NOVEMBER 2011

SINOSTEEL MIDWEST CORPORATION WELD RANGE HAUL ROAD SHORT RANGE ENDEMIC SURVEY

This page has been left blank intentionally

SINOSTEEL MIDWEST CORPORATION WELD RANGE HAUL ROAD SHORT RANGE ENDEMIC INVERTEBRATE SURVEY

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Document Status

Approved for Issue Rev Author Reviewer/s Date Name Distributed To Date A L. Quinn 1 N. Dight M. Davis 4/11/11 M. Davis W. Ennor 4/11/11 2 N. Dight M. Davis 22/11/1 M. Davis W. Ennor 24/11/11

ecologia Environment (2011). Reproduction of this report in whole or in part by electronic, mechanical or chemical means including photocopying, recording or by any information storage and retrieval system, in any language, is strictly prohibited without the express approval of Sinosteel Midwest Corporation and/or ecologia Environment.

Restrictions on Use

This report has been prepared specifically for Sinosteel Midwest Corporation. Neither the report nor its contents may be referred to or quoted in any statement, study, report, application, prospectus, loan, or other agreement document, without the express approval of Sinosteel Midwest Corporation and/or ecologia Environment.

ecologia Environment 1025 Wellington Street WEST PERTH WA 6005 Phone: 08 9322 1944 Fax: 08 9322 1599 Email: [email protected]

November 2011 i

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

TABLE OF CONTENTS

EXECUTIVE SUMMARY...... VI

1 INTRODUCTION ...... 1

1.1 PROJECT OVERVIEW...... 1

1.2 LEGISLATIVE FRAMEWORK ...... 3

1.3 SURVEY OBJECTIVES...... 3

1.4 SHORT RANGE ENDEMIC FAUNA: A REVIEW ...... 4

2 BIOPHYSICAL ENVIRONMENT...... 9

2.1 CLIMATE ...... 9

2.2 BIOGEOGRAPHY ...... 10

2.3 VEGETATION ...... 10

2.4 LAND SYSTEMS...... 13

3 METHODS ...... 17

3.1 LITERATURE REVIEW AND DATABASE SEARCHES ...... 17

3.2 SURVEY TIMING ...... 17

3.3 SITE SELECTION ...... 17

3.4 SAMPLING METHODS...... 20

3.5 SRE STATUS ...... 22

3.6 DATA ANALYSIS ...... 22

4 RESULTS...... 23

4.1 DATABASE AND LITERATURE REVIEW...... 23

4.2 SURVEY RESULTS...... 24

4.3 SPECIMENS COLLECTED ...... 29

4.4 SURVEY ADEQUACY...... 35

4.5 SURVEY LIMITATIONS...... 36

5 DISCUSSION...... 37

6 CONCLUSIONS ...... 41

November 2011 ii

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

7 STUDY TEAM...... 43

8 REFERENCES...... 45

TABLES

Table 2.1 – Climate Summary of Meekatharra (1950‐2011)...... 9

Table 2.2 – Recorded Rainfall at Meektharra Preceeding Survey ...... 9

Table 2.3 – Vegetation Assoiations of the Project Area...... 11

Table 2.4 – Land Systems of the Project Area ...... 14

Table 3.1 – Refferenced ecologia Invertebrate Surveys...... 17

Table 3.2 – Summary of Survey Effort...... 18

Table 3.3 – Taxonomic Experts used to Identify Potential SRE Taxa Found During the Survey...... 21

Table 3.4 – ecologia Staff Involved with Survey...... 22

Table 4.1 – DEC Naturemap Database Results of Rare, Threatened, and Conservation significant Invertebrate Species Likely to occur in the Mid West and Wheatbelt ...... 23

Table 4.2 – Summary of Specimens Collected...... 27

Table 4.4 – Mean estimates of total species richness of the SRE assemblage based on 100 randomisations ...... 36

Table 5.1 – Summary of SRE Specimens Collected and Significance of Impact...... 39

FIGURES

Figure 1.1 – Location of the Project Area...... 2

Figure 2.1 – Western Murchison Subregions and Surrounds (Based On IBRA Version 6.1 Thackway and Cresswell 1995)...... 10

Figure 2.2 – Vegetation Associations of the Project Area...... 12

Figure 2.3 – Land Sytems of the Project Area ...... 16

Figure 3.1 – Location of Survey Sites...... 19

Figure 3.2 – Example fo Wet Pitfall Traps ...... 20

Figure 3.3 – Examples of the Leaf Litter Reducer and Tullgren Funnels ...... 21

Figure 4.1 – Abundance Histogram of Collected Species...... 25

Figure 4.2 – Species Accumulation Curve...... 35

November 2011 iii

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

APPENDICES

Appendix A Site Descriptions ...... 48

Appendix B Database and Literature Results Table ...... 64

November 2011 iv

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

ACRONYMS

List all acronyms used in the report here. Format alphabetically as follows:

DEC Department of Environment and Conservation

EPA Environmental Protection Authority

EPBC Environment Protection and Biodiversity Conservation Act 1950

SRE Short Range Endemic

WAM Western Australian Museum

SMC Sinosteel Midwest Corporation

November 2011 v

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

EXECUTIVE SUMMARY

Sinosteel Midwest Corporation (SMC) is seeking approvals for the developments supporting their proposed Weld Range Mining Operation in the Midwest region of Western . SMC intends to build a haul road approximately 20 km in length as part of the infrastructure developments at Weld Range, which is located approximately 90 km west of Meekatharra. ecologia Environment was commissioned to undertake a baseline survey for Short Range Endemic (SRE) invertebrate fauna within the proposed haul road as part of the environmental approvals process.

This assessment involved a search of the DEC database and, as many SRE species are not formally recognised under Commonwealth and state legislation due to limited knowledge of the species, searches were also undertaken of the Western Australian Museum (WAM) database and previous ecologia surveys nearby. The likelihood of invertebrate records to be considered SREs was determined by WAM taxonomists based on the current knowledge of the distribution and biology of each species.

The survey was completed between February and March 2011 utilising wet pitfall traps, foraging and leaf litter collected as recommended by the EPA’s Guidance Statement No. 20. Twenty nine sites were selected primarily in isolated, island‐like habitats, while other habitat types were included secondarily.

More than 500 specimens were collected during the survey. These individuals represented eight orders, 16 familles and 44 species of invertebrates (Table 4.2). Of these, one species was considered to be a SRE, two were likely SREs, 22 were potential SREs and three were undetermined. Under the precautionary principle, potential and undetermined SREs should be considered as SREs.

The single confirmed SRE species was the snail Pleuroxia ?bethana and two likely SREs isopods Pseudodiploexochus 'sp. 1' and Pseudodiploexochus 'sp. 2'. The 22 potential SRE species included six mygalomorph (from genera Cethegus, , Kwonkan and Aname), nine pseudoscorpions (Synphyronus ‘sp. PSE010’ and eight species of Beierolpium), five scorpions (Isometroides sp., Urodacus sp., Urodacus ‘weld range 3’, Urodacus ‘weld range 4’ and Urodacus ‘weld range 5’), one centipede (Family Mecistocephalidae) and one undescribed of isopod. Species of undetermined SREs were two pseudoscorpions (genera Austrohorus and Euryolpium) and one snail (genus Succinea).

The main conclusions of the survey were: • A total of 47 conservation significant species were found during the database searches of the regional area;

• The survey methods were consistent with the EPA Guidance Statement 20 to sample for SRE fauna;

• Species estimators found the survey was sufficient at 67 %, however it is likely that some SRE species inhabiting the survey area have not been collected in the survey;

• A total of 44 species were collected, of which 26 species were considered to represent SRE and/or potential SRE species;

• The known distributions of Aname ‘MYG228’, Aname ‘MYG229’, Kwonkan ‘MYG230’, Austrohorus sp., Euryolpium sp., Isometroides sp., Urodacus sp., Urodacus 'weld range 5', Urodacus 'weld range 4', Urodacus 'weld range 3', Psuedodiploexochus ‘sp. 1’,

November 2011 vi

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Psuedodiploexochus ‘sp. 2’, Pleuroxia ?bethana, Succinea sp. and the isopod ‘genus nov. sp. nov.’ will be impacted by the Project, however, the impact is expected to be low as the habitat is widespread and it is expected that these species are present outside the Project area;

• The distribution of Cethegus sp., Euoplos sp., Aname sp., Synsphyronus ‘PSE010’, Meicistocephalidae and all Beierolpium species, will be impacted by the Project, however, the impact is expected to be negligible as regional records exists and the species are known outside the Project area; and,

• None of the habitats in which the potential SRE species were located are unique to the proposed impact areas and they extend beyond the limits of the mapped area. Thus, on the scale of impact ranging from high ‐ moderate – low ‐ negligible, the impact from the Project development on the potential SRE species is expected to be low to negligible.

November 2011 vii

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

1 INTRODUCTION

1.1 PROJECT OVERVIEW

Sinosteel Midwest Corporation (SMC) is seeking approvals for the developments supporting their proposed Weld Range Mining Operation in the Midwest region of . SMC intends to build a haul road approximately 20 km in length with a total area of approximately 15 km² as part of the infrastructure developments at Weld Range, which is located approximately 90 km west of Meekatharra (Figure 1.1).

November 2011 1

Meekatharra !(

Cue !(

Mt Magnet !( K 0 10 20

Legend Kilometres Haul Road and Infrastructure Absolute Scale - 1:1,000,000

Figure: 1.1 Drawn: ND Location of Project ID: 1328 Date: 02/11/2011 Coordinate System Unique Map ID: ND061 the Project Area Name: GDA 1994 MGA Zone 50 Projection: Transverse Mercator Datum: GDA 1994 A4 Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

1.2 LEGISLATIVE FRAMEWORK

Federal and State legislation applicable to the conservation of native fauna include, but are not limited to, the Environment Protection and Biodiversity Conservation Act 1999, the Wildlife Conservation Act 1950, and the Environmental Protection Act 1986. Section 4a of the Environmental Protection Act 1986 requires that developments take into account the following principles applicable to native fauna:

• The Precautionary Principle

Where there are threats of serious or irreversible damage, a lack of full scientific certainty should not be used as a reason for postponing measures to prevent environmental degradation.

• The Principles of Intergenerational Equity

The present generation should ensure that the health, diversity and productivity of the environment is maintained or enhanced for the benefit of future generations.

• The Principle of the Conservation of Biological Diversity and Ecological Integrity

Conservation of biological diversity and ecological integrity should be a fundamental consideration.

This document includes background information on the Project, a literature review of the SRE fauna of Midwest subregion; particularly in reference to the habitats and environments of the Project. The conservation significance of fauna in Western Australia is also outlined.

The document was constructed with a view to satisfy the requirements of:

• the EPA Guidance Statement No. 20: Sampling of Short‐range Endemic Invertebrate Fauna for Environmental Impact Assessment in Western Australia (EPA 2009);

• the EPA Guidance Statement No. 56: Terrestrial Fauna Surveys for Environmental Impact Assessment in Western Australia (EPA 2004).

Some better‐known SRE species have been listed as threatened or endangered under State or Commonwealth legislation in the Wildlife Conservation Act 1950 and/or Environment Protection and Biodiversity Conservation Act 1999, but the majority have not. Often the lack of knowledge about these species precludes their consideration for listing as threatened or endangered. Listing under legislation should therefore not be the only conservation consideration in environmental impact assessment.

The State is committed to the principles and objectives for the protection of biodiversity as outlined in The National Strategy for the Conservation of Australia's Biological Diversity (Commonwealth Government 1996). The EPA expects that environmental impact assessment will consider impacts on conservation of SRE species (EPA 2004).

1.3 SURVEY OBJECTIVES

The EPA’s objectives with regards to fauna management are to: • maintain the abundance, species diversity and geographical distribution of terrestrial invertebrate fauna; and,

• protect Specially Protected (Threatened) fauna, consistent with the provisions of the Wildlife Conservation Act 1950 (WC Act).

November 2011 3

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Hence, the primary objective of this study was to provide sufficient information for the EPA to assess the impact of the Project on the invertebrate fauna of the area, thereby informing assessment against these objectives.

Specifically, the objectives were to undertake a survey that satisfies the requirements documented in EPA’s Guidance Statement 20, thus providing: • a review of background information (including literature and database searches);

• an inventory of invertebrate fauna species occurring in the Project area, incorporating recent published and unpublished records;

• an inventory of species of biological and conservation significance recorded or likely to occur within the Project area and surrounds;

• a description of the characteristics of the invertebrate fauna habitats occurring in the Project area;

• a description of the characteristics of SRE assemblages occurring in the Project area; and,

• a review of regional and biogeographical significance, including the conservation status of species recorded in the Project area.

1.4 SHORT RANGE ENDEMIC FAUNA: A REVIEW

The decline in biodiversity of terrestrial communities has already been observed both nationally and state‐wide (CALM 2004). There is also an increasing shift in environmental protection from species based conservation to biodiversity based conservation (Chessman 1995; Burbidge et al. 2000; McKenzie et al. 2000) and one of the important considerations involved in this is the presence of endemic species.

Endemism refers to the restriction of species to a particular area, whether it is at the continental, national or local level (Allen et al. 2002). This review focuses on epigean SREs, outlining the major paths to Short Range Endemism, the current knowledge of Short Range Endemism in Australia and the conservation significance of such species. It is important to note that the individual taxa and broader groups discussed are not an exhaustive list of all SREs. This is due to the fact that SREs are dominated by invertebrate species, which are historically understudied and in many cases lack formal descriptions. An extensive, reliable taxonomic evaluation of these species has begun only relatively recently and thus the availability of literature relevant to SREs is relatively scarce.

1.4.1 Processes Promoting Short‐Range Endemism

Short‐range endemism is influenced by numerous processes, which generally contribute to the isolation of a species. A number of factors, including the ability and opportunity to disperse, life history, physiology, habitat requirements, habitat availability, biotic and abiotic interactions, and historical conditions, influence not only the distribution of a taxon, but also the tendency for differentiation and speciation (Ponder and Colgan 2002).

Isolated populations of plants and tend to differentiate both morphologically and genetically as they are influenced by different selective pressures over time. Additionally, a combination of novel mutations and genetic drift promote the accumulation of genetic differences between isolated populations. Conversely, the maintenance of genetic similarity is promoted by a lack of isolation through migration between the populations, repeated mutation and balancing selection (Wright

November 2011 4

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

1943). The level of differentiation and speciation between populations is determined by the relative magnitude of these factors, with the extent of migration generally being the strongest determinant. Migration is hindered by the poor dispersal ability of the taxon as well as geographical barriers to impede dispersal. In summary, those taxa that exhibit short‐range endemism are generally characterised by poor dispersal, low growth rates, low fecundity and reliance on habitat types that are discontinuous (Harvey 2002).

The historical connections between habitats are also important in determining species distributions and often explain patterns that are otherwise inexplicable by current conditions. Many SREs are considered to be relictual taxa (remnants of species that have become extinct elsewhere) and are confined to certain habitats, and in some cases, single geographic areas (Main 1996). Relictual taxa include extremely old species that can be traced back to the Gondwanan periods (180‐65 million years ago) and have a very restrictive biology (Harvey 2002).

In Western Australia, relictual taxa generally occur in fragmented populations, from lineages reaching back to historically wetter periods. For example, during the Miocene period (from 25 million to 13 million years ago), the aridification of Australia resulted in the contraction of many areas of moist habitat and the fragmentation of populations of fauna occurring in these areas (Hill 1994). With the onset of progressively dryer and more seasonal climatic conditions since this time, suitable habitats have become increasingly fragmented. Relictual species now generally persist in habitats characterised by permanent moisture and shade, maintained by high rainfall and/or prevalence of fog. This may be induced by topography or coastal proximity, or areas associated with freshwater courses (e.g. swamps or swampy headwaters of river systems), caves or microhabitats associated with southern slopes of hills and ranges, rocky outcrops, deep litter beds or various combinations of these features (Main 1996; Main 1999). As a result, these habitats support only small, spatially isolated populations, which are further restricted by their low dispersal powers typical for all SRE species.

1.4.2 Taxonomic Groups Likely to Support Short‐Range Endemism

1.4.2.1 (Phylum: Arthropoda, Sub Class: Arachnida)

Four orders of arachnids can exhibit short‐range endemism: Pseudoscorpiones (false scorpions), Scorpiones (true scorpions), Schizomida (short‐tailed whip spiders) and Araneae (i.e. Infraorder: or trap‐door spiders).

Many mygalomorph trap‐door species are vulnerable to disturbance and exhibit short‐range endemism due to their limited ability to disperse. These spiders also have extreme longevity and the long‐term persistence of females in a single burrow (Raven 1982). Mygalomorph spiders are largely considered ‘old world’ spiders and, as such, are generally adapted to past climatic regimes making them vulnerable to desiccation in arid environments. They use a variety of behavioural techniques to avoid desiccation, the most obvious of which is their burrow, which may reach up to 70 cm in depth (Main 1982). Mygalomorph groups are thus capable of surviving on the periphery of the great central desert region and minor habitats within the general arid regions of the continent. A few mygalomorph spider species are known from the Midwest region with representatives of the families Nemesiidae and known from nearby locations to the Project area.

Another member of the class, the Schizomida, is composed entirely of SREs, with most recorded from single localities (Harvey 2002). Forty‐six schizomid species have been described in northern Australia. Most are known to occur in the entrances to and inside caves, while the

November 2011 5

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey remainder occur in nearby habitats (Harvey 2002). No epigean schizomids are known from the Midwest region.

Scorpions and pseudoscorpions also exhibit high degrees of endemism (Koch 1981; Harvey 1996). Scorpions are popularly thought of as desert animals although they can be found in most of Australia’s climatic zones. Several SRE scorpions and pseudoscorpions are known from the Midwest region including species from the scorpion genera Lychas and Urodacus and the pseudoscorpion species Synsphyronus gracilis.

1.4.2.2 Isopods (subphylum: Crustacea, Class malacostraca)

There are currently around 10,215 described species of isopod classified into 11 suborders: however, little understanding of the of Australian genera exists to date (Judd et al.; Brusca and Brusca 2003). Numerous species of terrestrial and subterranean isopods belonging to several different genera have been identified in Western Australia with several genera containing known and potential SREs including Pseudolaureola, Buddelundia, Cubaris and Platyarthridae (Judd 2009, 2010, 2011). SRE isopods have been collected from the Midwest, Pilbara and Kimberley regions of Western Australia (Judd et al. 2008), Judd 2011). Many species have Gondwanan affinities suggesting that relictual habitats originating from much wetter climate periods persist across the State (Main 1987). Due to a lack of taxonomic knowledge and paucity of data, the precise distributions of each species is unknown and more taxonomic work at species level is required before the status of individual populations can be ascertained.

1.4.2.3 Millipedes and Centipedes (Phylum Arthropoda, Class Myriapoda)

Despite millipedes being highly abundant in soil and leaf litter and highly diverse at the order level, they are inadequately studied and relatively little is known of their biogeography (Harvey 2002). SRE millipedes known to occur in the Midwest include species from the genus Antichiropus. All species from this genus are known to be short‐range endemics with the exception of two species Antichiropus variabilis and Antichiropus ‘PM1’, from the jarrah forests and northern Wheatbelt respectively. This genus extends from the Nullarbor Plain to the Pilbara region and has been collected close to the Project area.

Centipedes are not listed by Harvey (2002) as SRE species; however they have been shown to be endemic to small areas on the east coast (Edgecombe et al. 2002). Examination of the distributions of species featured in the CSIRO centipede webpage also reveals disjunct and isolated occurrences of many species. A number of genera have Pangaean and Gondwanan affinities (Edgecombe et al. 2002). In general, these animals have a relatively cryptic biology, preferring moist habitats in deep litter accumulations, under rocks and in rotting logs, and they have relatively poor dispersal abilities (Lewis 1981). This suggests that they are potential candidates for designation as SREs.

1.4.2.4 Molluscs (Phylum: Mollusca)

Numerous species of freshwater and terrestrial molluscs belonging to many genera have been identified in Australia, with most being SREs (Harvey 2002). Restricted ranges of the terrestrial molluscs of the drier northern and Western Australia were noted for a vast number of species (Solem 1997). Among these were seven endemic species of Rhagada from the Dampier Archipelago, five of which were found to occur sympatrically on one island. However, in a recent genetic study conducted on Rhagada (Johnson et al. 2004), allozyme analysis revealed little variation between taxa. Such a finding could indicate that there is merely high morphological diversity within one or a few

November 2011 6

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey species. It is also possible however, that there is a number of highly endemic species and that morphological diversity has taken place rapidly with little genetic change (Johnson et al. 2004).

Some species of the terrestrial snail genera Pleuroxia are known to be SREs. Species of this genus have been recorded within the Midwest region with some occurring in areas close to the Project area.

1.4.2.5 Worms (Phylum: Annelida & Onychophora)

The taxonomic status of the earthworm family, Megascolecidae, in Western Australia was revised by Jamieson in 1971. As a result of this study, it was concluded that most of the earthworm genera are made up almost entirely of SREs (Harvey 2002). This is also the case with the velvet worms (Onychophorans). Due to several taxonomic revisions that have been conducted (see references within Harvey, 2002a), the number of onychophoran species has expanded from six to over 70 species, and a number of species still remain undescribed (Harvey 2002). Very few of these species exceed ranges of 200 km2 and some are restricted to single localities and have high genetic differentiation, indicating very little mobility and dependence on their permanently moist habitats (Harvey 2002). No terrestrial SRE worms are known from the Midwest region.

November 2011 7

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

This page has been left blank intentionally

November 2011 8

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

2 BIOPHYSICAL ENVIRONMENT

2.1 CLIMATE

The climate of the Project area is described as semi arid with a bimodal rainfall pattern which peaks in summer and winter. During the survey period (February 2011 – March 2011) a significant amount of rainfall occurred during both months (Table 2.2). The average annual rainfall, as recorded from historical data at Meekatharra Airport, is 236 mm falling over an average of 46 days, (Desmond et al. 2001), however a total of 168.8 mm fell during the 38 days of the survey period. The maximum temperatures peaked in February with a mean maximum temperature 36°C, while the mean maximum temperature for March was 34.3°C. Overnight minima peaked in February with a monthly mean of 23°C, while the mean minimum temperature for March was 21°C.

40 45

35 40

35 30 30 25 25 20 20 Temp (°)

Rainfall (mm) Rainfall 15 15 10 10

5 5

0 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Mean Rainfall Mean Max Temp Mean Min Temp

Table 2.1 – Climate Summary of Meekatharra (1950‐2011)

Table 2.2 – Recorded Rainfall at Meektharra Preceeding Survey September October November December January February March 2010 2010 2010 2010 2011 2011 2011

Total Rainfall 24.6 0.2 5.2 111.4 26 169.6 29.2 (mm)

Mean Rainfall 4.8 6.4 11.5 13.6 27.1 37.3 28.2 (mm)

November 2011 9

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

2.2 BIOGEOGRAPHY

Weld Range lies in the Murchison Biogeographic Region, western sub region, which lies within the Eremaean Botanical Province of Western Australia (Figure 2.1). Geologically, the Weld Range Land System is located within the Murchison geological province, within the Yilgarn Craton. The System may be described as a series of rugged ranges and ridges of mainly Archaean metamorphosed sedimentary rocks supporting shrub lands (Curry et al. 1994). The 350 km2 area includes the Weld Range and Jack Hills systems.

Figure 2.1 – Western Murchison Subregions and Surrounds (Based On IBRA Version 6.1 Thackway and Cresswell 1995)

2.3 VEGETATION

The Project area lies within the Eremaean Botanical Province of the Western Australia (Thackway and Cresswell 1995). Six vegetation associations mapped by Shepherd (2001) occur within the survey area (Table 2.3, Figure 2.2). The survey area consists primarily of low woodland with mulga, Acacia aneura and A. ramulosa and shrubland. All vegetation associations are widespread outside of the Project area, less than 1% of all vegetation associations represented within the survey area.

November 2011 10

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Table 2.3 – Vegetation Assoiations of the Project Area

Vegetation Total Area in WA Area in Study Total Vegetation Type Vegetation Description Survey Sites Association (km2) Area (km2) Impacted (%)

F2, F6, F7, F8, F13, F16, P6, <1% 18 Low woodland; mulga (Acacia aneura) P7, P8, P9, P10 247512 5.71

39 Shrublands; mulga scrub F12, P11 66670 0.60 <1% F5, F10, F11, F14, F15, P12, 182 Low woodland; mulga & bowgada (Acacia ramulosa) P13 940 4.90 <1%

202 Shrublands; mulga & Acacia quadrimarginea scrub F1, F3, F4 4487 0.56 <1%

Succulent steppe with open scrub; scattered mulga & Acacia P5 1995 0.25 <1% 204 sclerosperma over saltbush & bluebush

2081 Shrublands; bowgada and associated spp. scrub F9, P1, P2, P3, P4, 1804 3.29 <1%

November 2011 11

P13 P12

F11 F12

P11

P10

P02 P03 F9 P01 P04 P05 P06 P08 F4 F16 P07 P09 F15 F1 F10 F3

F2

F14 Legend Foraging Sites Wet Pitfall Trapping Sites F13 Haul Road and Infrastructure Vegetation Associations F8 18 F5 39 F6 F7 182 K 202 0 2 4 204 Kilometres 2081 Absolute Scale - 1:140,000

Figure: 2.2 Drawn: ND Vegetation Associations Project ID: 1328 Date: 02/11/11

Coordinate System Unique Map ID: ND058 of the Project Area Name: GDA 1994 MGA Zone 50 Projection: Transverse Mercator Datum: GDA 1994 A4 Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

2.4 LAND SYSTEMS

Land systems are described using the biophysical characteristics of geology, landforms, vegetation and soils. Curry et al. (1994) undertook a regional inventory of the Murchison River catchment and surrounds to document the land systems present and their vegetation conditions. This inventory covered a total of 88,360 km², spanning from Meekatharra and Mount Magnet in the east, to the Greenough and Wooramel rivers in the west.

The Project area spans eight of these land systems (Table 2.4, Figure 2.3), of which the Kalli Land System represents a majority of the Project area (approximately 60%). The Kalli Land System is described as elevated, gently undulating red sandplains edged by stripped surfaces on laterite and granite; tall acacia shrublands and understorey of wanderrie grasses (and spinifex locally) replaced by more extensive areas of Bullimore land system. However, all land systems are represented by the Project area with less than 1% (Table 2.4).

November 2011 13

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Table 2.4 – Land Systems of the Project Area Area in the Total Land System Land System Description Survey Sites Total Area in WA (km²) Project Area Impacted (%) (km²) Land type 1 ‐ Hills and ranges with acacia shrublands Weld Land Rugged ranges and ridges of banded ironstone and quartzite, supporting F1, F2, F3, F4, P9 372 <1% System acacia shrublands. 1.30 Land type 5 ‐ Mesas, breakaways and stony plains with acacia or eucalypt woodlands and halophytic shrublands Sherwood Breakaways, kaolinised footslopes and extensive gently sloping plains on ‐ 15797 0.11 <1% Land System granite supporting mulga shrublands and minor halophytic shrublands. Land type 16 ‐ Stony plains with acacia shrublands Undulating stony interfluves, drainage floors and pediment (foothill) plains Yarrameedie below major ranges of crystalline rocks (mainly Weld land system) supporting F8, F13, F16, P7 683 2.60 <1% Land System sparse mulga shrublands. Land type 17 ‐ Stony plains with acacia shrublands and halophytic shrublands Gently undulating gravelly plains on greenstone, laterite and hardpan, with Violet Land low stony rises and minor saline plains; supporting groved mulga and ‐ 5841 0.11 <1% System bowgada shrublands and patchy halophytic shrublands. Land type 25 ‐ Sandplains and occasional dunes with grassy acacia shrublands Elevated, gently undulating red sandplains edged by stripped surfaces on F9, F10, F11, F12, F15, P1, Kalli Land laterite and granite; tall acacia shrublands and understorey of wanderrie P2, P3, P4, P10, P11, P12, 11159 9.31 <1% System grasses (and spinifex locally); replaced by more extensive areas of Bullimore P13 land system. Land type 31 ‐ Wash plains on hardpan with mulga shrublands

Jundee Land Hardpan plains with ironstone gravel mantles and occassional sandy banks P5, P6, P8, 6602 0.98 <1% System supporting mulga shrublands. Land type 32 ‐ Wash plains and sandy banks on hardpan, with mulga shrublands and wanderrie grasses or spinifex

Yanganoo Almost flat hardpan wash plains, with or without small wanderrie banks and F5, F6, F14, 20199 0.81 <1% Land System weak groving; supporting mulga shrublands and wanderrie grasses on banks.

November 2011 14

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Area in the Total Land System Land System Description Survey Sites Total Area in WA (km²) Project Area Impacted (%) (km²) Land type 36 ‐ Alluvial plains with halophytic shrublands

Saline and non‐saline calcreted river plains, with clayey flood plains Mileura Land interrupted by raised calcrete platforms supporting diverse and very variable F7 2612 0.09 <1% System tall shrublands, mixed halophytic shrublands and shrubby grasslands.

November 2011 15

P13 P12

F11 F12

P11

P10

P02 P03 F9 P01 P04 P05 P06 P08 F4 F16 P07 P09 F15 F1 F10 F3 Legend F2

Wet Pitfall Trapping Sites F14 Foraging Sites Haul Road and Infrastructure Land Systems F13 Jundee Land System Kalli Land System F8 Mileura Land System F5 Sherwood Land System F6 F7 Violet Land System K Weld Land System 0 2 4 Yanganoo Land System Kilometres Yarrameedie Land System Absolute Scale - 1:140,000

Figure: 2.3 Drawn: ND Land Systems Project ID: 1328 Date: 02/11/11

Coordinate System Unique Map ID: ND059 of the Project Area Name: GDA 1994 MGA Zone 50 Projection: Transverse Mercator Datum: GDA 1994 A4 Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

3 METHODS

3.1 LITERATURE REVIEW AND DATABASE SEARCHES

Ideally, a database search for SRE species would be undertaken of the Project area and surrounding local area. However, as knowledge of invertebrate diversity throughout the Midwest region is very limited, a regional approach was taken. Using the area 100 km from the Project area, taxa (Orders) known to contain SREs were searched within the Arachnid, Mollusc, Crustacean and Myriapod terrestrial invertebrate electronic databases of the Western Australian Museum (WAM). The ecologia database was also consulted for specimens collected from previous surveys within 50 km of the Project area.

Fauna species that have been formally recognised as rare, threatened, or as having high conservation value are protected under Commonwealth and State legislation. A DEC NatureMap database search was undertaken in order to determine if any species listed by EPBC Act or the WC Act have potential to occur in the Project area. In addition, five ecologia publications (Table 3.1) reporting on invertebrate fauna surveys conducted within the Midwest were consulted.

Table 3.1 – Refferenced ecologia Invertebrate Surveys

Survey Distance (km)

Sinosteel Midwest Corp. Ltd Jack Hills SRE Survey (ecologia 2009c) 110

Sinosteel Midwest Corp. Ltd Jack Hills Shield‐back spider nigrum Survey (ecologia 2009b); 110

Sinosteel Midwest Corp. Ltd Weld Range SRE Survey (ecologia 2008) 10

Sinosteel Midwest Corp. Ltd Weld Range Shield‐back spider Idiosoma nigrum Survey (ecologia 2009d) 10

Crosslands Resources, Jack Hills SRE Survey (ecologia 2009a) 110

3.2 SURVEY TIMING

Sufficient rainfall is required for optimal SRE sampling, therefore the optimal time for SRE sampling in the Midwest is November to April (EPA 2009). Fieldwork was completed between February and March 2011 and thus within the recommended period. The Project area received above average rainfall before and during the survey period. Although rainfall events are generally desirable for sampling, the volume of rainfall at the Project area was to the extent that it impaired the survey methodology.

3.3 SITE SELECTION

Survey site locations were selected primarily based on those habitats likely to support SRE invertebrates. Aerial photographs (Google dEarth™) an a vegetation map of the Project Area was studied to determine the vegetation communities in which the SREs were likely to occur within the Project Area. Micro habitats likely to maintain higher moisture levels and ‘island’ habitats were targeted. Thirteen wet pitfall trap sites and 16 foraging only sites were selected along the length of the proposed Haul road (Table 3.2, Figure 3.1). These site locations were further refined following on‐site examination.

November 2011 17

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Table 3.2 – Summary of Survey Effort

Leaf litter Wet Pitfall Site Zone East North Foraging (hrs) Collection (m²) Traps

P01 50 564851 7029606 1 3 4

P02 50 566258 7030331 1 3 4

P03 50 567194 7030315 1 3 4

P04 50 569221 7029662 1 3 4

P05 50 571656 7029590 1 3 4

P06 50 573718 7029546 1 3 4

P07 50 570109 7028127 1 3 4

P08 50 575052 7029475 1 3 4

P09 50 579074 7028119 1 3 4

P10 50 569480 7032820 1 3 4

P11 50 569804 7033719 1 3 4

P12 50 575198 7036856 1 3 4

P13 50 574759 7037510 1 3 4

F01 50 581483 7027147 2 3 0

F02 50 579650 7025665 2 3 0

F03 50 579606 7026506 2 3 0

F04 50 577637 7028894 2 3 0

F05 50 553149 7018763 2 3 0

F06 50 555330 7018097 2 3 0

F07 50 557311 7017931 2 3 0

F08 50 561019 7019603 2 3 0

F09 50 568174 7029805 2 3 0

F10 50 562660 7026494 2 3 0

F11 50 571427 7034771 2 3 0

F12 50 569540 7034512 2 3 0

F13 50 562314 7021510 2 3 0

F14 50 562526 7024510 2 3 0

F15 50 563365 7027699 2 3 0

F16 50 571923 7028608 2 3 0

Total 45 87 52

November 2011 18

P13 P12

F11 F12

P11

P10

P02 P03 F9 P01 P04 P05 P06 P08 F4 F16 P07 P09 F15 F1 F10 F3

F2

F14

F13

F8

F5

F6 F7 Legend K Wet Pitfall Trapping Sites 0 2 4 Foraging Sites Kilometres Haul Road and Infrastructure Absolute Scale - 1:140,000

Figure: 3.1 Drawn: ND Location of Project ID: 1328 Date: 02/11/11

Coordinate System Unique Map ID: ND059 Survey Sites Name: GDA 1994 MGA Zone 50 Projection: Transverse Mercator Datum: GDA 1994 A4 Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

3.4 SAMPLING METHODS

The survey methods adopted by ecologia are aligned with the EPA’s Guidance Statement No. 20 (EPA 2009). The survey was undertaken using a variety of sampling techniques, both systematic and opportunistic. Systematic sampling refers to data methodically collected over a fixed time period in a discrete habitat type, using an equal or standardised sampling effort. The resulting information can be analysed statistically, facilitating comparisons between habitats. Opportunistic sampling includes data collected non‐systematically from both fixed sampling sites and as opportunistic records gathered during foraging sessions.

3.4.1 Wet Pitfall Trapping

At 13 sites, four wet pitfall traps (Figure 3.2) consisting of a PVC tube (25cm long) and containing 30% Ethylene Glycol and 5% Formaldehyde were dug into the ground so that the surface was flush with the ground level. A receptacle (containing 700 ml of pitfall trapping solution) and funnel (fitting flush to the inside of the pitfall trap) were deployed into each tube and a cover was fitted 3 cm above the tube with steel fittings to exclude medium sized vertebrates and rain, and to deter attention of larger vertebrates. Traps were left open for 38 days, after which period they were cleared.

Figure 3.2 – Example of Wet Pitfall Traps

3.4.2 Foraging

At least one person hour was spent foraging at all 29 sites. Opportunistic foraging involved physically searching through microhabitats for SRE invertebrates. The underside of rocks and logs were closely investigated for SREs, snail shells and trapdoor spiders were collected and documented where found.

3.4.3 Leaf Litter Collection

At each site, three quadrats (1 m2 each) of leaf litter were collected and placed separately into a leaf‐ litter reducer (Figure 3.3). The contents from each collection was placed into a paper bag inside a zip‐ lock bag and kept separate. A small amount of wet tissue paper was placed into each sample to keep humid. Samples were then transported back to Perth in a cool, dark container where they were placed on Tullgren funnels to extract specimens

November 2011 20

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

3.4.4 Laboratory sorting and specimen identification

Tullgren funnels were used to extract litter‐dwelling invertebrates from the collected leaf litter samples (Figure 3.3). The general principle of Tullgren funnels is that a sample of leaf litter is suspended above a vessel containing ethanol. Animals inhabiting the sample are forced downwards by the progressive drying of the sample and ultimately fall into the collecting vessel containing ethanol. Typically, drying is enhanced by placing an incandescent lamp or heat source above the sample.

After the leaf litter samples were processed on the Tullgren funnels, each sample was then examined for dead snail shells, or any other dead animals that were not collected during the Tullgren funnel extraction. Each sample was emptied into a tray and examined using a fluorescent light magnifier. Any dead animals were collected and immediately placed into ethanol. Samples were then sorted under a Stereo microscope into potential SRE groups and sent to the relevant taxonomic expert for further identification. A list of taxonomic specialists used for identification is shown in Table 3.3.

Figure 3.3 – Examples of the Leaf Litter Reducer and Tullgren Funnels

Table 3.3 – Taxonomic Experts used to Identify Potential SRE Taxa Found During the Survey.

Taxonomic Expert Institution Specialist Group

Corey Whisson Western Australian Museum Molluscs

Erich Volschenk Private consultant Scorpions

Mark Harvey Western Australian Museum Arachnids, Myriapods

Mieke Burger Western Australian Museum Arachnids, Myriapods

Shirley Slack‐Smith Western Australian Museum Molluscs

Simon Judd Private consultant Isopods

Volker Framenau Private Consultant Mygalomorph spiders

November 2011 21

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

3.4.5 Field Team

Field survey team members are listed in Table 3.4.

Table 3.4 – ecologia Staff Involved with Survey

Name Qualification Relevant Experience

Catherine Hall BSc (Hons) 3 years experience with invertebrate zoology

Nicholas Dight BSc 4 years experience with invertebrate surveys

Sean White BSc 3 years experience with invertebrate surveys

3.5 SRE STATUS

The likelihood of the invertebrate species to be considered a SRE or not a SRE was determined by expert taxonomists (Mark Harvey, Department of Terrestrial Invertebrates, WAM; Shirley Slack‐Smith and Corey Whisson, Department of Malacology; Erich Volschenk, Volker Framenau and Simon Judd, private consultants) based on the current knowledge of the distribution and biology of each species, as follows:

• no – not considered a SRE;

• confirmed – current knowledge confirms that this species is a SRE;

• likely – current knowledge suggests this species is probably a SRE, however, further research is required to confirm status;

• potential – current knowledge of this species or group is very limited, however, there is the potential for this species to represent a SRE. Further research is required to confirm status;

• unlikely ‐ current knowledge of this species or group is limited but sufficient to expect the species will have wider ranges; and,

• undetermined.

3.6 DATA ANALYSIS

3.6.1 Survey Adequacy

There are three general methods of estimating species richness from sample data: extrapolating species‐accumulation curves (SAC), fitting parametric models of relative abundance, and using non‐ parametric estimators (Bunge and Fitzpatrick 1993; Colwell and Coddington 1994; Gaston 1996). In this report, the level of survey adequacy was estimated using the rarefaction of SACs as computed by Mao Tao estimator. In addition, the following species richness estimators: ACE, ICE, Chao‐1, Jacknife‐ 1, Jacknife‐2, Bootstrap and their 95% confidence limits were calculated. Finally, a Michaelis‐Menten enzyme kinetic curve was calculated and used as a stopping rule technique. To eliminate features caused by random or periodic temporal variation, the sample order was randomised 100 times. The estimators applied to the data set were performed using EstimateS (version 8, Colwell 2009).

November 2011 22

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

4 RESULTS

4.1 DATABASE AND LITERATURE REVIEW

The results of the WAM and ecologia database searches are presented in Appendix A. The search identified 29 SRE species considered SRE (two species), potential SRE (23 species) or undetermined (five species). These consisted of 11 mygalomorph spiders, seven pseudoscorpions, four scorpions, one snail, two millipedes, one centipede and four isopods. Ten genera identified from these results were recorded in the Project area.

The results of the DEC NatureMap search are provided in Table 4.1. A total of 19 species are listed by the EPBC Act, WC Act or DEC as being formally recognised as rare, threatened, or as having high conservation value in the Midwest and Wheatbelt regions of Western Australia. These species are protected under Commonwealth and State legislation. These species include four trapdoor spiders (mygalomorphs), one butterfly, two bees, six crickets, two snails and one scorpion fly. None of those listed species were recorded in the Project area.

Table 4.1 – DEC Naturemap Database Results of Rare, Threatened, and Conservation significant Invertebrate Species Likely to occur in the Mid West and Wheatbelt Species EPBC Act WC Act DEC

Ogyris subterrestris petrina (butterfly) CR S1

Kwonkan eboracum (trapdoor spider) CR S1

Teyl sp. (trapdoor spider) CR S1

Neopasiphe simplicolor (bee) EN S1 Aganippe castellum (trapdoor spider) EN S1 Idiosoma nigrum(Shield‐back Trapdoor spider) VU S1 Psacadonotus seriatus (cricket) P1 Ixalodectes flectocerus (cricket) P1 Bothriembryon perobesus (snail) P1

P1 Bothriembryon bradshawi (snail) Phasmodes jeeba (cricket) P2 P2 Austromerope poultoni (scorpionfly) Austrosaga spinifer (cricket) P3 Hemisaga vepreculae (cricket) P3 Throscodectes xederoides (cricket) P3 Hylaeus globuliferus (bee) P3

November 2011 23

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

4.2 SURVEY RESULTS

A total of 526 specimens were collected during the survey. These individuals represented eight orders, 14 familles (minus scorpions pending identification) and 37 species of invertebrates (Table 4.2). Of these, one species was considered to be a SRE, two were likely SREs, 22 were potential SREs and three were undetermined. Under the precautionary principle, potential and undetermined SREs should be considered the same as confirmed SREs.

The single confirmed SRE species was the snail Pleuroxia ?bethana and two likely SREs isopods Pseudodiploexochus 'sp. 1' and Pseudodiploexochus 'sp. 2'. The 22 potential SRE species included six mygalomorph spiders (from genera Cethegus, Euoplos, Kwonkan and Aname), nine pseudoscorpions (Synphyronus ‘sp. PSE010’ and eight species of Beierolpium), five scorpions (Isometroides sp., Urodacus sp., Urodacus ‘weld range 3’, Urodacus ‘weld range 4’ and Urodacus ‘weld range 5’), one centipede (Family Mecistocephalidae) and one undescribed genus of isopod. Species of undetermined SREs were two pseudoscorpions (genera Austrohorus and Euryolpium) and one snail (genus Succinea).

The taxonomy, distribution and SRE status of these genera are discussed in the following sections.

As typical in SRE surveys, 25 species were recorded in low abundance, being represented only by singletons (one record each, 20 taxa) and / or doubletons (two records each, 5 taxa) (Figure 4.1). From those, nine species present potential SREs.

November 2011 24

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Aname 'MYG228' Aname 'MYG229' Aname sp. Beierolpium `sp. 8/2` Beierolpium `sp. 8/4 lge` Beierolpium`sp. (juv. 3/1)` Beierolpium`sp. (juv. 6/2)` Buddelundia 'sp.10' Cethegus sp. Euoplos sp. Family Mecistocephalidae Family Synxenidae sp. 'indet' `sp. 1 Yeelirrie` Kwonkan 'MYG230' Pleuroxia bethana Pseudodiploexochus 'sp. 2' Pupoides eremicolus Scolopendra morsitans Succinea sp. Beierolpium `sp. 8/3` Beierolpium`sp. (juv. 7/3)` Gastrocopta bannertonensis Pupoides beltianus Oratemnus sp. Austrohorus sp. Nesidiochernes sp. Euryolpium sp. Pupoides pacificus Beierolpium `sp. 8/4 small` genus nov. sp. nov. Indolpium sp. Beierolpium`sp. (juv. 7/2)` 'indet' `sp. 2 Yeelirrie` Pseudodiploexochus 'sp. 1' Synsphyronus `sp. PSE010` Buddelundia 'sp.13'

0 50 100 150 200 250 300

Figure 4.1 – Abundance Histogram of Collected Species

November 2011 25

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

This page has been left blank intentionally

November 2011 26

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Table 4.2 ‐ Summary of Specimens Collected Trapping Sites Forage Only Sites Class (Order) Family Taxa SRE P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 F12 F13 F14 F15 F16 Arachnida (Mygalomorphae) Dipluridae Cethegus sp. potential 00000000000100 000000000000000 Idiopidae Euoplos sp. potential 00000000010000 000000000000000 Gaius sp. no 00001000000000000000000000000 Nemesiidae Aname sp. potential 10000000000000 000000000000000 Aname 'MYG228' potential 00000010000000 000000000000000 Aname 'MYG229' potential 10000000000000 000000000000000 Kwonkan 'MYG230' potential 10000000000000 000000000000000 Arachnida (Pseudoscorpiones) Atemnidae Oratemnus sp. no 00000000000000200000000000000 Chernetidae `sp. 1 Yeelirrie` unlikely 00010000000000 000000000000000 `sp. 2 Yeelirrie` unlikely 0 0 0 20 0 0 0 0 0 0 0 0 0 0 000000000000000 Nesidiochernes sp. no 00030000000000000000000000000 Garypidae Synsphyronus `sp. PSE010` potential 0 0 1 0 5 10 27 6 3 1 3 2 1 0 13 00000010000000 Olpiidae Austrohorus sp. undetermined 0 0 0 0 0 0 0 0 0 0 0 0 0 0 010020000000000 Beierolpium `sp. (juv. 3/1)` potential 00000000000001 000000000000000 Beierolpium `sp. (juv. 6/2)` potential 0 0 000000010000 000000000000000 Beierolpium `sp. (juv. 7/2)` potential 10110024000110 180000000000000 Beierolpium `sp. (juv. 7/3)` potential 00000000000000 000110000000000 Beierolpium `sp. 8/2` potential 00010000000000 000000000000000 Beierolpium `sp. 8/3` potential 00000000000000 001100000000000 Beierolpium `sp. 8/4 lge` potential 00010000000000 000000000000000 Beierolpium `sp. 8/4 small` potential 00000000000000 000130000000000 Euryolpium sp. undetermined 0 1 0 0 0 0 0 2 0 1 0 0 0 0 000000000000000 Indolpium sp. unlikely 01100010001010 000000000000000 Arachnida (Scorpiones) Buthidae Isometroides sp. indet. potential 00000010000010 000000000000000 Lychas 'splendens' no 00020000010010 000010000000001 Urodacidae Urodacus sp. indet. potential 00001100000000 000000000000000 Urodacus 'gibson 1' no 00000000020000000000000000000 Urodacus 'weld range 3' potential 01001040000110 000000000000000 Urodacus 'weld range 4' potential 0 0 100000000320 000000000000000 Urodacus 'weld range 5' potential 00100000000100 000000000000000 Chilopoda (Geophilida) Mecistocephalidae potential 00000000010000 000000000000000 Chilopoda (Scolopendrida) Scolopendridae Scolopendra morsitans no 01000000000000000000000000000 Diplopoda (Polyxenida) Synxenidae no 01000000000000 000000000000000 Malacostraca (Isopoda) Armadillidae Buddelundia ' sp.10' no 00000000000000 100000000000000 Buddelundia 'sp.13' unlikely 1 0 2 266 0 0 1 0 0 2 2 5 1 1 000000000000000 Pseudodiploexochus 'sp. 1' likely 9 2 0 12 4 0 0 0 0 0 0 10 9 0 000000000000000 Pseudodiploexochus ' sp. 2' likely 00100000000000 000000000000000 genus nov. sp. nov. potential 50000000000000 000000000000000 Molluscs (Gastropoda) Camaenidae Pleuroxia ?bethana yes 00000010000000000000000000000 Pupillidae Gastrocopta bannertonensis no 00000000200000000000000000000 Pupoides beltianus no 00000000000000020000000000000 Pupoides eremicolus no 00000000000000010000000000000 Pupoides pacificus no 10000210000000000000000000000 Succineidae Succinea sp. undetermined 0 0 000000000000 100000000000000

November 2011 27 Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

This page has been left blank intentionally

November 2011 28

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

4.3 SPECIMENS COLLECTED

4.3.1 Arachnida: Mygalomorphae

4.3.1.1 Family: Dipluridae

Cethegus sp.

A single specimen of the genus Cethegus was collected from site P12, an area of low Acacia ramulosa woodland on a floodplain. The specimen was a juvenile and therefore could not be identified to species as typically mature males are required. The known range of Cethegus exceeds the limit for a SRE, however it is possible that a species complex is found at Weld and Robinson Ranges and Jack Hills (Framenau 2011), therefore this specimen represents a potential SRE species.

4.3.1.2 Family: Idiopidae

Euoplos sp.

A single specimen of the genus Euoplos was collected from site P10, an area of low Acacia aneura woodland on a floodplain. The specimen was a female and thus could not be identified to species. Main (2000) restricted the range of Euoplos to the Tropic of Capricorn. Based on the current knowledge and known diversity of Euoplos, the specimen represents a potential SRE species (Framenau 2011)

Gaius sp.

A single specimen of the genus Gaius was collected from site P05, an area of open scrub with Acacia sclerosperma over saltbush and bluebush on a floodplain. The specimen was a juvenile and therefore could not be identified to species, however, the genus is well represented throughout Western Australia and most species have wide distributions (Framenau 2011), thus the specimen does not represent a SRE species.

4.3.1.3 Family: Nemesiidae

Aname sp.

A single specimen of the genus Aname was collected from site P01, an area of A. ramulosa and various scrub spp. on a floodplain. The specimen was juvenile and thus could not be identified to species. Aname regularly belongs to the most diverse mygalomorph genera in biological spider surveys (Durrant et al. 2010) and many appear to have restricted distributions (Framenau 2011). As such, this specimen represents a potential SRE species.

Aname 'MYG228'

A single specimen of Aname ‘MYG228’ was collected from P07, an area of low A. aneura woodland on a floodplain. This species was previously not known from the WAM mygalomorph species collection and thus represents a potential SRE species (Framenau 2011).

November 2011 29

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Aname 'MYG229'

A single specimen of Aname ‘MYG229’ was collected from site P01, an area of A. ramulosa and various scrub spp. on a floodplain. This species was previously not known from the WAM mygalomorph species collection and thus represents a potential SRE species (Framenau 2011).

Kwonkan 'MYG230'

A single specimen of Kwonkan ‘MYG230’ was collected from site P01, an area of A. ramulosa and various scrub spp. on a floodplain. This species was previously not known from the WAM mygalomorph species collection and thus represents a potential SRE species (Framenau 2011).

4.3.2 Arachnida: Pseudoscorpiones

4.3.2.1 Family: Atemnidae

Oratemnus sp.

Two specimens of the genus Oratemnus were collected from site F02, an area of low A. aneura woodland on a foot slope which drains to a floodplain. The taxonomy of Oratemnus is uncertain, however based on current knowledge it Oratemnus is not considered to be a SRE (Burger and Harvey 2011) .

4.3.2.2 Family: Chernetidae

`sp. 1 Yeelirrie` and `sp. 2 Yeelirrie`

A single specimen of ‘sp. 1 Yeelirrie’ and 20 specimens of ‘sp. 2 Yeelirrie’ were collected from site P04, an area of A. ramulosa and various scrub spp. on a floodplain. These specimens are likely to belong to new genera as the taxonomic knowledge of Chernetids is limited, however, based on the distribution of other Chernetids these specimens are not considered to be SREs (Burger and Harvey 2011).

Nesidiochernes sp.

Three specimens of the genus Nesidiochernes were collected from site P04, an area of A. ramulosa and various scrub spp. on a floodplain. The genus is widely distributed throughout Australia and these specimens resemble a species that is widely distributed in Southern Australia and thus is not a SRE species (Burger and Harvey 2011).

4.3.2.3 Family: Garypidae

Synsphyronus `sp. PSE010`

A total of 73 specimens of Synphyronus ‘sp. PSE010’ were collected from sites P03, P05, P06, P07, P08, P09, P10, P11, P12, P13 and F02. These sites consisted primarily of low A. aneura woodland on a floodplain. Synsphyronus ‘sp. PSE010’ has been recorded elsewhere near Weld Range, however the extent does not exceed 50 km (Burger and Harvey 2011)and thus may represent a SRE.

November 2011 30

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

4.3.2.4 Family: Olpiidae

Austrohorus sp.

Three specimens of the genus Austrohorus were collected from sites F03 and F06, low A. aneura woodland on a foot slope and A. sclerosperma scrubland on a floodplain. These specimens appear to be similar to other specimens of the genus collected in Western Australia. However, based on current knowledge of the group the SRE status cannot be determined (Burger and Harvey 2011).

Beierolpium

A total of 32 specimens of the genus Beierolpium, were collected from 14 sites. These sites were located in areas of A. anueura and A. ramulosa woodland and scrublands consisting of Acacia quadrimarginea, A. ramulosa and mulga. Identified from this survey were eight species, Beierolpium`sp. (juv. 3/1)`, Beierolpium`sp. (juv. 6/2)`, Beierolpium`sp. (juv. 7/2)` , Beierolpium`sp. (juv. 7/3)`, Beierolpium `sp. 8/2`, Beierolpium `sp. 8/3`, Beierolpium `sp. 8/4 lge` and Beierolpium `sp. 8/4 small`. The taxonomy of Beierolpium has not been fully assessed and thus species are currently identified by the number of sensory hairs on the fixed and movable fingers. A full taxonomic revision is required to identify the SRE status of Beierolpium species and as such all species represent potential SRE species (Burger and Harvey 2011).

Euryolpium sp.

Four specimens of the genus Euryolpium were collected from sites P02, P08 and P10, areas of A. ramulosa and various scrub spp. and low A. aneura woodlands on a floodplain. Euryolpium are commonly found under bark and rocks throughout Australia, but are not often recorded as far south as these specimens (Burger and Harvey 2011). Based on current knowledge the SRE status of these specimens is undetermined.

Indolpium sp.

Five specimens of the genus Indolpium were collected from sites P02, P03, P07 and P11, areas of low A. aneura woodland and mulga and A. ramulosa scrub. These specimens resemble specimens collected elsewhere in Western Australia, which suggests the genus is widespread. Based on current knowledge, it is unlikely that these specimens represent a SRE species (Burger and Harvey 2011)

4.3.3 Arachnida: Scorpiones

4.3.3.1 Family: Buthidae

Isometroides sp. indet.

Two juvenile specimens of the genus Isometroides were collected from sites P7 and P13, areas of low woodland of A. aneura and A. ramulosa on floodplain. The taxonomy of Isometroides is poorly resolved and mature males are required for identification, thus identification beyond genus could not be completed. Due to a paucity of data, these specimens represent a potential SRE (Volschenk 2011).

Lychas 'splendens' Six specimens of Lychas ‘splendens’ were collected from sites P4, P10, P13, F6 and F16, areas of woodland containing A. aneura and A. ramulosa as well as shrublands. Lychas is widespread across mainland Australia and many species have wide distributions, Lychas ‘splendons’ included. Therefore it is not a SRE species (Volschenk 2011).

November 2011 31

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

4.3.3.2 Family: Urodacidae

Urodacus sp. indet.

Two juvenile specimens of the genus Urodacus were collected from sites P5 and P6, open scrub with scattered mulga and A. sclerosperma and low A. aneura woodland. As mature males are required for identification thus identification beyond genus could not be completed. Urodacus is very diverse in Western Australia and contains both widespread and SRE species (Volschenk 2011). As such they represent a potential SRE species.

Urodacus 'gibson 1'

Two specimens of Urodacus ‘gibson 1’ were collected from site P10, low woodland of A. aneura. Urodacus is very diverse in Western Australia and contains both widespread and SRE species (Volschenk 2011). Urodacus ‘gibson 1’ has been recorded elsewhere in Western Australia and does not represent a SRE species.

Urodacus 'weld range 3'

Eight specimens of Urodacus ‘weld range 3’ were collected from sites P2, P5, P7, P12 and P13, open scrub and scrublands with scattered mulga and low woodland of A. aneura, A. ramulosa and A. sclerosperma. Urodacus is very diverse in Western Australia and contains both widespread and SRE species (Volschenk 2011). Urodacus ‘weld range 3’ is only known from these specimens at Weld Range and thus represents a potential SRE species.

Urodacus 'weld range 4'

Six specimens of Urodacus ‘weld range 4’ were collected from sites P3, P12 and P13, areas of A. ramulosa low woodland and shrubland. Urodacus is very diverse in Western Australia and contains both widespread and SRE species (Volschenk 2011). Urodacus ‘weld range 4’ is only known from these specimens at Weld Range and thus represents a potential SRE species.

Urodacus 'weld range 5'

Two specimens of Urodacus ‘weld range 5’ were collected from sites P3 and P12, areas of A. ramulosa low woodland and shrubland. Urodacus is very diverse in Western Australia and contains both widespread and SRE species (Volschenk 2011). Urodacus ‘weld range 5’ is only known from these specimens at Weld Range and thus represents a potential SRE species.

4.3.4 Chilopoda: Geophilida

4.3.4.1 Family: Mecistocephalidae

A single specimen of the family Mecistocephalidae was collected from site P10, an area of low A. aneura woodland on a floodplain. The taxonomy of Geophilida is poorly known and thus the genus of this specimen is unknown. It is possible that some geophilids are SRE species but a full taxonomic revision would be required (Burger and Harvey 2011). As such the specimen represents a potential SRE species.

November 2011 32

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

4.3.5 Chilopoda: Scolopendrida

4.3.5.1 Family: Scolopendridae

Scolopendra morsitans

A single specimen of Scolopendra morsitans was collected from site P02, an area of scrublands consisting of A. ramulosa and various species of scrub. The family Scolopendridae are widespread across Western Australia and S. morsitans is well represented in many areas, as such it does not represent a SRE species (Mieke Burger, Pers. Comm.).

4.3.6 Diplopoda (Polyxenida)

4.3.6.1 Family: Synxenidae

A single specimen of the family Synxenidae was collected from site P02, an area of scrublands consisting of A. ramulosa and various species of scrub. The family Synxenidae is known from several areas of Western Australia and does not contain SRE species, thus this specimen does not represent a SRE species (Mieke Burger, Pers. Comm.).

4.3.7 Malacostraca: Isopoda

4.3.7.1 Family: Armadillidae

Buddelundia 'sp.10'

A single specimen of Buddelundia 'sp.10' was collected from site F02, an area of low A. aneura woodland on a footslope which drains to a floodplain. Buddelundia 'sp.10' is a large species and one of the most common arid zone forms of the genus. There are slight variations among its distribution but it is widespread and thus not a SRE species (Judd 2011).

Buddelundia 'sp.13'

A total of 281 speicmens of Buddelundia 'sp.13’ were collected from sites P01, P03, P04, P07, P10, P11, P12, P13 and F01, these sites were in areas of A. anueura and A. ramulosa woodland and scrublands consisting of Acacia quadrimarginea, A. ramulosa and mulga. Buddelundia 'sp.13’ is a common species and has been collected from the PIlbara as well as the Midwest but there are slight differences between those found in the Midwest and the Pilbara (Judd 2011). It is unlikely that this species represents a SRE.

Pseudodiploexochus 'sp. 1'

A total of 46 specimens of Pseudodiploexochus 'sp. 1' were collected from P01, P02, P04, P05, P12 and P13, areas of low A. ramulosa woodland, A. ramulosa and various scrubland and open scrub with A. sclerosperma over saltbush and bluebush. Pseudodiploexochus 'sp. 1' is a previously undescribed species as this genus is more commonly collected in the high rainfall areas of the south west (Judd 2011). Pseudodiploexochus 'sp. 1' is likely to represent a SRE species.

November 2011 33

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Pseudodiploexochus 'sp. 2'

A single specimen of Pseudodiploexochus 'sp. 2 was collected from site P03, an area of A. ramulosa and various scrublands on a floodplain. There were marked differences between P. 'sp. 1' and P. 'sp. 2' which suggests they are different species. Pseudodiploexochus is more commonly associated with high rainfall areas and thus it is highly likely to represent a SRE species (Judd 2011). genus nov. sp. nov.

Five specimens of an undescribed species were collected from site P01, an area of A. ramulosa and various scrublands on a floodplain. These specimens represent a new genus beside Buddelundia and Barrowdillo and a previously unknown species as well (Judd 2011). As such, these specimens represent a potential SRE species.

4.3.8 Molluscs: Gastropoda

4.3.8.1 Family: Camaenidae

Pleuroxia ?bethana

A single specimen most closely resembling Pleuroxia bethana was collected from site P07, an area of low A. aneura woodland on a floodplain. Due to differences in shell morphology, this specimen is not confidently placed as P. bethana (Whisson 2011). Based on current knowledge, this specimen should be regarded as a SRE (Whisson 2011).

4.3.8.2 Family: Pupillidae

Gastrocopta bannertonensis

Two specimens of Gastrocopta bannertonensis were collected from sites P09, an area of low A. aneura woodland on a footslope which drains to a creek bed. Gastrocopta bannertonensis has a wide distribution across southern Australia (Whisson 2011) and thus does not represent a SRE species.

Pupoides beltianus

Two specimens of Pupoides beltianus were collected from site F03, an area of A. quadrimarginea scrub on a footslope which drains to a floodplain. The known range of P. beltianus spreads from the Reynolds and Jervois Ranges in the , south to the Musgrave and Mann Ranges in and then west to the Barrow Ranges in Western Australia and these specimens represent a considerable southward extension (Whisson 2011). As there is such a wide known distribution, P. beltianus is not a SRE species.

Pupoides eremicolus

A single specimen of Pupoides eremicolus was collected from site F03, an area of A. quadrimarginea scrub on a footslope which drains to a floodplain. Pupoides eremicolus is a central Australian species known from inland Pilbara as well (Whisson 2011). This specimen represents a considerable southward extension of its range but it is not a SRE species.

November 2011 34

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Pupoides pacificus

Four specimens of Pupoides pacificus were collected from P01, P06 and P07, areas of low A. aneura woodland and A. ramulosa and various scrub on a floodplain. Pupoides pacificus is widely spread in the PIlbara and these specimens represent a considerable southward extension of this range (Whisson 2011). Pupoides pacificus is not a SRE species.

4.3.8.3 Family: Succineidae

Succinea sp.

A single specimen of the genus Succinea was collected from site F02, an area of low A. aneura woodland on a footslope which drains to a floodplain. Specimens of Succinea have been poorly collected in many areas of Australia and as such, there is little taxonomic and distributional knowledge. As such, the SRE status of this specimen is undetermined (Whisson 2011).

4.4 SURVEY ADEQUACY

Both the empirically observed SAC and the estimated Mau and Tau rarefaction curve suggest that a fraction of the diversity of SRE groups was sampled (Figure e4.2). Th observed SAC is nearly a straight ascending line which does not reach a peak, indicating the maximum number of species estimated was not reached. The Chao‐1 estimator of total species richness predicts that the SRE assemblage in the area consists of approximately 61 species, with 95% confidence interval between 49 and 94 species. All other richness estimators resulted in estimate values within the same interval (Table 4.3). The Michaelis‐Menten estimator used as stopping rule indicated that at the sample 168 (full dataset), a total of 65 species can potentially occur in the survey area. This number indicates that approximately 67 % of the predicted SRE species were collected. At this level of collection success, the possibility of some SRE species that have not currently been recorded cannot be discounted.

70

60

50

40

30 No ofSpecies 20

10

0 1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 No of Samples

Sobs (Mao Tau) Sobs Mean (runs) MMMeans (1 run)

Figure 4.2 – Species Accumulation Curve

November 2011 35

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Table 4.3 – Mean estimates of total species richness of the SRE assemblage based on 100 randomisations Richness Estimators Richness Estimate ACE 69.42 ICE 86.88 Chao‐1 61.27 Jack‐1 68.85 Jack‐2 86.68 Bootstrap 54.33 Michaelis‐Menten 65.90

4.5 SURVEY LIMITATIONS

Aspect Limitation Comment Test of survey adequacy estimated survey sufficiency as 67 %, therefore it is likely that some SRE species have not been collected. However, the Survey Adequacy No high number of species collected in relatively small area suggests that the survey was adequate Survey methods utilised were efficient at collecting a broad range of SRE Method Efficiency No groups. Survey occurred during the wet season as defined by the EPA Guidance Statement 20. Seasonality Yes Significant rainfall occurred during the sampling period, which hindered access and the effectiveness wet pitfall traps.

Field Personal Experience No All personnel had sufficient experience for their roles in the survey.

Poor taxonomic knowledge of various taxa (e.g pseudoscorpions and snails). Specimens could not be identified to species level due to poor taxonomic knowledge of these groups, however are considered potential SREs because of biology or knowledge of closely related species. Species Identification Resolution Possible New species but unknown distribution. Considered a SRE because of biology and closely related species. Specimens could not be identified to species level due to gender or immaturity. Unknown if they represent new or known species however, is considered a potential SRE as similar species have limited distribution

November 2011 36

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

5 DISCUSSION

The WAM, ecologia and NatureMap database regional search provided records of 47 species that were either SREs, had the potential to be SREs or undetermined. Of these, 13 genera, Cethegus, Gaius, Kwonkan and Aname (mygalomorph spiders), Buthidae, Isometroides and Urodacus (scorpions) Oratemnus, Synphyronus, Austrohorus, Beierolpium and Indolpium (pseudoscorpions) and Buddelundia (isopods) were identified from the specimens collected. Based on the total number of species identified from the regional area (47), the total number of species collected from this survey (44), suggests that the Project area harbours the same supportive habitat as the regional area.

The sampling adequacy of the Project area was estimated at 67 %, which is considered adequate given the number of species identified and the relatively small and narrow size of the Project area (15 km²). However, the nature of the data (large number of singletons and doubletons) suggests that the area is very species rich and that high abundance of species is rare, therefore it is likely that some SRE species inhabiting the Project area have not been collected at this level of sampling. A summary of the SREs collected and expected impact can be found in Table 5.1.

Of the seven species of mygalomorph spiders collected, six are considered to represent potential SRE species, Cethegus sp., Euoplos sp., Aname sp., Aname ‘MYG228’, Aname ‘MYG229’ and Kwonkan ‘MYG230’. Cethegus sp, Euoplos sp. and Aname sp. could not be identified to species level due to their juvenile status or gender (adult males are required for identification). The genera Cethegus and Aname were identified from the regional area but it cannot be confirmed that these specimens represent the same species and based on current knowledge of the genera, they all represent potential SRE species. The species Aname ‘MYG228’, Aname ‘MYG229’ and Kwonan ‘MYG230’, were not identified from the regional area and were all new species previously unknown to the WAM mygalomoprh collection. As such, they are the only known records of the species, therefore they are considered potential SRE s.

Seven scorpion species were collected, of which three species were undescribed (Urodacus ‘weld range 3’, Urodacus ‘weld range 4’ and Urodacus ‘weld range 5’) and two could not be identified (Isometroides sp. and Urodacus sp.). All five species represent potential SREs and although the three genera are known in the regional area, no species matched those described. Two previously undescribed species, Urodacus ‘weld range 1’ and Urodacus ‘weld range 2’, are also known from the area which suggests a high Urodacus diversity. Potential SRE species belonging to genera Isometroides and Urodacus sp. have been previously recorded in the regional area, therefore the species collected in the current survey also represent potential SRE species. As Urodacus ‘weld range 3’, Urodacus ‘weld range 4’ and Urodacus ‘weld range 5’ are only known from the Project area, they, too, represent potential SRE species.

A total of 16 pseudoscorpion species were identified, of which 11 were either potential SREs or undetermined, which under the precautionary principle should be considered as potential SREs. These included Synsphyronus ‘sp. PSE010’, Austrohorus sp., Beierolpium ‘sp. 3/1’, Beierolpium ‘sp. 6/2’, Beierolpium ‘sp. 7/2’, Beierolpium ‘sp. 7/3’, Beierolpium ‘sp. 8/2’, Beierolpium ‘sp. 8/3’, Beierolpium ‘sp. 8/4 lge’, Beierolpium ‘sp. 8/4 small’ and Euryolpium sp. The genera Synsphyronus, Austrohorus, and Beierolpium were identified from the regional area, of which five species were collected (S. `sp. PSE010 `, B. ‘sp. 8/4 lge’, B. ‘sp. 8/4 small’, B. ‘sp. 8/2’ and B. ‘sp. 8/3’). Despite the regional presence of S. `sp. PSE010 `, B. ‘sp. 8/4 lge’, B. ‘sp. 8/4 small’, B. ‘sp. 8/2’ and B. ‘sp. 8/3’, the range is still limited to within that of SREs and therefore these Beierolpium species, as well as Austrohorus sp. and Euryolpium sp., are considered potential SREs.

November 2011 37

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

A single species of the family Mecistocephalidae could not be identified due to the paucity of taxonomic information, therefore, based on current knowledge, it represents a potential SRE species. However, members of Mecistocephalidae have been recorded in the regional area previously.

Five isopod species were identified, three representing potential SREs, Pseudodiploexochus 'sp. 1', Pseudodiploexochus 'sp. 2' and an undescribed species of a new genus (genus nov. sp. nov.). As all three species are previously unknown and undescribed, no relevant regional records exist and the only known locations are within the Project area. Therefore these speces are likely to represent SREs.

Two species of snail were identified as SRE and undetermined SRE of the six species collected. The SRE species identified as Pleuroxia ?bethana,\ is morphologically significantly different to other specimens of Pleuroxia bethana and thus is considered to be a SRE. Due to insufficient data for the genus Succinea, the SRE status of the specimen Succinea sp. cannot be determined and thus, under the precautionary principle, should be considered a potential SRE species.

All potential SRE species identified were located in vegetation associations and habitats which will be impacted only minimally (<1%). Fifteen species were not identified from the regional area (Table 5.1), however due to the narrow profile of the Project area it is expected that all are present outside the Project area.

Because effective invertebrate conservation cannot rely on conventional single species approaches adopted for the conservation of vertebrates and plants (Clark and Spier‐Ashcroft 2003), the focus of modern invertebrate conservation has changed to a more community and landscape scale approach with a primary emphasis on habitat conservation. Invertebrate conservation should be promoted more effectively by habitat preservation and management rather than single species‐initiatives (Lewinsohn et al. 2005). Applying such approach to the outcomes of this survey, the land systems and vegetation types were used to assess the overall impact of the Project on the invertebrate assemblage within the Project area. This is because the vegetation types along with the land system reflect underlying geology, soil, surface hydrology and position in the landscape, and thus provide a reasonable surrogate of habitat parameters in respect to SREs.

The survey sites were located over eight land system types, which all had the potential to support SREs due to moderate levels of shade, moisture and/or suitable microhabitat i.e. moderately deep leaf litter beds. None of the six vegetation types found within the Project area were considered unique to the Project area, and it should be noted that they extend well beyond the limits of the Project area. Consequently, it is likely that the invertebrate assemblage found within the Project area extends well beyond the Project area and thus the impact from the Project development on the potential SRE is expected to be low to negligible.

November 2011 38

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Table 5.1 – Summary of SRE Specimens Collected and Significance of Impact

Species Regional Records Significance of Impact

Cethegus sp. Yes Negligible

Euoplos sp. Yes Negligible

Aname sp. Yes Negligible

Aname 'MYG228' No Low

Aname 'MYG229' No Low

Kwonkan 'MYG230' No Low

Synsphyronus `sp. PSE010` Yes Negligible

Austrohorus sp. No Low

Beierolpium`sp. (juv. 3/1)` Yes Negligible

Beierolpium`sp. (juv. 6/2)` Yes Negligible

Beierolpium`sp. (juv. 7/2)` Yes Negligible

Beierolpium`sp. (juv. 7/3)` Yes Negligible

Beierolpium `sp. 8/2` Yes Negligible

Beierolpium `sp. 8/3` Yes Negligible

Beierolpium `sp. 8/4 lge` Yes Negligible

Beierolpium `sp. 8/4 small` Yes Negligible

Euryolpium sp. No Low

Isometroides sp. indet. No Low

Urodacus sp. indet. No Low

Urodacus 'weld range 3' No Low

Urodacus 'weld range 4' No Low

Urodacus 'weld range 5' No Low

Family Mecistocephalidae Yes Negligible

Pseudodiploexochus 'sp. 1' No Low

Pseudodiploexochus 'sp. 2' No Low

Isopod genus nov. sp. nov. No Low

Pleuroxia ?bethana No Low

Succinea sp. No Low

November 2011 39

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

This page has been left blank intentionally

November 2011 40

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

6 CONCLUSIONS

The main conclusions of the survey were: • A total of 47 conservation significant species were found during the database searches of the regional area;

• The survey methods were consistent with the EPA Guidance Statement 20 to sample for SRE fauna;

• Species estimators found the survey was sufficient at 67 %, however, it is likely that some SRE species inhabiting the survey area have not been collected in the survey;

• A total of 44 species were collected, of which 26 species were considered to represent SRE and/or potential SRE species;

• The known distributions of Aname ‘MYG228’, Aname ‘MYG229’, Kwonkan ‘MYG230’, Austrohorus sp., Euryolpium sp., Isometroides sp., Urodacus sp., Urodacus 'weld range 5', Urodacus 'weld range 4', Urodacus 'weld range 3', Psuedodiploexochus ‘sp. 1’, Psuedodiploexochus ‘sp. 2’, Pleuroxia ?bethana, Succinea sp. and the isopod ‘genus nov. sp. nov.’ will be impacted by the Project, however, the impact is expected to be low as their habitat is widespread and it is expected that these species are present outside the Project area;

• The distribution of Cethegus sp., Euoplos sp., Aname sp., Synsphyronus ‘PSE010’, Meicistocephalidae and all Beierolpium species, will be impacted by the Project, however, the impact is expected to be negligible as regional records exists and the species are known outside the Project area; and,

• None of the habitats in which the potential SRE species were located are unique to the proposed impact areas and they extend beyond the limits of the mapped area. Thus, on the scale of impact ranging from high ‐ moderate – low ‐ negligible, the impact from the Project development on the potential SRE species is expected to be low ‐ negligible.

November 2011 41

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

This page has been left blank intentionally

November 2011 42

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

7 STUDY TEAM

The SMC Haul Road Short Range Endemic invertebrate survey described in this document was planned, coordinated, and executed by:

ecologia Environment

1025 Wellington Street

WEST PERTH WA 6005

Project Staff:

Catherine Hall BSc, Hon, Invertebrate Zoologist

Lazaro Roque‐Albelo, BSc, MSc, PhD, Principal Zoologist

Magdalena Davis BSc, PhD, Manager Invertebrate Sciences

Sean White BSc, Invertebrate Zoologist

Nicholas Dight BSc, Invertebrate Zoologist

Special Thanks:

Dr Mark Harvey and Mieke Burger: Department of Terrestrial Invertebrates, Western Australian Museum and Dr Shirley Slack‐Smith and Mr Corey Whisson: Department of Malacology, Western Australian Museum for database searches and species identification. Dr Volker Framenau and Dr Erich Volschenk: private consultants, for Mygalomorph spider and scorpion identification. Dr Simon Judd: private consultant, for isopod identification.

November 2011 43

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

This page has been left blank intentionally

November 2011 44

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

8 REFERENCES

Allen, G. R., Midgley, S. H., and Allen, M. 2002. Field Guide to the Freshwater Fishes of Australia. CSIRO Publishing, Melbourne, VIC. Brusca, R. C. and Brusca, G. J. 2003. Invertebrates, 2nd edition. Sinauer Associates, Sunderland Mass, USA. Bunge, J. and Fitzpatrick, M. 1993. Estimating the number of species: A review. Journal of the American Statistical Association. 88:364‐373. Burbidge, A. H., Harvey, M. S., and McKenzie, N. L. 2000. Biodiversity in the southern Carnarvon Basin. Records of the Western Australian Museum. Supplement 61:1 ‐ 595. Burger, M. A. and Harvey, M. S. 2011. Arachnida (Pseudoscorpiones) from Weld Range (Ecologia project 1328). Department of Conservation and Land Management,. 2004. Towards a biodiversity conservation strategy for Western Australia ‐ discussion paper. Chessman, B. C. 1995. Rapid assessment of rivers using macroinvertebrates: A procedure based on habitat‐specific sampling, family level identification and a biotic index. Australian Journal of Ecology. 20:122 ‐ 129. Clark, G. M. and Spier‐Ashcroft, F. 2003. A review of the Conservation Status of Selected Australian Non‐Marine Invertebrates. Natural Heritage Trust:142. Colwell, R. K. 2009. EstimateS: Statistical estimation of species richness and shared species from samples. Version 8. Colwell, R. K. and Coddington, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society (Series B). 345:101‐118. Commonwealth Government. 1996. The Natural Strategy for the conservation of Australia's Biological Diversity. in Department of the Environment, S. a. T., ed. Commonweath of Australia, canberra. Curry, P. J., Payne, A. L., Leighton, K. A., Hennig, P., and Blood, D. A. 1994. An inventory and condition survey of the Murchison River Catchment, Western Australia. Technical Bulletin No. 84. Department of Agriculture, Western Australia. Desmond, A., Cowan, M., and Chant, A. 2001. Murchison 2 (MUR2 – Western Murchison subregion). CALM. Durrant, B. J., Harvey, M. S., Framenau, V. W., Ott, R., and Waldock, J. M. 2010. Patterns in the composition of ground‐dwelling spider communities in the Pilbara bioregion, Western Australia. Records of the Western Australian Museum. Supplement 78:185‐204. ecologia Environment. 2008. SRE Invertebrate Survey of Weld Range. Report Prepared for SinoSteel Midwest Management. March 2008 ecologia Environment. 2009a. Jack hills mine expansion Short‐range endemic (SRE) Invertebrate report. Unpublished report for Crosslands resources Ltd. March 2009 ecologia Environment. 2009b. Jack Hills Mine Expansion. Shield‐back spider Idiosoma nigrum Survey. Report Prepared for Crosslands Resources.

November 2011 45

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey ecologia Environment. 2009c. Jack Hills Short Range Endemic Invertebrate Biological Assessment Survey. Report for Sinosteel Midwest Corporation. ecologia Environment. 2009d. Weld Range Iron Ore Project. Shield‐back spider Idiosoma nigrum Survey. Report Prepared for Sinosteel Midwest Corporation. Edgecombe, G. D., Giribet, G., and Wheeler, W. C. 2002. Phylogeny of Henicopidae (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molecular loci. Systematic Entomology. 27:31‐64. Environmental Protection Authority. 2004. Guidance for the Assessment of Environmental Factors No. 56: Terrestrial Fauna Surveys for Environmental Impact Assessment in Western Australia. 28 June 2004 Environmental Protection Authority. 2009. Guidance for the Assessment of Environmental Factors, Statement No 20: Sampling of Short Range Endemic Invertebrate Fauna for Environmental Impact Assessment in Western Australia. Framenau, V. W. 2011. Trapdoor spiders (Araneae: Mygalomorphae, ) from Weld Range (project code 1328). Gaston, K. J. 1996. Species richness: measure and measurement. In: Biodiversity, a biology of number and difference. Blackwell Science, Cambridge. Harvey, M. S. 1996. The Biogeography of Gondwanan pseudoscorpions (Arachnida). Revue Suisse de Zoologie. 1:255 ‐ 264. Harvey, M. S. 2002. Short‐range endemism among the Australian fauna: some examples from non‐ marine environments. Invertebrate Systematics. 16:555 ‐ 570. Hill, R. S. E. 1994. History of Australian Vegetation: Cretaceous to Recent. Cambridge University Press, Cambridge, UK. Johnson, M. S., Hamilton, Z. R., Murphy, C. E., MacLeay, C. A., Roberts, B., and Kendrick, P. 2004. Evolutionary genetics of island and mainland species of Rhagada (Gastropoda: Pulmonata) in the Pilbara Region, Western Australia. Australian Journal of Zoology. 52:341 ‐ 355. Judd, S. 2009. Terrestrial Isopod Identification for Project 1133 Yeelirrie Station. Judd, S. 2010. Re: Terrestrial Isopod Identification for Project 1250 & 1251. Judd, S. 2011. Terrestrial Isopod Identification for Project 1328 Weld Range. Judd, S., Horwitz, P., and D., J. Distribution patterns of inland aquatic and terrestrial malacostracan crustaceans in south‐western Australia. Unpublished Report. Judd, S., Horwitz, P., and D., J. 2008. Distribution patterns of inland aquatic and terrestrial malacostracan crustaceans in south‐western Australia. Unpublished Report. Koch, L. E. 1981. The scorpions of Australia: aspects of their ecology and zoogeography. pp. 875‐884 in Keast, A., ed. Ecological Biogeography of Australia. Monogr. Biol. 41 (2). Lewinsohn, T. M., Lucci Freitas, A. V., and Inacio Prado, P. 2005. Conservation of terrestrial invertebrates and their habitats in Brazil. Conservation Biology. 19:640‐645. Lewis, J. G. E. 1981. The Biology of Centipedes. Cambridge University Press, Cambridge. Main, B. Y. 1982. Adaptations to arid habitats by mygalomorph spiders in Barker, W. R., and Greenslade, P. J. M., eds. Evolution of the Flora and Fauna of Arid Australia. Peacock Publications.

November 2011 46

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Main, B. Y. 1987. Ecological disturbance and conservation of spiders: implications for biogeographic relics in southwestern Australia. pp. 89 ‐ 97 in Majer, J. D., ed. The Role of Invertebrates in Conservation and Biological Survey . Department of Conservation and Land Management Report, Perth. Main, B. Y. 1996. Terrestrial invertebrates in south‐west Australian forests: the role of relict species and habitats in reserve design. Journal of the Royal Society of Western Australia. 79:277 ‐ 280. Main, B. Y. 1999. Biological anachronisms among trapdoor spiders reflect environmental changes since the Mesozoic in Ponder, W., and Lunney, D., eds. The Other 99%. Transactions of the Royal Zoological Society of New South Wales, Mosman 2088. Main, B. Y. 2000. Biosystematics of two new species of unusually coloured Australian mygalomorph spiders, (Araneae: Idiopidae), from south‐western Australia. . Journal of the Royal Society of Western Australia. 83:93–97. McKenzie, N. L., Halse, S. A., and Gibson, N. 2000. Some gaps in the reserve system of the southern Carnarvon Basin, Western Australia. Records of the Western Australian Museum. Supplement 61. Raven, R. J. 1982. Systematics of the Australian mygalomorph spider genus Ixamatus Simon (Diplurinae: Dipluridae: ). Australian Journal of Zoology. 30. Shepherd, D. P., Beeston, G. R., and Hopkins, A. J. M. 2001. Native vegetation in Western Australia: Extent, type and status. Technical Report 249. Department of Agriculture, South Perth. Solem, A. 1997. Camaenid land snails from Western and Central Ausrtalia (Mollusca: Pulmonata: Camaenidae). VII. Taxa from Dampierland through the Nullabor. Records of the Western Australian Museum. Supplement 50:1461 ‐ 1906. Thackway, R. and Cresswell, I. D. 1995. An Interim Biogeographic Regionalisation for Australia. Australian Nature Conservation Agency, Canberra. Volschenk, E. S. 2011. Weld Range Scorpion Identification Report. Whisson, C. 2011. Land Snails from the Weld Range Area, Pilbara, Western Australia (Project 1328). Wright, S. 1943. Isolation by distance. Genetics. 28:114 ‐ 138.

November 2011 47

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

APPENDIX A SITE DESCRIPTIONS

November 2011 48

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

P01

Vegetation Association: Shrublands; bowgada and associated spp. scrub

Habitat: Plain

Drainage: Floodplain

P02

Vegetation Association: Shrublands; bowgada and associated spp. scrub

Habitat: Plain

Drainage: Floodplain

November 2011 49

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

P03

Vegetation Association: Shrublands; bowgada and associated spp. scrub

Habitat: Plain

Drainage: Floodplain

P04

Vegetation Association: Shrublands; bowgada and associated spp. scrub

Habitat: Plain

Drainage: Floodplain

P05

Vegetation Association: Succulent steppe with open scrub; scattered mulga & Acacia sclerosperma over saltbush & bluebush

Habitat: Plain

Drainage: Floodplain

November 2011 50

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

P06

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Floodplain

P07

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Floodplain

November 2011 51

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

P08

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Floodplain

P09

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Creek Bed

November 2011 52

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

P10

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Floodplain

P11

Vegetation Association: Shrublands; mulga scrub

Habitat: Plain

Drainage: Floodplain

November 2011 53

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

P12

Vegetation Association: Low woodland; mulga & bowgada (Acacia ramulosa)

Habitat: Plain

Drainage: Floodplain

P13

Vegetation Association: Low woodland; mulga & bowgada (Acacia ramulosa)

Habitat: Plain

Drainage: Floodplain

November 2011 54

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

F01

Vegetation Association: Shrublands; mulga & Acacia quadrimarginea scrub

Habitat: Footslope

Drainage: Floodplain

F02

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Footslope

Drainage: Floodplain

November 2011 55

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

F03

Vegetation Association: Shrublands; mulga & Acacia quadrimarginea scrub

Habitat: Footslope

Drainage: Floodplain

F04

Vegetation Association: Shrublands; mulga & Acacia quadrimarginea scrub

Habitat: Footslope

Drainage: Floodplain

November 2011 56

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

F05

Vegetation Association: Low woodland; mulga & bowgada (Acacia ramulosa)

Habitat: Plain

Drainage: Floodplain

F06

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Floodplain

November 2011 57

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

F07

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Floodplain

F08

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Creek Bed

November 2011 58

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

F09

Vegetation Association: Shrublands; bowgada and associated spp. scrub

Habitat: Plain

Drainage: Floodplain

F10

Vegetation Association: Low woodland; mulga & bowgada (Acacia ramulosa)

Habitat: Plain

Drainage: Floodplain

November 2011 59

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

F11

Vegetation Association: Low woodland; mulga & bowgada (Acacia ramulosa)

Habitat: Plain

Drainage: Floodplain

F12

Vegetation Association: Shrublands; mulga scrub

Habitat: Plain

Drainage: Floodplain

November 2011 60

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

F13

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Creek Bed

F14

Vegetation Association: Low woodland; mulga & bowgada (Acacia ramulosa)

Habitat: Plain

Drainage: Floodplain

November 2011 61

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Habitat Description Habitat Photo

F15

Vegetation Association: Low woodland; mulga & bowgada (Acacia ramulosa)

Habitat: Plain

Drainage: Floodplain

F16

Vegetation Association: Low woodland; mulga (Acacia aneura)

Habitat: Plain

Drainage: Creek Bed

November 2011 62

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

This page has been left blank intentionally

November 2011 63

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

APPENDIX B DATABASE AND LITERATURE RESULTS TABLE

November 2011 64

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Class Order Family Genus Species SRE Status

Arachnida

Araneomorphae Araneidae Dolophones `sp. (VWF767)` no

Clubionidae Clubiona no

Corinnidae Supunna picta no

Supunna funerea no

Desidae Phryganoporus candidus no

Gnaphosidae Eilica no

Lycosidae Venator `woonda group` no

Hoggicosa bicolor no

Dingosa simsoni no

Oonopidae Xestaspis? no

Opopaea no

Oxyopidae Oxyopes no

Prodidomidae Wesmaldra waldockae no

Sparassidae Pediana tenuis no

Theridiidae Latrodectus hasseltii no

Trochanteriidae Corimaethes campestrus no

Zodariidae Storena sinuosa no

Storena sinuosa no

Hetaerica sp. no

Storena sinuosa no

Storena `sp. nov.` no

Storena sinuosa no

Zoridae Argoctenus no

Argoctenus no

Mygalomorphae Actinopodidae Missulena insignis no

Barychelidae Aurecocrypta `chichester` no

Idiommata no

Dipluridae Cethegus sp. potential

Idiopidae Aganippe occidentalis no

Anidiops sp. potential

Idiopidae Gaius villosus potential

November 2011 65

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Class Order Family Genus Species SRE Status

Arachnida

Mygalomorphae Idiopidae Eucyrtops 'sp. A ‘Weld Range’ potential

Eucyrtops 'sp. 6' potential

Idiosoma nigrum potential

`Genus indet.` sp. potential

Chenistonia tepperi no

Nemesiidae `?Kwonkan` sp. potential

Aname sp. potential

Aname sp. A ‘Weld Range’ potential

Aname sp. B ‘Weld Range’ potential

Pseudoscorpiones Atemnidae Oratemnus sp. no

Chthoniidae Tyrannochthonius souchomalus no

Austrochthonius `sp. nov. 8` no

`sp. PSE010 Weld Garypidae Synsphyronus Range` potential

undetermine Olpiidae Austrohorus sp. d

Beierolpium `large` potential

Beierolpium `small` potential

Beierolpium `sp. 8/2` potential

Beierolpium `sp. 8/3` potential

Beierolpium `sp. 8/4` potential

Indolpium sp. no

Scorpiones Bothriuridae Cercophonius granulosus no

Buthidae Isometroides `weld 1` potential

Isometroides `weld 2` potential

Lychas `harveyi?` no

Lychas `splendens` no

Lychas marmoreus no

Lychas jonesae no

Urodacidae Urodacus `armatus` no

Urodacus `weld range 2` potential

Urodacus `weld range 1` potential

November 2011 66

Sinosteel Midwest Corporaton Weld Range Haul Road Short Range Endemic Invertebrate Survey

Class Order Family Genus Species SRE Status

Arachnida

Scorpiones Urodacidae Urodacus `yaschenkoi?` no

Urodacus hoplurus no

Scorpiones Urodacidae Urodacus novaehollandiae no

Chilopoda

Geophilida Mecistocephalidae potential

Scolopendrida Cryptopidae Cryptops sp. no

Scolopendridae Cormocephalus turneri no

Scolopendra laeta no

Scolopendra morsitans no

Diplopoda

Polydesmida Paradoxosomatidae Antichiropus `sp. Weld Range 1?` yes

Antichiropus `sp. Weld Range 2` yes

Polyxenida Polyxenidae no

Synxenidae no

Siphonotidae no

Malacostraca

undetermine Isopoda Armadillidae Buddelundia sp. d

undetermine Spherillo sp. d

undetermine Cubaris sp. d

undetermine Phillociidae Laevophiloscia sp. d

Mollusca

Gastrocopta Camaenidae Pleuroxia sp. potential

November 2011 67