What Is Oxidative Stress?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chloroplast-Derived Photo-Oxidative Stress Causes Changes in H2O2 And
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.212670; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Short title: 2 Transmission of ROS signals from chloroplasts 3 Corresponding authors: 4 Andreas J. Meyer 5 Institute of Crop Science and Resource Conservation (INRES), Chemical Signalling, 6 University of Bonn 7 Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany 8 Phone: +49 228 73 60353 9 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.212670; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 10 Chloroplast-derived photo-oxidative stress causes changes in H2O2 and 11 EGSH in other subcellular compartments 12 Authors: 13 José Manuel Ugalde1, Philippe Fuchs1,2, Thomas Nietzel2, Edoardo A. Cutolo4, Ute C. 14 Vothknecht4, Loreto Holuigue3, Markus Schwarzländer2, Stefanie J. Müller-Schüssele1, 15 Andreas J. Meyer1,* 16 1 Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 17 Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany 18 2 Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D- 19 48143 Münster, Germany 20 3 Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, 21 Pontificia Universidad Católica de Chile, Avda. -
Amplification of Oxidative Stress by a Dual Stimuli-Responsive Hybrid Drug
ARTICLE Received 11 Jul 2014 | Accepted 12 Mar 2015 | Published 20 Apr 2015 DOI: 10.1038/ncomms7907 Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death Joungyoun Noh1, Byeongsu Kwon2, Eunji Han2, Minhyung Park2, Wonseok Yang2, Wooram Cho2, Wooyoung Yoo2, Gilson Khang1,2 & Dongwon Lee1,2 Cancer cells, compared with normal cells, are under oxidative stress associated with the increased generation of reactive oxygen species (ROS) including H2O2 and are also susceptible to further ROS insults. Cancer cells adapt to oxidative stress by upregulating antioxidant systems such as glutathione to counteract the damaging effects of ROS. Therefore, the elevation of oxidative stress preferentially in cancer cells by depleting glutathione or generating ROS is a logical therapeutic strategy for the development of anticancer drugs. Here we report a dual stimuli-responsive hybrid anticancer drug QCA, which can be activated by H2O2 and acidic pH to release glutathione-scavenging quinone methide and ROS-generating cinnamaldehyde, respectively, in cancer cells. Quinone methide and cinnamaldehyde act in a synergistic manner to amplify oxidative stress, leading to preferential killing of cancer cells in vitro and in vivo. We therefore anticipate that QCA has promising potential as an anticancer therapeutic agent. 1 Department of Polymer Á Nano Science and Technology, Polymer Fusion Research Center, Chonbuk National University, Backje-daero 567, Jeonju 561-756, Korea. 2 Department of BIN Convergence Technology, Chonbuk National University, Backje-daero 567, Jeonju 561-756, Korea. Correspondence and requests for materials should be addressed to D.L. (email: [email protected]). NATURE COMMUNICATIONS | 6:6907 | DOI: 10.1038/ncomms7907 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. -
Athero-2017.Pdf
Author's Personal Copy Atherosclerosis 264 (2017) 100e107 Contents lists available at ScienceDirect Atherosclerosis journal homepage: www.elsevier.com/locate/atherosclerosis Deuterium-reinforced polyunsaturated fatty acids protect against atherosclerosis by lowering lipid peroxidation and hypercholesterolemia Jimmy F.P. Berbee a, b, Isabel M. Mol a, b, Ginger L. Milne c, Erik Pollock d, Geerte Hoeke a, b, Dieter Lütjohann e, Claudia Monaco f, Patrick C.N. Rensen a, b, Lex H.T. van der Ploeg g, * Mikhail S. Shchepinov g, a Dept. of Medicine, Div. of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands b Leiden Metabolic Research Services, Leiden University Medical Center, Leiden, The Netherlands c Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA d University of Arkansas, Stable Isotope Laboratory, 850 W Dickson Street, Fayetteville, AR 72701, USA e Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Bonn, Germany f Kennedy Institute of Rheumatology, Nuffield Dept. of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom g Retrotope, Inc, 4300 El Camino Real, Suite 201, Los Altos, CA 94022, USA article info abstract Article history: Background and aims: Oxidative modification of lipoproteins is a crucial step in atherosclerosis devel- Received 14 April 2017 opment. Isotopic-reinforced polyunsaturated fatty acids (D-PUFAs) are more resistant to reactive oxygen Received in revised form species-initiated chain reaction of lipid peroxidation than regular hydrogenated (H-)PUFAs. We aimed at 2 June 2017 investigating the effect of D-PUFA treatment on lipid peroxidation, hypercholesterolemia and athero- Accepted 20 June 2017 sclerosis development. -
Oxygen Is Instrumental for Biological Signaling: an Overview
Review Oxygen Is Instrumental for Biological Signaling: An Overview John T. Hancock Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; [email protected]; Tel.: +44-(0)117-328-2475 Abstract: Control of cellular function is extremely complex, being reliant on a wide range of compo- nents. Several of these are small oxygen-based molecules. Although reactive compounds containing oxygen are usually harmful to cells when accumulated to relatively high concentrations, they are also instrumental in the control of the activity of a myriad of proteins, and control both the upregulation and downregulation of gene expression. The formation of one oxygen-based molecule, such as the superoxide anion, can lead to a cascade of downstream generation of others, such as hydrogen · peroxide (H2O2) and the hydroxyl radical ( OH), each with their own reactivity and effect. Nitrogen- based signaling molecules also contain oxygen, and include nitric oxide (NO) and peroxynitrite, both instrumental among the suite of cell signaling components. These molecules do not act alone, but form part of a complex interplay of reactions, including with several sulfur-based compounds, such as glutathione and hydrogen sulfide (H2S). Overaccumulation of oxygen-based reactive compounds may alter the redox status of the cell and lead to programmed cell death, in processes referred to as oxidative stress, or nitrosative stress (for nitrogen-based molecules). Here, an overview of the main oxygen-based molecules involved, and the ramifications of their production, is given. Keywords: carbon monoxide; hydrogen peroxide; hydroxyl radicals; hydrogen sulfide; NADPH oxidase; nitric oxide; peroxynitrite; redox; superoxide Citation: Hancock, J.T. -
Oxidative Stress and Radical-Induced Signalling John R
part 2. mechanisms of carcinogenesis chapter 15. Oxidative stress and radical-induced signalling John R. Bucher PART 2 CHAPTER 15 Throughout evolution, aerobic An imbalance between the normal Pierre et al., 2002). Peroxisomes are organisms have developed mul- production of oxygen radicals and a source of H2O2, through reactions tiple defence systems to protect their capture and disposal by pro- involving acyl-CoA oxidase (which themselves against oxygen radicals tective enzyme systems and antiox- is involved in oxidation of long-chain (Benzie, 2000). One-, two-, and idants results in oxidative stress, and fatty acids), d-amino acid oxidase, three-electron reductions of molecu- this condition has been proposed and other oxidases (Schrader and lar oxygen give rise to, respectively, to be the basis of many deleterious Fahimi, 2006). • − superoxide (O2 ), hydrogen peroxide chronic health conditions and dis- When stimulated, inflammatory (H2O2, a radical precursor), and the eases, including cancer. cells such as neutrophils, eosino- highly reactive hydroxyl radical (•OH) phils, and macrophages produce ox- or equivalent transition metal–oxy- Sources of oxygen radicals ygen radicals during the associated gen complexes (Miller et al., 1990). respiratory burst (the rapid release of Reactions of oxygen radicals with Mitochondrial oxidative phosphor- reactive oxygen species from cells) cellular components can deplete an- ylation is a major source of oxy- that involves nicotinamide adenine tioxidants, can cause direct oxidative gen radicals of endogenous -
Oxidative Stress and Antioxidant Mechanisms in Human Body
Journal of Applied Biotechnology & Bioengineering Review Article Open Access Oxidative stress and antioxidant mechanisms in human body Abstract Volume 6 Issue 1 - 2019 The present review aims to high light on the oxidative stress, and prevention by Almokhtar A Adwas,1 Ata Sedik Ibrahim internal antioxidants and external antioxidants by some natural products possessing Elsayed,2 Azab Elsayed Azab,3 Fawzia antioxidant properties. Oxidative stress occurs when the balance between reactive 4 oxygen species (ROS) formation and detoxification favors an increase in ROS levels, Amhimmid Quwaydir 1 leading to disturbed cellular function. ROS causes damage to cellular macromolecules Department of Pharmacology, Faculty of Medicine, Sabratha University, Libya causing lipid peroxidation, nucleic acid, and protein alterations. Their formation is 2Department of Basic Medical Sciences, Inaya Medical College, considered as a pathobiochemical mechanism involved in the initiation or progression Saudi Arabia phase of various diseases such as atherosclerosis, ischemic heart diseases, diabetes, 3Department of Physiology, Faculty of Medicine, Sabratha and initiation of carcinogenesis or liver diseases. In order to maintain proper cell University, Libya signaling, it is likely that a number of radical scavenging enzymes maintain a 4Department of Zoology, Faculty of Science, Sabratha University, threshold level of ROS inside the cell. However, when the level of ROS exceeds this Libya threshold, an increase in ROS production may lead to excessive signals to the cell, in addition to direct damage to key components in signaling pathways. ROS can also Correspondence: Azab Elsayed Azab, Head of Physiology irreversibly damage essential macromolecules. Protein-bound thiol and non-protein- Department, Faculty of Medicine, Sabratha University, Sabratha, thiol are the major cytosolic low molecular weight sulfhydryl compound that acts Libya, Email as a cellular reducing and a protective reagent against numerous toxic substances including most inorganic pollutants, through the –SH group. -
Lipid Peroxidation As a Biochemical Marker for Oxidative Stress During Drought
LIPID PEROXIDATION AS A BIOCHEMICAL MARKER FOR OXIDATIVE STRESS DURING DROUGHT. AN EFFECTIVE TOOL FOR PLANT BREEDING. Mateusz Labudda Department of Biochemistry, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02–776 Warsaw, Poland e–mail: [email protected] Key words: abiotic stress, crop breeding, lipid oxidation, malondialdehyde, reactive oxygen species, water deficit Abstract Oxidative stress can be induced by a wide range of environmental factors, including drought. One of the main cellular components susceptible to damage by reactive oxygen species are lipids (by peroxidation of unsaturated fatty acids in biological membranes). The assay of Thiobarbituric Acid Reactive Substances (TBARS) is a well–established method for monitoring lipid peroxidation. This relatively simple analytical protocol facilitates extensive screening research in plant breeding. Suggested citation: Labudda M. (2013): Lipid peroxidation as a biochemical marker for oxidative stress during drought. An effective tool for plant breeding. E-wydawnictwo, Poland, http://www.e-wydawnictwo.eu/Document/DocumentPreview/3342 1 Introduction Higher plants have developed the ability to adapt to external, and frequently harmful, environmental factors. Drought is considered to be one of the major sources of environmental stress. It seriously affects crop productivity by inhibiting plant growth and development (Anjum et al. 2011a) and results in a 50% or more reduction in average yields (Wang et al. 2003). Water stress inhibits photosynthesis, induces changes in chlorophyll content and composition, and damages the photosynthetic apparatus (Nayyar & Gupta 2006). Furthermore, dehydration of tissue inhibits photochemical activities and brings about a reduction in the activity of Calvin–Benson–Basshamn cycle enzymes (Monakhova & Chernyadev 2002). It is well established that chloroplast, mitochondria and peroxisomes are a major source of reactive oxygen species (ROS) in plant cells. -
Chem 51B Chapter 15 Notes
Lecture Notes Chem 51B S. King Chapter 15 Radical Reactions I. Introduction A radical is a highly reactive intermediate with an unpaired electron. Radicals are involved in oxidation reactions, combustion reactions, and biological reactions. Structure: compare with: compare with: Stability: Free radicals and carbocations are both electron deficient and they follow a similar order of stability: R R H H , > R C > R C > R C > H C R H H H • like carbocations, radicals can be stabilized by resonance. H H H H C C C C H C CH3 H C CH3 H H • unlike carbocations, no rearrangements are observed in free radical reactions. Q. How are free radicals formed? A. Free radicals are formed when bonds break homolytically: 103 Look @ the arrow pushing: Notice the fishhook arrow! It shows movement of a single electron: Compare with heterolytic bond cleavage: A double-headed arrow shows movement of a pair of electrons: Nomenclature: bromide ion bromine atom Bromine (molecule) II. General Features of Radical Reactions Radicals are formed from covalent bonds by adding energy in the form of heat or light (hν). Some radical reactions are carried out in the presence of radical initiators, which contain weak bonds that readily undergo homolysis. The most common radical initiators are peroxides (ROOR), which contain the weak O−O bond. A. Common Reactions of Radicals: Radicals undergo two common reactions: they react with σ-bonds and they add to π-bonds. 1. Reaction of a Radical X• with a C−H bond A radical X• abstracts a H atom from a C−H bond to form H−X and a carbon radical: 104 2. -
4.01 Ozone, Hydroxyl Radical, and Oxidative Capacity
4.01 Ozone, Hydroxyl Radical,and OxidativeCapacity R.G.Prinn Massachusetts InstituteofTechnology,Cambridge, MA, USA 4.01.1 INTRODUCTION 1 4.01.2 EVOLUTIONOFOXIDIZING CAPABILITY 3 4.01.2.1 Prebiotic Atmosphere 4 4.01.2.2 Pre-industrialAtmosphere 5 4.01.3 FUNDAMENTAL REACTIONS 5 4.01.3.1 Troposphere 5 4.01.3.2 Stratosphere 7 4.01.4METEOROLOGICAL INFLUENCES 8 4.01.5HUMAN INFLUENCES 9 4.01.5.1 IndustrialRevolution 9 4.01.5.2 FutureProjections 10 4.01.6 MEASURING OXIDATION RATES 11 4.01.6.1 DirectMeasurement 11 4.01.6.2 IndirectMeasurement 13 4.01.7 ATMOSPHERIC MODELS AND OBSERVATIONS 16 4.01.8CONCLUSIONS 16 REFERENCES 17 4.01.1 INTRODUCTION overall rateofthisprocess asthe “oxidation capacity” ofthe atmosphere.Without thiseffi- The atmosphereisachemically complexand cient cleansingprocess,the levels ofmany dynamic systeminteractinginsignificant ways emitted gasescouldriseso high thattheywould withthe oceans,land, andlivingorganisms. A radicallychange the chemicalnatureofour keyprocess proceedinginthe atmosphereis atmosphereandbiosphereand, through the oxidation ofawidevariety ofrelatively reduced greenhouseeffect,our climate. chemicalcompoundsproduced largely bythe Oxidation becameanimportant atmospheric biosphere.Thesecompoundsinclude hydrocar- reaction on Earthonce molecularoxygen(O 2 ) bons(RH),carbon monoxide (CO),sulfur dioxide from photosynthesishad reached sufficiently (SO2 ),nitrogenoxides(NOx ),andammonia high levels.ThisO 2 couldthenphotodissociate (NH3 )amongothers. Theyalso include gases inthe atmosphereto giveoxygenatoms,which associated -
Garlic and Gaseous Mediators
TIPS 1521 No. of Pages 11 Review Garlic and Gaseous Mediators Peter Rose,1,2,* Philip Keith Moore,3 and Yi-Zhun Zhu2 Garlic (Allium sativum) and allied plant species are rich sources of sulfur Highlights compounds. Major roles for garlic and its sulfur constituents include the Garlic has been used for centuries to regulation of vascular homeostasis and the control of metabolic systems linked treat human diseases. to nutrient metabolism. Recent studies have indicated that some of these sulfur Sulfur compounds present in the compounds, such as diallyl trisulfide (DATS), alter the levels of gaseous sig- edible parts of garlic can alter the levels of gaseous signalling molecules like nalling molecules including nitric oxide (NO), hydrogen sulfide (H2S), and per- NO, CO, and H2S in mammalian cells haps carbon monoxide (CO) in mammalian tissues. These gases are important and tissues. in cellular processes associated with the cardiovascular system, inflammation, Some of garlic’s sulfur compounds and neurological functions. Importantly, these studies build on the known have been found to act as natural biological effects of garlic and associated sulfur constituents. This review H2S donor molecules. highlights our current understanding of the health benefits attributed to edible plants like garlic. Garlic and Its Many Roles Garlic (Allium sativum) has been used in the treatment and prevention of a wide variety of ailments for centuries [1]. The best known of these are the use of garlic as a ‘blood-thinning’ agent in China and India [2], as a treatment for asthma, for bacterial infections such as leprosy, and for heart disorders by the Egyptians [3]. -
Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases
International Journal of Molecular Sciences Review Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases Fabrice Collin Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France; [email protected] Received: 26 April 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: Increasing numbers of individuals suffer from neurodegenerative diseases, which are characterized by progressive loss of neurons. Oxidative stress, in particular, the overproduction of Reactive Oxygen Species (ROS), play an important role in the development of these diseases, as evidenced by the detection of products of lipid, protein and DNA oxidation in vivo. Even if they participate in cell signaling and metabolism regulation, ROS are also formidable weapons against most of the biological materials because of their intrinsic nature. By nature too, neurons are particularly sensitive to oxidation because of their high polyunsaturated fatty acid content, weak antioxidant defense and high oxygen consumption. Thus, the overproduction of ROS in neurons appears as particularly deleterious and the mechanisms involved in oxidative degradation of biomolecules are numerous and complexes. This review highlights the production and regulation of ROS, their chemical properties, both from kinetic and thermodynamic points of view, the links between them, and their implication in neurodegenerative diseases. Keywords: reactive oxygen species; superoxide anion; hydroxyl radical; hydrogen peroxide; hydroperoxides; neurodegenerative diseases; NADPH oxidase; superoxide dismutase 1. Introduction Reactive Oxygen Species (ROS) are radical or molecular species whose physical-chemical properties are well-known both on thermodynamic and kinetic points of view. -
Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms Cite This: RSC Adv.,2015,5, 27986 Satish Balasaheb Nimse*A and Dilipkumar Palb
RSC Advances REVIEW View Article Online View Journal | View Issue Free radicals, natural antioxidants, and their reaction mechanisms Cite this: RSC Adv.,2015,5, 27986 Satish Balasaheb Nimse*a and Dilipkumar Palb The normal biochemical reactions in our body, increased exposure to the environment, and higher levels of dietary xenobiotic's result in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ROS and RNS create oxidative stress in different pathophysiological conditions. The reported chemical evidence suggests that dietary antioxidants help in disease prevention. The antioxidant compounds react in one-electron reactions with free radicals in vivo/in vitro and prevent oxidative damage. Therefore, it is very important to understand the reaction mechanism of antioxidants with the free radicals. This review elaborates the mechanism of action of the natural antioxidant compounds and Received 28th October 2014 assays for the evaluation of their antioxidant activities. The reaction mechanisms of the antioxidant Accepted 12th March 2015 assays are briefly discussed (165 references). Practical applications: understanding the reaction DOI: 10.1039/c4ra13315c mechanisms can help in evaluating the antioxidant activity of various antioxidant compounds as well as Creative Commons Attribution 3.0 Unported Licence. www.rsc.org/advances in the development of novel antioxidants. 1. Introduction and background enzymes convert dangerous oxidative products to hydrogen peroxide (H2O2) and then to water, in a multi-step process in Antioxidants are molecules that inhibit or quench free radical presence of cofactors such as copper, zinc, manganese, and reactions and delay or inhibit cellular damage.1 Though the iron. Non-enzymatic antioxidants work by interrupting free antioxidant defenses are different from species to species, the radical chain reactions.