination of multiple probes across cosmic time can help to distinguish between the two components. Moreover, we discuss how neutrino mass constraints can change when neutrino masses are generated late in the Universe, and how current tensions between low- and high-redshift cosmological data might be affected from this. Then we discuss whether lensing magnification and other relativistic effects that affect the galaxy distribution contain additional information about dark energy and neutrino parameters, and how much parameter constraints can be biased when these effects are neglected.
    [Show full text]
  • Nicolaus Copernicus: the Loss of Centrality
    I Nicolaus Copernicus: The Loss of Centrality The mathematician who studies the motions of the stars is surely like a blind man who, with only a staff to guide him, must make a great, endless, hazardous journey that winds through innumerable desolate places. [Rheticus, Narratio Prima (1540), 163] 1 Ptolemy and Copernicus The German playwright Bertold Brecht wrote his play Life of Galileo in exile in 1938–9. It was first performed in Zurich in 1943. In Brecht’s play two worldviews collide. There is the geocentric worldview, which holds that the Earth is at the center of a closed universe. Among its many proponents were Aristotle (384–322 BC), Ptolemy (AD 85–165), and Martin Luther (1483–1546). Opposed to geocentrism is the heliocentric worldview. Heliocentrism teaches that the sun occupies the center of an open universe. Among its many proponents were Copernicus (1473–1543), Kepler (1571–1630), Galileo (1564–1642), and Newton (1643–1727). In Act One the Italian mathematician and physicist Galileo Galilei shows his assistant Andrea a model of the Ptolemaic system. In the middle sits the Earth, sur- rounded by eight rings. The rings represent the crystal spheres, which carry the planets and the fixed stars. Galileo scowls at this model. “Yes, walls and spheres and immobility,” he complains. “For two thousand years people have believed that the sun and all the stars of heaven rotate around mankind.” And everybody believed that “they were sitting motionless inside this crystal sphere.” The Earth was motionless, everything else rotated around it. “But now we are breaking out of it,” Galileo assures his assistant.
    [Show full text]
  • Challenges to Self-Acceleration in Modified Gravity from Gravitational
    Physics Letters B 765 (2017) 382–385 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure ∗ Lucas Lombriser , Nelson A. Lima Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK a r t i c l e i n f o a b s t r a c t Article history: With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 Received 2 September 2016 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show Received in revised form 19 December 2016 that a confirmation of equality to the speed of light as indicated by indirect Galactic observations Accepted 19 December 2016 will have important consequences for a very large class of alternative explanations of the late-time Available online 27 December 2016 accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski Editor: M. Trodden scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.
    [Show full text]
  • Space, Time, and Spacetime
    Fundamental Theories of Physics 167 Space, Time, and Spacetime Physical and Philosophical Implications of Minkowski's Unification of Space and Time Bearbeitet von Vesselin Petkov 1. Auflage 2010. Buch. xii, 314 S. Hardcover ISBN 978 3 642 13537 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 714 g Weitere Fachgebiete > Physik, Astronomie > Quantenphysik > Relativität, Gravitation Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. The Experimental Verdict on Spacetime from Gravity Probe B James Overduin Abstract Concepts of space and time have been closely connected with matter since the time of the ancient Greeks. The history of these ideas is briefly reviewed, focusing on the debate between “absolute” and “relational” views of space and time and their influence on Einstein’s theory of general relativity, as formulated in the language of four-dimensional spacetime by Minkowski in 1908. After a brief detour through Minkowski’s modern-day legacy in higher dimensions, an overview is given of the current experimental status of general relativity. Gravity Probe B is the first test of this theory to focus on spin, and the first to produce direct and unambiguous detections of the geodetic effect (warped spacetime tugs on a spin- ning gyroscope) and the frame-dragging effect (the spinning earth pulls spacetime around with it).
    [Show full text]
  • Mar Bastero Gil Initial Conditions for Inflation: the Role of Fluctuation-Dissipation Dynamics. Francisco Torrentí Higgs-Curvat
    MONDAY, APRIL 10th 09:20-10:20 Iván Agulló Loop Quantum Cosmology and the Cosmic Microwave BacKground. 10:20-10:40 João Morais PrE-inflationary imprints in thE CMB: thE casE for smooth transitions. 10:40-11:00 Mar Bastero Gil Initial conditions for inflation: the role of fluctuation-dissipation dynamics. 11:00-11:20 Grigorios Panotopoulos Natural Inflation on thE branE with a TEV-scale gravity: Parameter constraints after Planck 2015. 11:20-12:00 CoffEE BrEaK 12:00-12:20 Francisco Torrentí Higgs-curvature coupling and post-inflationary vacuum instability. 12:20-12:40 Carlos Tamarit Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism. 12:40-13:00 Sulona Kandhai Investigating 4th order gravity: SNIa constraints on a viable model for f(R) gravity 13:00-13:20 Miguel Méndez Isla An analysis of results in indirect searches of Dark Matter 13:20-15:00 Lunch 15:00-15:20 Sergio Pastor The effective number of neutrinos: standard and non-standard calculations. 15:20-15:40 Pablo Fernández de Salas Local density of relic neutrinos with minimal mass. 15:40-16:00 A. Delhom Observable traces of non-metricity: accelerator constraints on metric-affine gravity. 16:00-16:20 Clara Álvarez Luna Dark photon searches with atomic transitions. CoffEE BrEaK 16:40-17:00 Iker Leanizbarrutia Analysing a forecast cosmological redshift drift. 17:00-17:20 Andras Kovacs The ISW imprint of Supervoids: from simulations to DES, BOSS and Euclid data. 17:20-17:40 Ana Alonso-Serrano Entropy budget in black hole evaporation.
    [Show full text]