Controlled Synthesis and Characterization of Ru-Fullerene
Total Page:16
File Type:pdf, Size:1020Kb
En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Chimie Organométallique et de Coordination Présentée et soutenue par : M. FAQIANG LENG le jeudi 6 octobre 2016 Titre : CONTROLLED SYNTHESIS AND CHARACTERIZATION OF RU- FULLERENE NANOSTRUCTURES AND THEIR CATALYTIC APPLICATIONS Ecole doctorale : Sciences de la Matière (SDM) Unité de recherche : Laboratoire de Chimie de Coordination (L.C.C.) Directeur(s) de Thèse : M. PHILIPPE SERP MME MARIA ROSA AXET MARTI Rapporteurs : M. JEAN-CYRILLE HIERSO, UNIVERSITE DE BOURGOGNE Mme SOPHIE HERMANS, UNIVERSITE CATHOLIQUE DE LOUVAIN Membre(s) du jury : 1 M. BRUNO CHAUDRET, INSA TOULOUSE, Président 2 Mme CARMEN CLAVER, UNIVERSITAT ROVIRA I VIRGILI TARRAGONA, Membre Acknowledgement Acknowledgement First of all, I would like to express my sincere appreciation to my two supervisors: Professor Philippe SERP and Dr. M. Rosa AXET for their constant guidance and encouragement, and without this my thesis would not have been possible. For their selfless and unwavering support, I am truly grateful. To my committee, Professor Bruno Chaudret, Professor Jean-Cyillle Hierso, Professor Sophie hermans, and Professor Carmen Claver, I am extremely grateful for your assistance and suggestions throughout my PhD defense. To my collaborators, Dr. Iann Gerber in Laboratoire de Physique et Chimie des Nano-objets INSA Toulouse, I would like to thank you for his valuable DFT calculation results, which are very helpful for my PhD thesis. To Professor Nazario Martin, I am very appreciated that he can receive as internship student work in his group, and I would like to thank you for his kindly guidance and help on the functionalized of fullerene in Complutense University of Madrid. The author would like to thank the entire team in Madrid for their warmly hospitality. This thesis could not have been accomplished without the assistance of many people, whose contribution I grateful acknowledge. Especially thanks to Vincent Colliere for the TEM measurement. I am very much thankful for Pierre Lecante, who gave me a valuable WAXS analysis, and also thank you for S. Moldovan and M. Girleanu, who performed the electron tomography analysis in the thesis. Many thanks to Professor Wolfgang Bacsa for the Raman analysis, Jeff Miller for the EAXF analysis, Professor Hervé Martinez for the XPS analysis, and Dr. Philippe Poulin for SAXS measurement. I also would like to thank my colleges and all present or former members of the Catalysis Fine Chemical groups, who I enjoyed to work with during stay in Toulouse. Laurent Ropiquet, Idaline Chanteperdrix and Nora Imlyhen are acknowledged for I Acknowledgement their kindly help for my experiment work in the Lab. Dr. Jerome Volkman are thanked for kindly discussion and suggestions, and also thanks to Professor Martine Urrutigoity for her moral support. I also thank Maryse Gouygou, Professor Philippe Kalck, Odile Dechy-Cabaret, Jérôme Durand, Carole Le Berre for their kindly help during this research work. I am especially thankful to Stéphane Louisia, Justine Harmel, Nicolas Gimeno, Dr. Bruno Machado, Dr. Hania Ahouari, Liping Zhang, Dr. Jian Ye, Professor Rui Zhao, Cuiling Xu for their practical help, valuable friendship and encouragement during the past three years. Many thanks to the whole LCC and ENSIACET staff, and I would like to thank all the people who cooperated in this way or another way to complete this research work. I also thanks to my beloved friends Dr. Weikai Zong, Dr. Renjie Wang, Dr. Diandian Ke, Dr.Congzhang Gao, Xuefei Zhao, Zhouye Chen, Yu Chen for their friendship, support and motivation in the past three years. Finally, I would like to thank my wife Mengmeng for standing beside me throughout my three years PhD life, she has been my motivation for continuing to improve my knowledge and move my research forward. A warm thank to my family for their trustful and supporting. Faqiang LENG II Résumé Résumé Le travail décrit dans cette thèse vise à produire des nanostructures bien ordonnées présentant une forte activité catalytique sur la base d’ensembles de nanoparticules de ruthénium et de fullerènes/fullerènes fonctionnalisés. Le Chapitre 1 présente une analyse bibliographique sur l’utilisation des fullerènes en catalyse hétérogène, en mettant en avant leurs propriétés particulières telles que la stabilité thermique, une grande capacité d'adsorption d'hydrogène et la capacité d’obtenir diverses coordinations. Le Chapitre 2 décrit la synthèse et la caractérisation de nanostructures Ru@C60 obtenues par la réaction de décomposition par au dihydrogène du complexe [Ru(COD)(COT)] en présence de C60. L'effet du solvant et des rapports de Ru/C60 utilisés durant la réaction ont été étudiés. Plusieurs caractérisations d’objets sphériques Ru@C60 et des calculs DFT nous permettent de proposer une voie pour leur formation. Le Chapitre 3 présente la préparation de nouveaux nano-assemblages obtenus à partir de [Ru(COD)(COT)] et de fullerènes fonctionnalisés en utilisant la même méthode décrite dans le chapitre 2. Tout d'abord la synthèse de fullerènes fonctionnalisés C66(COOH)12 est détaillée, puis la synthèse et la caractérisation des nanostructures Ru@C66(COOH)12 ont été étudiés. Le Chapitre 4 décrit l'utilisation de ces nanomatériaux en catalyse. Nous avons préparé trois Ru@fullerene: Ru@C60 dans du dichlorométhane, T-Ru@C60 dans le toluène et Ru@C66(COOH)12. Ensuite, l'activité catalytique et la sélectivité des catalyseurs préparés Ru@C60, T-Ru@C60 et Ru@C66(COOH)12 ont été étudiées pour l'hydrogénation du nitrobenzène et du cinnamaldéhyde. Des calculs DFT ont permis de rationaliser les résultats obtenus pour l'hydrogénation sélective de nitrobenzène sur Ru@C60. Mots clés: ruthénium; nanoparticules; C60; C66(COOH)12; catalyse; hydrogénation; nitrobenzène, cinnamaldéhyde III Abstract Abstract The work described in this thesis aims to produce well-ordered nanostructures presenting high catalytic activity, on the bases of the assembly of ruthenium nanoparticles and fullerene/functionalized fullerene. Chapter 1 provides a review on the use of fullerene and fullerene-based materials in heterogeneous catalysis, emphasizing their specific properties such as thermal stability, high capacity for hydrogen adsorption and the ability of various coordination modes. Chapter 2 describes the synthesis and characterization of Ru@C60 nanostructures produced by the decomposition reaction of [Ru(COD)(COT)] in the presence of C60. The effect of the solvent and ratios of Ru/C60 on the course of the reaction have been investigated. Several characterizations of spherical Ru@C60 objects and DFT calculations allow us to propose a pathway for their formation. Chapter 3 presents new nano-assembly preparation based on [Ru(COD)(COT)] and functionalized fullerene using the same method as they are described in chapter 2. First, the synthesis of functionalized fullerene C66(COOH)12 is detailed, and then the synthesis and characterization of Ru@C66(COOH)12 is studied. Chapter 4 describes the use of these nanomaterials in catalysis. We have prepared three Ru@fullerene catalysts, which are Ru@C60 in dichloromethane, T-Ru@C60 in toluene, and Ru@C66(COOH)12. Then, the catalytic activity and selectivity of the prepared catalyst Ru@C60, T-Ru@C60 and Ru@C66(COOH)12 are studied for the hydrogenation of nitrobenzene and cinnamaldehyde. DFT calculations allow to rationalize the results obtained for the selective hydrogenation of nitrobenzene over Ru@C60. Keywords: Ruthenium; nanoparticles; C60; C66(COOH)12; catalysis; hydrogenation; nitrobenzene; cinnamaldehyde IV Table of contents Table of contents Acknowledgement ......................................................................................................... I Résumé ......................................................................................................................... III Abstract ........................................................................................................................ IV Table of contents ........................................................................................................... V General introduction and objectives ............................................................................ IX References ............................................................................................................ XI List of abbreviations .................................................................................................. XII Chapter 1 Introduction ................................................................................................... 1 1.1 Introduction ...................................................................................................... 2 1.1.1 C60 structure .......................................................................................... 4 1.1.2 C60 synthesis.......................................................................................... 6 1.2 Coordination chemistry of fullerene C60 .......................................................... 7 1.β.1 η2 coordination ...................................................................................... 8 1.β.β η5 coordination .................................................................................... 18 1.β.γ η1 coordination .................................................................................... 21 1.β.4 η3 and η4 coordinations ......................................................................