Annual Modulation in Direct Dark Matter Searches
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Overview of Dark Matter Searches with Liquid Nobles
Overview of Dark Matter searches with liquid nobles Marcin Kuźniak [email protected] 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 1 Outline ● Dark matter detection ● Noble liquid technology ● Physics landscape – High mass WIMPs ● Spin-independent ● Spin-dependent – Low mass WIMPs ● Status of experimental Ar and Xe programs ● Target complementarity ● Main challenges moving forward ● (Biased) selection of new ideas ● Summary 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 2 DM direct detection signature Direct detection ● Only through rare interactions with ordinary matter ● After the interaction, recoiling nucleus deposits energy (heat, 100 GeV WIMP light, electric charge, ...) in the detector Nuclear recoil spectrum ● featureless, ~exponential ● lower threshold =>more sensitivity ● natural radioactivity is a background astrophysics detector response particle/nuclear physics 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 3 Backgrounds 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 4 Liquid noble detectors Excitation Heat Nuclear recoils (NR) Ar and Xe are used for WIMP detection. ● Ar inexpensive and advantageous for purification and background rejection Why noble elements? ● High light yield, transparent to their own scintillation ● Easy to purify and scalable to very high masses ● (At least) two available detection channels: scintillation and ionization 29-08-2019 Marcin Kuźniak – LIDINE2019, Manchester 5 Single or dual phase DEAP gas DarkSide approach approach Detect primary scintillation light (S1) from the original -
Parallel Sessions
Identification of Dark Matter July 23-27, 2012 9th International Conference Chicago, IL http://kicp-workshops.uchicago.edu/IDM2012/ PARALLEL SESSIONS http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ http://www.fnal.gov/ International Advisory Committee Daniel Akerib Elena Aprile Rita Bernabei Case Western Reserve University, Columbia University, USA Universita degli Studi di Roma, Italy Cleveland, USA Gianfranco Bertone Joakim Edsjo Katherine Freese University of Amsterdam Oskar Klein Centre / Stockholm University of Michigan, USA University Richard Gaitskell Gilles Gerbier Anne Green Brown University, USA IRFU/ CEA Saclay, France University of Nottingham, UK Karsten Jedamzik Xiangdong Ji Lawrence Krauss Universite de Montpellier, France University of Maryland, USA Arizona State University, USA Vitaly Kudryavtsev Reina Maruyama Leszek Roszkowski University of Sheffield University of Wisconsin-Madison University of Sheffield, UK Bernard Sadoulet Pierre Salati Daniel Santos University of California, Berkeley, USA University of California, Berkeley, USA LPSC/UJF/CNRS Pierre Sikivie Daniel Snowden-Ifft Neil Spooner University of Florida, USA Occidental College University of Sheffield, UK Max Tegmark Karl van Bibber Kavli Institute for Astrophysics & Space Naval Postgraduate School Monterey, Research at MIT, USA USA Local Organizing Committee Daniel Bauer Matthew Buckley Juan Collar Fermi National Accelerator Laboratory Fermi National Accelerator Laboratory Kavli Institute for Cosmological Physics Scott Dodelson Aimee -
The PICASSO Dark Matter Physics Program at SNOLAB
33RD INTERNATIONAL COSMIC RAY CONFERENCE,RIO DE JANEIRO 2013 THE ASTROPARTICLE PHYSICS CONFERENCE The PICASSO Dark Matter Physics Program at SNOLAB A.J. NOBLE1 FOR THE PICASSO COLLABORATION: S. ARCHAMBAULT2, E. BEHNKE3, P. BHATTACHARJEE4, S. BHATTACHARYA4, X. DAI1, M. DAS4, A. DAVOUR1, F. DEBRIS2, N. DHUNGANA5, J. FARINE5, S. GAGNEBIN6, G. GIROUX2, E. GRACE3, C. M. JACKSON2, A. KAMAHA1, C. KRAUSS6, S. KUMARATUNGA2, M. LAFRENIRE2, M. LAURIN2, I. LAWSON7, L. LESSARD2, I. LEVINE3, C. LEVY1, R. P. MACDONALD6, D. MARLISOV6, J.-P. MARTIN2, P. MITRA6, A. J. NOBLE1, M.-C. PIRO2, R. PODVIYANUK5, S. POSPISIL8, S. SAHA4, O. SCALLON2, S. SETH4, N. STARINSKI2, I. STEKL8, U. WICHOSKI5, T. XIE1, V. ZACEK2 1 Department of Physics, Queens University, Kingston, K7L 3N6, Canada 2 Departement´ de Physique, Universite´ de Montreal,´ Montreal,´ H3C 3J7, Canada 3 Department of Physics & Astronomy, Indiana University South Bend, South Bend, IN 46634, USA 4 Saha Institute of Nuclear Physics, Centre for AstroParticle Physics (CAPP), Kolkata, 700064, India 5 Department of Physics, Laurentian University, Sudbury, P3E 2C6, Canada 6 Department of Physics, University of Alberta, Edmonton, T6G 2G7, Canada 7 SNOLAB, 1039 Regional Road 24, Lively ON, P3Y 1N2, Canada 8 Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Cz-12800, Czech Republic [email protected] Abstract: PICASSO is a dark matter search experiment currently operational at the SNOLAB International Facility for Astroparticle Physics, located 2 km underground in Sudbury, Canada. PICASSO is based on the superheated bubble technique. With good control of radiological backgrounds and a detector design that stabilizes the superheated liquid even when very close to the critical temperature, PICASSO has achieved very low nuclear recoil thresholds. -
Dark Matter the Invisible Material
Dark matter The invisible material Our universe holds everything we know and everything we are still figuring out. For years, physicists around the world have studied our universe to better understand its nature and its future. They have found that we only understand about 4% of the matter and energy in our universe (including stars, planets, and hot gas). The other 96% is invisible to us and 23% of this invisible material is named dark matter. If dark matter is invisible, how do we know it exists? To answer this, we go back to the 1930s when physicist Fritz Zwicky Galaxy cluster* coined the term dark matter while studying galaxy clusters. Galaxy clusters have up to thousands of galaxies (like our Milky Way for example) held together by gravity. When Dr. Zwicky calculated the total visible mass of galaxies in the Coma cluster, he found that it was not enough to create the gravity needed to hold the cluster together (mass causes gravity). He concluded that there must be an invisible material causing the extra gravity: dark matter. Now fast forward to the 1970s when Vera Rubin studied galaxy rotation curves. According to Newton’s laws, when objects rotate around a common centre, the ones furthest from the centre move more slowly Gravitational lens – than those near it. Otherwise, the furthest objects would fly off. Dr. Rubin galaxies look long found that stars in galaxies do not follow this rule. In fact, stars at the and distorted* outer edges of galaxies move at about the same rate as those near the centre. -
Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics . -
Small Scale Problems of the CDM Model
galaxies Article Small Scale Problems of the LCDM Model: A Short Review Antonino Del Popolo 1,2,3,* and Morgan Le Delliou 4,5,6 1 Dipartimento di Fisica e Astronomia, University of Catania , Viale Andrea Doria 6, 95125 Catania, Italy 2 INFN Sezione di Catania, Via S. Sofia 64, I-95123 Catania, Italy 3 International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59012-970 Natal, Brazil 4 Instituto de Física Teorica, Universidade Estadual de São Paulo (IFT-UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco 2 - Barra Funda, 01140-070 São Paulo, SP Brazil; [email protected] 5 Institute of Theoretical Physics Physics Department, Lanzhou University No. 222, South Tianshui Road, Lanzhou 730000, Gansu, China 6 Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, Faculdade de Ciências, Ed. C8, Campo Grande, 1769-016 Lisboa, Portugal † [email protected] Academic Editors: Jose Gaite and Antonaldo Diaferio Received: 30 May 2016; Accepted: 9 December 2016; Published: 16 February 2017 Abstract: The LCDM model, or concordance cosmology, as it is often called, is a paradigm at its maturity. It is clearly able to describe the universe at large scale, even if some issues remain open, such as the cosmological constant problem, the small-scale problems in galaxy formation, or the unexplained anomalies in the CMB. LCDM clearly shows difficulty at small scales, which could be related to our scant understanding, from the nature of dark matter to that of gravity; or to the role of baryon physics, which is not well understood and implemented in simulation codes or in semi-analytic models. -
Direct Dark Matter Searches: the Experimental Context
Conseil Scientifique de l’IN2P3, 25-26 octobre 2018 Direct Dark Matter searches: the experimental context Alessandra Tonazzo (APC, Université Paris-Diderot) Direct search for WIMPs : current status ���������� ��������� -�� -� �� ����-� �� - ] ��� ] � ����� -�� -� �� �� �� [ �� [ ������ ������ �� �� σ σ -�� -��� -� �� ����� �� - -�� �� �������� � �� -���� ��� ���� -�� - �������� ������� -�� � -� ������� �� �� - - ��� ��-�� ������� ��-�� ���� ������ ���� ������ ��-�� ��-�� ���� ����� ������� ������� �� ����� ����� ���������� �� ������� ��� �������� ��������� ������������ ���������� ������� ��������� �� ��������� coherent ν scattering on Xe ��-�� � �� ��� ���� A personal selection ���� ������ ���� [���/��] CS IN2P3, 25/10/2018 A. Tonazzo - World context for direct dark matter searches 2 Direct detection of WIMPs WIMP <v>˜220 km/s Nuclear Recoil detectable signal ER < 100 keV Rate: ~1 evt/(ton*year) for σ~10-47cm2 in noble liquids CS IN2P3, 25/10/2018 A. Tonazzo - World context for direct dark matter searches 3 Backgrounds WIMP • Cosmic rays and cosmogenic neutron neutrons/isotopes neutrino • Radioactivity, natural (238U,232Th,235U,222Rn,...) or anthropogenic Nuclear Recoil (85Kr,137Cs,...), from detector elements e, γ • Neutrinos (solar, atmospheric, diffuse SN) scattering coherently off nuclei (”neutrino floor”) Electron Recoil Possibility for background discrimination CS IN2P3, 25/10/2018 A. Tonazzo - World context for direct dark matter searches 4 Direct detection of WIMPs : signatures • Anomalous rate of low-energy nuclear recoils • -
Particle Dark Matter an Introduction Into Evidence, Models, and Direct Searches
Particle Dark Matter An Introduction into Evidence, Models, and Direct Searches Lecture for ESIPAP 2016 European School of Instrumentation in Particle & Astroparticle Physics Archamps Technopole XENON1T January 25th, 2016 Uwe Oberlack Institute of Physics & PRISMA Cluster of Excellence Johannes Gutenberg University Mainz http://xenon.physik.uni-mainz.de Outline ● Evidence for Dark Matter: ▸ The Problem of Missing Mass ▸ In galaxies ▸ In galaxy clusters ▸ In the universe as a whole ● DM Candidates: ▸ The DM particle zoo ▸ WIMPs ● DM Direct Searches: ▸ Detection principle, physics inputs ▸ Example experiments & results ▸ Outlook Uwe Oberlack ESIPAP 2016 2 Types of Evidences for Dark Matter ● Kinematic studies use luminous astrophysical objects to probe the gravitational potential of a massive environment, e.g.: ▸ Stars or gas clouds probing the gravitational potential of galaxies ▸ Galaxies or intergalactic gas probing the gravitational potential of galaxy clusters ● Gravitational lensing is an independent way to measure the total mass (profle) of a foreground object using the light of background sources (galaxies, active galactic nuclei). ● Comparison of mass profles with observed luminosity profles lead to a problem of missing mass, usually interpreted as evidence for Dark Matter. ● Measuring the geometry (curvature) of the universe, indicates a ”fat” universe with close to critical density. Comparison with luminous mass: → a major accounting problem! Including observations of the expansion history lead to the Standard Model of Cosmology: accounting defcit solved by ~68% Dark Energy, ~27% Dark Matter and <5% “regular” (baryonic) matter. ● Other lines of evidence probe properties of matter under the infuence of gravity: ▸ the equation of state of oscillating matter as observed through fuctuations of the Cosmic Microwave Background (acoustic peaks). -
Dark Matter, Oscillations, Exotics Subgroup
Dark matter from ZeV to aeV: 3rd IBS-MultiDark-IPPP Workshop Durham, November 2016 Juande ZZornozaornoza (IFIC, UV-CSIC) Introduction X-rays and sterile neutrinos Neutrino telescopes Results . Sun . Earth . Milky Way . Extra-galactic Future Summary The evidence for the existence Virial theorem of dark matter is very solid and, which is very important, at many different scales Rotation curves Comma Cluster Cosmic Microwave Background Bullet Cluster Gravitational Lensing + BNN, N-body simulations… We do not know what is dark matter, so it is hard to say which is the winning strategy: multi-front attack! PAMELA, AMS FERMI, MAGIC ANTARES, IceCube… Indirect detection XENON χ q, W+, Z… CDMS In any case: CoGENT -we want more than one DAMA “detection” +astrophysical ANAIS -results (constraints) of each … probes ( self- strategy are input for the others interaction of χ Directdetection q, W-, Z… DM affecting dark matter densities in Accelerators LHC galaxies…) Credit: Sky & Telescope / Gregg Dinderman X-ray astronomy (1-100 keV) differs from gamma ray astronomy in the detection strategy Atmosphere absorbs X-rays and fluxes are high, so observation is based on balloons and satellites X-rays cannot be focused by lenses, so focusing is based on total reflection (Wolter telescope) Projects: Chandra, XMM-Newton, Suzaku XMM-Newton: Large collecting area Simultaneous imaging and high resolution spectroscopy Monochromatic 3.5 keV photon line observed in data of XMM-Newton from 73 galaxy clusters Located within 50-100 eV of several known faint lines Interpreted as decay from sterile Bulbul, arxiv:1402.2301 neutrinos with ms=7.1 keV, which would be dark matter Boyarsky, arxiv:1402.4119 Also observed in Andromeda and Perseus Interpretation as sterile neutrino (sin2 (2θ)∼7x10-11) consistent with present constraints However, significant astrophysical unknowns involved (for instance, potassium XVIII line) Bulbul, arxiv:1402.2301 Boyarsky, arxiv:1402.4119 Astro-H Chandra Astro-H satellite (aka Hitomi), equipped with a X-ray spectrometer, was launched in Feb 2016. -
1.1 the XMASS Project 1.2 XMASS-I
STATUS OF XMASS Y. KISIMOTO forXMASS collaboration Kamioka Observatory, Institute for Cosmic Ray Research, the University of To kyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205, JAPAN, Kavli Institute for Physics and Mathematics of the Universe (WPI) , the University of Tokyo, Kashiwa, Chiba 217-8582, JA PAN The XMASS experiment is a multi-purpose detector for rare events, such as direct detection of dark matter, using single-phase liquid xenon. The current phase of the XMASS(XMASS I) is focused on direct dark-matter detection with the largest target mass (835kg). In this paper, we report results of searches carried out with commissioning runs of the XMASS-I and current status of XMASS-I after hardware modification to reduce background followed by the commissioning runs. 1 The XMASS experiment 1.1 The XMASS project The XMASS project was proposed to observe rare events such as elastic scattering of electron by pp solar neutrinos, neutrinoless double beta decay, and elastic scattering of nuclei by dark matter particles with a large liquid-Xe detector 1. In the XMASS detector, scintillation lights from liquid xenon are observed by photo-multiplier tubes PMTs arranged around the liquid xenon volume. This simple configuration is very much suitable( for) observing the rare events because liquid xenon is an efficient scintillator and attenuation of scintillation light is quite small and also because liquid xenon has hight atomic number and high density and so it is worked as shield material against radiation from outside. We can, therefor, search for the rate events by extracting events in a low-background volume. -
Self-Interacting Inelastic Dark Matter: a Viable Solution to the Small Scale Structure Problems
Prepared for submission to JCAP ADP-16-48/T1004 Self-interacting inelastic dark matter: A viable solution to the small scale structure problems Mattias Blennow,a Stefan Clementz,a Juan Herrero-Garciaa; b aDepartment of physics, School of Engineering Sciences, KTH Royal Institute of Tech- nology, AlbaNova University Center, 106 91 Stockholm, Sweden bARC Center of Excellence for Particle Physics at the Terascale (CoEPP), University of Adelaide, Adelaide, SA 5005, Australia Abstract. Self-interacting dark matter has been proposed as a solution to the small- scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution to reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schr¨odingerequation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded. -
José Ángel Villar Rivacoba Was ANAIS Spokesperson and Chair Professor of Atomic, Molecular and Nuclear Physics at the Theo
24/10/2017 Direct Detection of Dark Matter and present status of ANAIS-112 experiment J. Amaré, I. Coarasa, S. Cebrián, C. Cuesta, E. García, M. Martínez, M.A. Oliván, Y. Ortigoza, A. Ortiz de Solórzano, J. Puimedón, A. Salinas, M.L. Sarsa, J.A. Villar✝, P. Villar In Memoriam In Memoriam • José Ángel Villar Rivacoba was ANAIS spokesperson and chair professor of Atomic, Molecular and Nuclear Physics at the Theoretical Physics Department of the University of Zaragoza • He passed away last August and we are deeply in sorrow 1 24/10/2017 In Memoriam In Memoriam • He was Bachelor and Doctor in Physics (Thesis supervised by Julio Morales) by the University of Zaragoza • He was always deeply involved in academic and research management activities in his University: • Dean of the Science Faculty at the University of Zaragoza (1992-2001) • Research Vice-Probost of the University of Zaragoza (2004-2008) • President of the Research Commission of the University of Zaragoza (2004-2008) • He was also strongly involved in scientific management at national and In Memoriam international level: • He was the coordinator of the national network of astroparticles (RENATA) • Member of the Executive Committee of the National Center for Physics of Astroparticles and Nuclear (CPAN) • Member of the general assembly and Joint Secretariat of the ApPEC Consortium • Organizer of numerous national and international congresses • Member of the Board and Science Assembly of ILIAS • Adviser to the successive Ministries responsible for Science and Technology, the Government