South-West Ravensthorpe Greenstone Belt

Total Page:16

File Type:pdf, Size:1020Kb

South-West Ravensthorpe Greenstone Belt Conservation Science W. Aust. 8 (3) : 313–332 (2013) Flora and vegetation of greenstone formations of the Yilgarn Craton: south-west Ravensthorpe Greenstone Belt WENDY A THOMPSON, JESSICA ALLEN AND ROSEMARY JASPER Science Division, Department of Environment and Conservation, PO Box 51, Wanneroo, Western Australia, 6946. Email: [email protected] ABSTRACT A quadrat-based survey of the flora of the south-west region of the Ravensthorpe Greenstone Belt identified 321 taxa, including six taxa of conservation significance and three weed species. All of the conservation-listed taxa were known to the area. Range extensions were recorded for three taxa and additional collections of two Austrostipa species currently under taxonomic description were made. Six community types were derived from statistical classification of the 50 quadrats. These community types were similar to those described from other parts of the Ravensthorpe Greenstone Belt. As with the other greenstone belts of the Yilgarn Craton, soil chemical parameters and site physical characteristics were influential in delineating community types. Only a small portion of the study area is in the conservation estate; mining and exploration pressures remain the primary threat to this species-rich area. Keywords: classification, Esperance Plains, Fitzgerald Biosphere, floristic diversity, ultramafics, vegetation communities INTRODUCTION target area of the Ravensthorpe Greenstone Belt are roughly 33° 30’ S, 33° 50’ S and 119° 45’ E, 120° 05’ E, Recent surveys of the flora and vegetation of the Yilgarn respectively. The land tenure for the greenstone belt, Craton have identified patterns of high beta-diversity located within the Ravensthorpe Shire, includes freehold, between banded ironstone ranges and associated unallocated crown land and crown land, including the greenstone belts (Gibson et al. 2007). The greenstone belts Fitzgerald River National Park, Cocanarup Timber of the Yilgarn Craton have long been of interest for pastoral Reserve and Crown Reserve 12324 (recreation). settlement and resource exploration. The south-west region of the Ravensthorpe Greenstone Belt has received Land use history attention for its mineral deposits, yet scant attention in terms of systematic description of its flora and vegetation, The Ravensthorpe area was first surveyed in 1848, with despite being part of the UNESCO Fitzgerald Biosphere the Dunn brothers taking up land in 1868 at Cocanarup. Reserve. This study is part of a survey effort to document Following the discovery of gold in Annabel Creek, the flora, vegetation communities and associated development occurred in association with gold and copper environmental parameters of the greenstone belts in the mines. Ravensthorpe was the state’s main copper- Yilgarn Craton (see Gibson et al. 2012). producing area until the closure of major operations in 1971 (Thom et al. 1977). Mineral exploration and mining has continued sporadically in the Ravensthorpe area, with STUDY SITE particular interest in deposits of gold, copper, nickel and tantalum. At present, the Galaxy Resources Ltd operation The south-western region of the Ravensthorpe Greenstone is focused on tantalum extraction north of Ravensthorpe, Belt is situated in the centre of the Esperance Plains and Tectonic Resources has two operations centred on Bioregion (IBRA; Thackway & Cresswell 1995). The belt gold, copper, lead and zinc, primarily south of begins c. 25 km south of the South Coast Highway near Ravensthorpe. A nickel mine operation in the the West River, trending north-north-east toward Ravensthorpe Range, which was placed in ‘care and Ravensthorpe township (Fig. 1). The greenstone belt maintenance’ in 2009, has been acquired by First covers c. 45 km from north to south and c. 20 km west to Quantum, with annual production estimated to be east. The latitudinal and longitudinal boundaries of the between 28,000–39,000 tonnes per annum (First Quantum 2010). In addition to the mineral interest, the © The Government of Western Australia, 2013 area is farmed by a mixture of free- and lease-hold sheep 314 WA Thompson et al. Figure 1. Map showing the location of the south-west region of the Ravensthorpe Greenstone Belt survey area, with major landforms and landmarks indicated. The locations of the 50 permanent quadrats are marked by solid triangles (). and cereal producers. Fitzgerald River National Park sits with warm to hot summers and mild winters. Rain falls in the south-west of the study area. The park and study throughout the year, with a slight increase in average area are within the UNESCO Fitzgerald River Biosphere monthly rainfall between May and September (mean >40 Reserve. The area is recognised internationally as a mm per month; Bureau of Meteorology 2010). Average biodiversity hotspot that is biologically rich in both flora annual rainfall at Ravensthorpe township (c. 10 km north- and fauna (Myers et al. 2000). east of the survey area) is 425.1 mm (based on records from 1901 to 2010), with the months of July and Climate December having the highest and lowest mean monthly rainfall, respectively. The mean annual maximum and mean The south-west region of the Ravensthorpe Greenstone minimum temperatures recorded between 1962 and 2010 Belt sits in the central portion of the Esperance Plains are 22.7 °C and 10.4 °C, respectively. The warmest months Bioregion, which has a temperate Mediterranean climate are from November through to March, with average Flora and vegetation of south-west Ravensthorpe Greenstone Belt 315 maximum daily temperatures above 25 °C. The lowest values and is recognised for being floristically rich daily minimum temperatures occur between May and (Chapman & Newbey 1995a; Craig et al. 2008; Kern et October, where mean daily minimum temperatures are al. 2008). Vegetation surveys and mapping have occurred below 10 °C. Temperatures below zero are an infrequent across the greenstone belt and survey area, principally occurrence. focusing on the Fitzgerald River National Park (Alpin & Newbey 1990; Chapman & Newbey 1995b) and the Geology Ravensthorpe Range (Chapman & Newbey 1995a; Craig et al. 2008; Kern et al. 2008; Markey et al. 2012). The south-west region of the Ravensthorpe Greenstone The area is dominated by scrub- and mallee-heath Belt has been mapped and described on the Newdegate sandplains, characterised by the presence of Eucalyptus (Thom et al. 1984) and Ravensthorpe (Thom et al. 1977) pleurocarpa (formerly E. tetragona; Beard 1990). Beard 1:250,000 geological sheets and straddles the 1:100,000 (1981) mapped the south-west portion of the Cocanarup and Ravensthorpe map sheets (Witt 1994, Ravensthorpe Greenstone Belt as predominantly E. nutans 1995). This region of the greenstone belt is characterised mallee on greenstone, with pockets of E. loxophleba and by relatively low relief, and is surrounded by low granite E. occidentalis woodlands and E. redunca scrub in the hills. The dominant feature in the landscape is the south. The western boundary of the study area, Ravensthorpe Range, a north-west trending band of hills encompassing some of the Fitzgerald River National Park, that rises c. 400 m above sea level, north-east of the is chiefly mallee and mallee-heath. Ravensthorpe township (Thom et al. 1984). The Ravensthorpe Greenstone Belt belongs to the The Ravensthorpe Greenstone Belt, part of the Yilgarn Ravensthope Vegetation System (Beard 1981). Vegetation Craton, occurs at the southern extent of the Southern associations tend to change with changes in topography Cross Domain within the Youanmi Terrane (Cassidy et and soil depth. Recent surveys have focused on the flora al. 2006). The Archaean-aged Yilgarn Craton is an example and vegetation of the Ravensthorpe Range (Craig et al. of the intact, tectonically stable crusts that occur in the 2008; Kern et al. 2008; Markey et al. 2012), a narrow central portion of the Pre-Cambrian Western Shield of range of hills with subdued relief occupying much of the Australia (Anand & Paine 2002). The craton contains a north-east area of the greenstone belt. The Ravensthorpe series of greenstone belts within vast areas of granitoid Range is dominated by thicket communities on the and gneiss, believed to have formed between 3000 Ma uplands, including E. preissiana and E. lehmannii with and 2600 Ma (Myers 1993; Myers & Swagers 1997). Banksia heliantha (formerly Dryandra quercifolia; Beard Greenstone refers to the surface expression of ultramafic 1981). Mallee communities tend to be found further and mafics associated with Archaean meta-volcanic and downslope, with E. loxophleba and E. salmonophloia meta-sedimentary rock sequences in Western Australia, woodlands occurring on the deeper valley soils (Beard occurring as outcrops or ranges (Cole 1992). 1981). The majority of the Ravensthorpe Greenstone Belt is Following detailed vegetation mapping (1:10,000), composed of tonalite and volcanic associations with the Craig et al. (2008) identified 70 vegetation units associated western edge dominated by strongly deformed meta- with the Ravensthorpe Range between Mt. Short and sedimentary rocks (Witt 1997). The principal geologic Kundip. Two-hundred permanent vegetation quadrats units of the study area belong to Archaean Annabelle were established on the Ravensthorpe Range in 2007, and volcanics (metamorphosed mafics to intermediate tuffs), 627 taxa representing 59 families were recorded (Kern et Manyutup tonalite (metamorphosed tonalite and quartz al. 2008). Recently, Markey et al. (2012) analysed the Kern diorite
Recommended publications
  • Inventory of Taxa for the Fitzgerald River National Park
    Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park 2013 Damien Rathbone Department of Environment and Conservation, South Coast Region, 120 Albany Hwy, Albany, 6330. USE OF THIS REPORT Information used in this report may be copied or reproduced for study, research or educational purposed, subject to inclusion of acknowledgement of the source. DISCLAIMER The author has made every effort to ensure the accuracy of the information used. However, the author and participating bodies take no responsibiliy for how this informrion is used subsequently by other and accepts no liability for a third parties use or reliance upon this report. CITATION Rathbone, DA. (2013) Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park. Unpublished report. Department of Environment and Conservation, Western Australia. ACKNOWLEDGEMENTS The author would like to thank many people that provided valable assistance and input into the project. Sarah Barrett, Anita Barnett, Karen Rusten, Deon Utber, Sarah Comer, Charlotte Mueller, Jason Peters, Roger Cunningham, Chris Rathbone, Carol Ebbett and Janet Newell provided assisstance with fieldwork. Carol Wilkins, Rachel Meissner, Juliet Wege, Barbara Rye, Mike Hislop, Cate Tauss, Rob Davis, Greg Keighery, Nathan McQuoid and Marco Rossetto assissted with plant identification. Coralie Hortin, Karin Baker and many other members of the Albany Wildflower society helped with vouchering of plant specimens. 2 Contents Abstract ..............................................................................................................................
    [Show full text]
  • Australian Native Plants Society Australia Hakea
    AUSTRALIAN NATIVE PLANTS SOCIETY AUSTRALIA HAKEA STUDY GROUP NEWSLETTER No. 59 OCTOBER 2015 ISSN0727-7008 Leader Paul Kennedy OAM 210 Aireys St. Elliminyt 3250 Tel. 03-52315569 Internet [email protected] Dear members, I apologise for being late with this newsletter, however, my modem ceased operating and it took six weeks to fix. Two of the new modems they sent out did not work and each took eight days to arrive by post. It was very frustrating just when I needed the computer to be operational. The weather here has been very erratic. There was no rain in October until the last day when 18mm fell. There were numerous warm days well above the average and I had to water the smaller plants that had just gone in the ground. Normally we would receive about 100mm for the month. The inland members gardens have been experiencing very dry conditions and the possibility of a very hot summer will see many plants needing the addition of moisture. Outback Queensland in particular is in the throes of a severe drought and the Hakeas from that region such as maconochieana, collina and ivoryi will be greatly stressed as well as being prone to damage from goats. Along the east coast from Gippsland to northern NSW there has been plenty of rain and gardens have been subject to very wet conditions. In Western Australia Jennifer Young has reported that good winter rains have transformed the northern sand plains into a blaze of flowering plants from Exmouth to Kalbarri. Our garden in Colac continues to thrive.
    [Show full text]
  • Grevillea Study Group
    AUSTRALIAN NATIVE PLANTS SOCIETY (AUSTRALIA) INC GREVILLEA STUDY GROUP NEWSLETTER NO. 109 – FEBRUARY 2018 GSG NSW Programme 2018 02 | EDITORIAL Leader: Peter Olde, p 0432 110 463 | e [email protected] For details about the NSW chapter please contact Peter, contact via email is preferred. GSG Vic Programme 2018 03 | TAXONOMY Leader: Neil Marriott, 693 Panrock Reservoir Rd, Stawell, Vic. 3380 SOME NOTES ON HOLLY GREVILLEA DNA RESEARCH p 03 5356 2404 or 0458 177 989 | e [email protected] Contact Neil for queries about program for the year. Any members who would PHYLOGENY OF THE HOLLY GREVILLEAS (PROTEACEAE) like to visit the official collection, obtain cutting material or seed, assist in its BASED ON NUCLEAR RIBOSOMAL maintenance, and stay in our cottage for a few days are invited to contact Neil. AND CHLOROPLAST DNA Living Collection Working Bee Labour Day 10-12 March A number of members have offered to come up and help with the ongoing maintenanceof the living collection. Our garden is also open as part of the FJC Rogers Goodeniaceae Seminar in October this year, so there is a lot of tidying up and preparation needed. We think the best time for helpers to come up would be the Labour Day long weekend on 10th-12th March. We 06 | IN THE WILD have lots of beds here, so please register now and book a bed. Otherwise there is lots of space for caravans or tents: [email protected]. We will have a great weekend, with lots of A NEW POPULATION OF GREVILLEA socializing, and working together on the living collection.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Acacia Bifaria Maslin
    WATTLE Acacias of Australia Acacia bifaria Maslin Source: Australian Plant Image Index Source: Australian Plant Image Index (dig.949). Source: Australian Plant Image Index (dig.950). (dig.16967). ANBG © M. Fagg, 2005 ANBG © M. Fagg, 2005 ANBG © M. Fagg, 2010 Source: Australian Plant Image Index (a.30952). ANBG © M. Fagg, 2002 Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com Acacia bifaria occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). Family Fabaceae Distribution Occurs from Ravensthorpe WSW to the Fitzgerald R. (c. 30 km due E of Jerramungup), south-western W.A. Description Prostrate or semi-prostrate shrub to 0.5 m high and 2 m across. Branchlets slightly to prominently flexuose, glabrous. Stipules persistent. Phyllodes continuous with branchlets, bifariously decurrent and forming opposite wings with each one extending to the next below, 1–3.5 cm long, 4–10 mm wide, coriaceous, green to subglaucous, glabrous except axils densely and minutely resin-haired; margins occasionally undulate; free portion of phyllode with obviously rounded adaxial margin, 5–15 mm long, excentrically mucronate, with main nerve ±obscure or superficially absent; gland not prominent. Inflorescences rudimentary, 1-headed racemes with axes 0.5–1.5 mm long; peduncles 2–12 mm long, glabrous, sometimes descending in fruit; heads globular, 16–23-flowered, light golden. Flowers 5-merous; sepals ±free; petals nerveless. Pods strongly curved to twice-coiled, ±terete, to 2 cm long, 2–3 mm wide, thinly crustaceous, black, ±glabrous. Seeds longitudinal, oblong, c.
    [Show full text]
  • Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
    UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation.
    [Show full text]
  • Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt
    plants Article Synoptic Overview of Exotic Acacia, Senegalia and Vachellia (Caesalpinioideae, Mimosoid Clade, Fabaceae) in Egypt Rania A. Hassan * and Rim S. Hamdy Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; [email protected] * Correspondence: [email protected] Abstract: For the first time, an updated checklist of Acacia, Senegalia and Vachellia species in Egypt is provided, focusing on the exotic species. Taking into consideration the retypification of genus Acacia ratified at the Melbourne International Botanical Congress (IBC, 2011), a process of reclassification has taken place worldwide in recent years. The review of Acacia and its segregates in Egypt became necessary in light of the available information cited in classical works during the last century. In Egypt, various taxa formerly placed in Acacia s.l., have been transferred to Acacia s.s., Acaciella, Senegalia, Parasenegalia and Vachellia. The present study is a contribution towards clarifying the nomenclatural status of all recorded species of Acacia and its segregate genera. This study recorded 144 taxa (125 species and 19 infraspecific taxa). Only 14 taxa (four species and 10 infraspecific taxa) are indigenous to Egypt (included now under Senegalia and Vachellia). The other 130 taxa had been introduced to Egypt during the last century. Out of the 130 taxa, 79 taxa have been recorded in literature. The focus of this study is the remaining 51 exotic taxa that have been traced as living species in Egyptian gardens or as herbarium specimens in Egyptian herbaria. The studied exotic taxa are accommodated under Acacia s.s. (24 taxa), Senegalia (14 taxa) and Vachellia (13 taxa).
    [Show full text]
  • Species Summary
    Acacia jennerae LC Taxonomic Authority: Maiden Global Assessment Regional Assessment Region: Global Endemic to region Synonyms Common Names Racosperma jennera (Maiden) Pedley COONAVITTRA WATTLE English Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: MAGNOLIOPSIDA Order: FABALES Family: LEGUMINOSAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: In the past the species has commonly been confused with Acacia microbotrya; their ranges overlap in the Burakin–Trayning area in Western Australia. A. jennerae is normally distinguished by its straighter phyllodes with more numerous glands and its funicle (Orchard and Wilson 2001). General Information Distribution Acacia jennerae is endemic to Australia, distributed from near Kununoppin in Western Australia, through South Australia and the Northern Territory to Wilcannia in New South Wales, and the Simpson Desert in far south-west Queensland (Orchard and Wilson 2001). Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 900 Afrotropical Extent of Occurrence: Lower limit: 60 Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population Total population size is not known but it was recently collected in 2002. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology A tall shrub or tree that has the habit of a small mallee eucalypt that is sporadic in arid and semi-arid areas. It grows in mallee and savannah woodland. System Movement pattern Crop Wild Relative Terrestrial Freshwater Nomadic Congregatory/Dispersive Is the species a wild relative of a crop? Marine Migratory Altitudinally migrant Growth From Definition Shrub - large Perennial shrub (>1m), also termed a Phanerophyte (>1m) Tree - large Large tree, also termed a Phanerophyte (>1m) Threats There are no major threats known to this widespread species.
    [Show full text]
  • Western Australia's Journal of Systematic Botany Issn 0085–4417
    WESTERN AUSTRALIA'S JOURNAL OF SYSTEMATIC BOTANY ISSN 0085–4417 Maslin, B.R. & Buscumb, C. Two new Acacia species (Leguminosae: Mimosoideae) from banded ironstone ranges in the Midwest region of south-west Western Australia Nuytsia 17: 263–272 (2007) A special edition funded by the Western Australian Government’s ‘Saving our Species’ biodiversity conservation initiative. All enquiries and manuscripts should be directed to: The Editor – NUYTSIA Western Australian Herbarium Telephone: +61 8 9334 0500 Dept of Environment and Conservation Facsimile: +61 8 9334 0515 Locked Bag 104 Bentley Delivery Centre Email: [email protected] Western Australia 6983 Web: science.dec.wa.gov.au/nuytsia/ AUSTRALIA All material in this journal is copyright and may not be reproduced except with the written permission of the publishers. © Copyright Department of Environment and Conservation . B.R.Nuytsia Maslin 17: 263–272 & C. Buscumb, (2007) Two new Acacia species from banded ironstone ranges 263 Two new Acacia species (Leguminosae: Mimosoideae) from banded ironstone ranges in the Midwest region of south-west Western Australia Bruce R. Maslin1 and Carrie Buscumb Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 1Corresponding author Abstract Maslin, B.R. & Buscumb, C. Two new Acacia species (Leguminosae: Mimosoideae) from banded ironstone ranges in the Midwest region of south-west Western Australia. Nuytsia 17: 263–272 (2007). The following two new species of Acacia Mill. from an area of banded ironstone in the Midwest region of south-west Western Australia (between Morawa and Paynes Find) area are described: Acacia karina Maslin & Buscumb and A.
    [Show full text]
  • State-Wide Seed Conservation Strategy for Threatened Species, Threatened Communities and Biodiversity Hotspots
    State-wide seed conservation strategy for threatened species, threatened communities and biodiversity hotspots Project 033146a Final Report South Coast Natural Resource Management Inc. and Australian Government Natural Heritage Trust July 2008 Prepared by Anne Cochrane Threatened Flora Seed Centre Department of Environment and Conservation Western Australian Herbarium Kensington Western Australia 6983 Summary In 2005 the South Coast Natural Resource Management Inc. secured regional competitive component funding from the Australian Government’s Natural Heritage Trust for a three-year project for the Western Australian Department of Environment and Conservation (DEC) to coordinate seed conservation activities for listed threatened species and ecological communities and for Commonwealth identified national biodiversity hotspots in Western Australia (Project 033146). This project implemented an integrated and consistent approach to collecting seeds of threatened and other flora across all regions in Western Australia. The project expanded existing seed conservation activities thereby contributing to Western Australian plant conservation and recovery programs. The primary goal of the project was to increase the level of protection of native flora by obtaining seeds for long term conservation of 300 species. The project was successful and 571 collections were made. The project achieved its goals by using existing skills, data, centralised seed banking facilities and international partnerships that the DEC’s Threatened Flora Seed Centre already had in place. In addition to storage of seeds at the Threatened Flora Seed Centre, 199 duplicate samples were dispatched under a global seed conservation partnership to the Millennium Seed Bank in the UK for further safe-keeping. Herbarium voucher specimens for each collection have been lodged with the State herbarium in Perth, Western Australia.
    [Show full text]
  • Kalannie Region
    Botanical name Acacia daphnifolia Meisn. Synonym: microbotrya var. borealis E. Pritzel, Bot. Jahrb. Syst. 35: 300 (1904). Common name Northern Manna Wattle. Characteristic features Bushy shrubs or small trees, often forming dense clonal clumps by root suckers. Phyllodes normally oblanceolate, straight to shallowly falcately recurved, widely spreading, glaucous to sub-glaucous, with one longitudinal nerve on each face, apices obtuse to acute (sometimes acuminate); glands normally single (rarely 2). Heads globular, showy, arranged in short racemes, the raceme axes and peduncles appressed hairy. Pods moniliform to sub-moniliform, 7-8 mm wide. Seeds large; funicle encircling seeds in a single fold and drying red- brown. Flowering around autumn. Description Note. Acacia microbotyra is a somewhat variable species and is in need of critical revision. The description here applies only to plants occurring within the Kalannie region. Habit. Bushy, +/- rounded shrubs or +/- obconic small trees mostly 2-4 m tall with crowns 2-5 m across, often forming dense clonal clumps by root suckers, dividing at ground level into 2-4 main trunks (6-9 cm in diameter at breast height) or with a single trunk (about 11 cm diameter at ground level) to about 1 m before branching, crowns on oldest plants occupying 20-30% of the total plant height, Bark. Grey, thin and hard, shallowly longitudinally fissured with fine transverse fractures, exfoliating in short strips on oldest trunks, smooth on upper branches. Gum. Sometimes exuded from the trunks and/or branches. Branchlets.
    [Show full text]
  • The Vegetation of the Ravensthorpe Range, Western Australia
    The vegetation of the Ravensthorpe Range, Western Australia: I. Mt Short to South Coast Highway G.F. Craig E.M. Sandiford E.J. Hickman A.M. Rick J. Newell The vegetation of the Ravensthorpe Range, Western Australia: I. Mt Short to South Coast Highway December 2007 by G.F. Craig E.M. Sandiford E.J. Hickman A.M. Rick J. Newell © Copyright. This report and vegetation map have been prepared for South Coast Natural Resource Management Inc and the Department of Environment and Conservation (DEC Albany). They may not be reproduced in part or whole by electronic, mechanical or other means, including photocopying, recording or any information storage system, without the express approval of South Coast NRM, DEC Albany or an author. In undertaking this work, the authors have made every effort to ensure the accuracy of the information used. Any conclusions drawn or recommendations made in the report and map are done in good faith and the consultants take no responsibility for how this information is used subsequently by others. Please note that the contents in this report and vegetation map may not be directly applicable towards another organisation’s needs. The authors accept no liability whatsoever for a third party’s use of, or reliance upon, this specific report and vegetation map. Table of Contents TABLE OF CONTENTS.................................................................................................................................................. I SUMMARY ...................................................................................................................................................................
    [Show full text]