SHOWDOWN on the BURGESS SHALE. Simon Conway Morris; Stephen Jay Gould

Total Page:16

File Type:pdf, Size:1020Kb

SHOWDOWN on the BURGESS SHALE. Simon Conway Morris; Stephen Jay Gould SHOWDOWN ON THE BURGESS SHALE. Simon Conway Morris; Stephen Jay Gould. Natural History, Dec 1998 v107 i10 p48(1) Abstract: Stephen Jay Gould published "Wonderful Life: The Burgess Shale and the Nature of History." His observations on the diversity of fossils found in Canadian shale and made conclusions on evolution. However, many of Gould's interpretations may be flawed. A participant in the research reevaluates and challenges some confusions. Almost a decade ago, Harvard paleontologist and Natural History columnist Stephen Jay Gould published Wonderful Life: The Burgess Shale and the Nature of History (W. W. Norton and Company, 1989). In addition to chronicling ongoing work on the Burgess creatures, Gould used these fascinating fossils to exemplify his view of evolution. A few months ago, in The Crucible of Creation: The Burgess Shale and the Rise of Animals (Oxford University Press, 1998), invertebrate paleontologist Simon Conway Morris, of Cambridge University, a key player in Burgess research, challenged Gould's interpretations. We invited Conway Morris to summarize his argument, which we publish here, along with Gould's reply. The Challenge Few books on paleontology have achieved the wide readership of Stephen Jay Gould's Wonderful Life, which popularized research spearheaded by Harry Whittington at Cambridge on the 520-million-year-old Burgess Shale, found between two peaks in the Canadian Rockies near Banff. But Gould did much more than chronicle discoveries concerning these Cambrian fossils; he also set forth his own deeply held views on the mechanisms and nature of evolution--and even on humankind's place in the universe--as the "lessons" to be drawn from the Burgess Shale. In my new book, The Crucible of Creation, I argue that the major premises and conclusions of Wonderful Life must be seriously challenged. Let me begin with some matters of interpretation of patterns in the fossil record, then move on to paleontological particulars, and finally offer different "lessons" on what the Burgess Shale means in the larger reading of evolutionary history. Gould emphasizes, above all, the apparent weirdness and diversity of the Burgess fossils. How, he asks, was such an extraordinary range of anatomies produced, and all apparently in a blink of geological time? He hints at a special mechanism at work--some unusual genetic happenstance gone wild--that might account for the production of so many biological novelties in such a startlingly short period of time, perhaps only a few million years. And what if we could "rerun the tape" so that the subsequent history of this maelstrom of diversification would have taken a different course? We would still have a planet full of life, he argues, but surely one utterly different from our familiar world. Notably, this new trajectory of evolution would probably not have led to the human species and its unique form of consciousness and self-awareness, which emerged through a series of contingent accidents in a unique, unrepeatable sequence. Gould also charges that Charles D. Walcott, the discoverer of the Burgess Shale, was ill equipped to appreciate how diverse these novel phyla of sea creatures really were. Committed to the orthodox view that the range of life-forms must become ever greater over time, Walcott, in Gould's view, was unprepared to confront a world in which the proliferation of different kinds of life-forms (phyla) was much greater in the distant past than in, say, the age of dinosaurs or the more recent age of mammals. Therefore, he argues, Walcott attempted to "shoehorn" a range of previously unknown creatures into a few familiar categories to fit his preconceptions. Gould asserts that paleontologists have only just begun to appreciate the ever-expanding catalog of bizarre "dead-end experiments" conducted by nature in ancient seas. Looking back at the Cambridge group's classifications of the Burgess Shale, undertaken many decades after Walcott's pioneering work, my colleagues and I can see that we made some mistakes. Too often, we thought we had stumbled across yet another novel body plan (phylum, if you will), and in a few crucial instances, we did not realize that seemingly unrelated fossils were actually fragments of a single organism. With the benefit of hindsight, we can see that we had exaggerated the diversity of these supposedly bizarre fossils and needed to reconsider their evolutionary relationships. Recent discoveries in southern China (Yunnan) and northern Greenland (Peary Land) have provided links that join several of these previously unconnected fossils and establish them in recognizable phyla. Let's begin with the animal Wiwaxia. In Wonderful Life, it is described as "another Burgess oddball, perhaps closer to the Mollusca than to any other modern phylum ... but probably not very close." Ironically, the first breakthrough in establishing Wiwaxia's affinities came from a postgraduate paleontologist at Harvard who was inspired by Gould's lectures a decade or so ago. This young researcher, Nick Butterfield, managed to extract pieces of scalelike armor from the fossilized creature. When Butterfield studied their microstructure, he noticed immediately that it was the same as that of the chitinous bristles (chaetae) that project from the bodies of such modern annelids as earthworms. His conclusion, published in 1990, was that Wiwaxia was not a mollusk at all but an annelid. Yet this was what Walcott had claimed in 1911. In at least this case, Butterfield concluded, Walcott was not "shoehorning" bizarre animals into familiar phyla, as Gould had charged; Walcott had got it right the first time. Another recent discovery, in which I was fortunate to play a role, sheds further light on the place of certain Burgess animals in evolutionary history. On July 9, 1989, I was with a team in northern Greenland, collecting at a site containing fauna from Sirius Passet, a regional variant of the Burgess Shale. It was our first day at the site, and almost immediately we found an extraordinarily complete fossil of a halkieriid--an armored slug with a trig shell at either end. We wondered whether this organism--with such a weird anatomy, apparently so different from any other animal's--represented yet another new phylum. But that was only at first sight. Until then, halkieriids had been known only from the evidence of isolated scales; with our discovery of this and other complete specimens, however, we were able to confirm that the creature was in reality closely related to Wiwaxia. In making that connection, we were moving toward resolving a fundamental problem in evolution: How are body plans constructed, and how do new phyla actually emerge? To get from halkieriids, well represented as Lower Cambrian fossils, to Wiwaxia, which thrived in the Middle Cambrian, there is no need to postulate macroevolutionary jumps or some sort of genetic revolution. The halkieriids are not only older than Wiwaxia but also clearly more primitive. In life, halkieriids crawled across the seabed, their scales forming a beautifully arranged protective armor. Wiwaxia looked somewhat similar, but as Butterfield showed, its scales evolved into chaetae. So is Wiwaxia an annelid? It is really a matter of definition, but in my opinion, Wiwaxia is a member of the annelid stem group--a creature still in the process of becoming an annelid. Once scrutinized, the wiwaxiids and the halkieriids, despite their seemingly great differences, are closely related. They may be connected by two simple steps: the scales of halkieriids are transformed into wiwaxiid chaetae, and lobate, leglike extensions develop so that the style of locomotion changes from crawling to a kind of stepping. In recent years, the techniques of molecular biology have profoundly influenced paleontology in ways that hear on Gould's premise that the Burgess Shale was a seemingly inexplicable explosion of hundreds of bizarre life-forms, unrelated to anything familiar. One major surprise concerns the evolutionary position of the phylum Brachiopoda, a group with bivalved shells. Molecular data, quite unexpectedly, shows brachiopods to he closely related to annelids. Functional morphology also indicates that the shells of brachiopods must have originated as two separate valves; clams, in contrast, derived their familiar double shells from an ancestor with a single plate, across which developed a narrow zone of weakness, which became the hinge. Projecting from the margin of both valves of a brachiopod are delicate, chitinous bristles--identical to those of annelids Halkieriids also have two prominent shells. In the pre-brachiopods, I believe, the two shells were probably close to each other, back to back. To produce a true brachiopod, all that was necessary was to fold one shell beneath the other. And, interestingly, exactly this process can he seen in the embryological development of certain primitive, living brachiopods. So what was once a worm is transformed into a bivalved animal, the familiar brachiopod. Nor does the story finish here. If the scales of halkieriids can become chaetae, surely they can also evolve into the structurally identical chitinous bristles of a brachiopod. Of course, the origin of brachiopods is not so simple, but such transformations are functionally plausible and historically believable. Although constrained by genetic possibilities, they are products of convergent evolution. Similar environmental selection pressures, acting on differing anatomies, can create convergent or parallel adaptations. New discoveries and interpretations have altered our view of arthropod evolution as well. The biggest surprise is Hallucigenia, exemplar of the bizarre. Or is it? Recent finds from the Chinese deposit of Chengjiang reveal that my original reconstruction of this odd-looking, spiky animal had but one simple mistake: I had envisioned it upside down. Hallucigenia (a name coined by a colleague and me in an attempt to capture its dreamlike appearance) may still look strange, but with new discoveries, especially from southern China, Hallucigenia is now seen to belong to a group of primitive arthropods.
Recommended publications
  • 2008-2009 Annual Report
    ANNUAL REPORT 2008-2009 Photo: Shona Dion Photo: CONTENTS : annual report 2008-2009 Green College is a graduate residential college at the University of British Columbia, Principal’s Report............................p. 2 with a mandate to promote advanced 2008-2009 Highlights......................p. 4 interdisciplinary inquiry. The College offers Academic Programming................p. 5 resident membership to graduate students, Cecil H. and Ida Green Visiting Professorships........p. 6 Writer-in-Residence........................................................ p. 7 postdoctoral scholars and visiting faculty at Weekly Interdisciplinary Series.................................... p. 8 Monthly Interdisciplinary Series................................. p. 11 UBC, and (non-resident) faculty membership Conferences, Colloquia, and Workshops.................. p. 16 Special Lectures............................................................... p. 17 to UBC and other faculty. The College is committed to the cultivation ofintellectual College Committees......................p. 18 Standing Committees......................................................p. 18 and creative connections at the edge of the Faculty Council................................................................ p. 19 Residents’ Council.......................................................... p. 19 main disciplinary and academic space of the Resident Committees................... ................................. p. 20 university. To that end, it provides extracurricular Green
    [Show full text]
  • Public Education, Religious Establishment, and the Challenge of Intelligent Design Francis J
    Notre Dame Journal of Law, Ethics & Public Policy Volume 17 Article 4 Issue 2 Symposium on Religion in the Public Square 1-1-2012 Public Education, Religious Establishment, and the Challenge of Intelligent Design Francis J. Beckwith Follow this and additional works at: http://scholarship.law.nd.edu/ndjlepp Recommended Citation Francis J. Beckwith, Public Education, Religious Establishment, and the Challenge of Intelligent Design, 17 Notre Dame J.L. Ethics & Pub. Pol'y 461 (2003). Available at: http://scholarship.law.nd.edu/ndjlepp/vol17/iss2/4 This Article is brought to you for free and open access by the Notre Dame Journal of Law, Ethics & Public Policy at NDLScholarship. It has been accepted for inclusion in Notre Dame Journal of Law, Ethics & Public Policy by an authorized administrator of NDLScholarship. For more information, please contact [email protected]. PUBLIC EDUCATION, RELIGIOUS ESTABLISHMENT, AND THE CHALLENGE OF INTELLIGENT DESIGNt FRANcis J. BECKWITH* In 1987, in Edwards v. Aguillard, the United States Supreme Court declared unconstitutional a Louisiana statute (the Bal- anced-Treatment Act) that required the state's public schools to teach Creationism if evolution was taught and to teach evolution if Creationism was taught.' That decision was the culmination of a series of court battles and cultural conflicts that can be traced back to the famous Scopes Trial of 1925 in Dayton, Tennessee.2 Although many thought, and continue to think, that Edwards ended the debate over the teaching of origins in public schools, a t This article is adapted from FRANCISJ. BECKWITH, LAW, DARWINISM, AND PUBLIC EDUCATION: THE ESTABLISHMENT CLAUSE AND THE CHALLENGE OF INTELLI- GENT DESIGN (2003).
    [Show full text]
  • A Response to the Boyle Lecture by Simon Conway Morris
    S & CB (2006), 18, 31–34 0954–4194 JOHN POLKINGHORNE Rich Reality: a response to the Boyle Lecture by Simon Conway Morris Simon Conway Morris’s Boyle Lecture delivers a rhetorically lively and intel- lectually provocative challenge to scientistic fundamentalism and its assertively arid discourse. He rightly criticises the tone of the arguments pre- sented by people such as Richard Dawkins and Daniel Dennett, pointing out that in relation to religious belief they treat serious issues ‘with a bluntness and unsubtlety that in any normal discourse would be treated as juvenile’. There is indeed a deplorably ‘know-nothing’ character in some of the writings abut science and religion that originate from the sceptics, in which the authors totally fail to engage with the intellectual integrity and truth-seeking charac- ter of theological thought. Conway Morris’s response certainly does not suffer from the ‘combination of nervousness and accommodation’ that he – unfairly in my opinion – says characterises much of the religious participation in debate. The lecturer believes that his own subject of organic evolution is the topic that is ‘the most sensitive, in some ways the most vulnerable’ in this dialogue. I would want to add to that the equally important discussion of the exchanges taking place across the frontier between neuroscience and theological anthro- pology, since they too impinge significantly on the question of the nature and significance of the human person. Yet no one could deny the importance of a temperate and truthful engagement between evolutionary insight and the doc- trine of creation, so that a Boyle Lecture given by a distinguished palaeontolo- gist who tackles these issues with frankness and discernment is greatly to be welcomed.
    [Show full text]
  • A Deeper Look at the Origin of Life by Bob Davis
    A Deeper Look at the Origin of Life By Bob Davis Every major society from every age in history has had its own story about its origins. For instance, the Eskimos attributed their existence to a raven. The ancient Germanic peoples of Scandinavia believed their creator—Ymir—emerged from ice and fire, was nourished by a cow, and ultimately gave rise to the human race. Those are just two examples. But no matter the details, these origin stories always endeavor to answer people’s innate questions: Where did we come from? What is our destiny? What is our purpose? Two widely held theories in today’s world are abiogenesis and the Genesis story. The first states that life emerged through nature without any divine guidance; the second involves a supernatural Creator. Abiogenesis Abiogenesis is sometimes called “chemical evolution” because it seeks to explain how non-living (“abio”) substances gave rise to life (“genesis”). Abiogenesis was added to the list of origin stories over one hundred years ago when Charles Darwin first speculated that life could have begun in a “warm little pond, with all sorts of ammonia and phosphoric salts, lights, heat, electricity, etc. present, so that a protein compound was chemically formed ready to undergo still more complex changes.”1 Many summarize abiogenesis—coupled with its more famous twin, Darwinian macroevolution—in a somewhat disparaging but memorable way: “From the goo to you by way of the zoo!”2 Let’s use this phrase to help us understand what is meant by “abiogenesis.” The “goo” refers to the “primordial soup” or “warm little pond” where non-life is said to have given birth to life.
    [Show full text]
  • Inevitable Humans: Simon Conway Morris's Evolutionary Paleontology
    Zygon: Journal ofReligion and Science 40(no. 1, 2005):221-229 INEVITABLE HUMANS: SIMON CONWAY MORRIS'S EVOLUTIONARY PALEONTOLOGY by Holm~s Rolston, III Lift's Solution: InnJitable HU71lllns in II Lon~1y Univm~. By Simon Conway Morris. Cambridge: Cambridge Univ. Press, 2003. 486 pages. $30.00. Abstract. Simon Conway Morris, noted Cambridge University paleontologist, argues that in evolutionary natural history humans (or beings rather like humans) are an inevitable outcome of the de­ veloping speciating processes over millennia; humans are "inherent" in the system. This claim, in marked contrast to claims about con­ tingency made by other prominent paleontolo~ts, is based on nu­ merous remarkable convergencer-similar trends found repeatedly in evolutionary history. Conway Morris concludes approaching a natural theology. His argument is powerful and informed. But docs it face adequately the surprising events in such history, particularly notable in unexpected co-options that redirect the course oflife? The challenge to unClerstand how humans are both on a continuum with other species and also utterly different remains a central puzzle in paleontology. K9WorJs: convergence; Simon Conway Morris; co-option; evo­ lution; human uniqueness; natural theology; nature and cUlture; ori­ gin ofhumans; possibility space; self-organizing complexity. Simon Conway Morris's Lift's Solution: Inevitabk Humans in II Lont/y Uni­ vn-st is a remarkable book by a remarkable paleontologist. Anyone inter­ ested in philosophy of biology or the dialogue between biology and reli­ gion must read it, ifonly to get slapped with what radically different meta­ physical frameworks eminent biologists can read into, or out of: the same evolutionary facts.
    [Show full text]
  • Not Just Another Animal
    Not just another animal Evolution and human distinctiveness John Brubacher When I look at your heavens, the work of your fingers, the moon and the stars that you have established; what are human beings that you are mindful of them, mortals that you care for them? Yet you have made them a little lower than God, and crowned them with glory and honour. You have given them dominion over the works of your hands; you have put all things under their feet, all sheep and oxen, and also the beasts of the field, the birds of the air, and the fish of the sea, whatever passes along the paths of the seas. (Ps. 8:3–8 NRSV) A thought experiment I seem to have developed preoccupation with the concept of “heaps.” Imagine yourself sitting at a table, with a bag of fine-grained sand. You put one of the tiny grains of sand from your bag onto the table. Is there a heap of sand on the table? Obviously not. So, you add a second grain of sand to the first. This is still not a heap. You continue in this way, one grain at a time. At some point, you will have a heap of sand on the table, by any reasonable understanding of what a heap is. The question is, when—at what point, precisely—did the non-heap become a heap? Not sure? OK, try going in reverse. Start with your heap and take away grains of sand, again one at a time. When does the heap stop being a heap? There is no exact point at which adding a grain turns a non-heap into a heap or removing a grain turns a heap into a non-heap; neverthe- less, iterative addition or subtraction will turn one state of being into the other.
    [Show full text]
  • Natural Theology and Narrative Resonance
    The Chemical Constraints on Creation: Natural Theology and Narrative Resonance The 2010 Winifred E. Weter Faculty Award Lecture Seattle Pacific University February 2, 2010 Benjamin J. McFarland, Ph.D. Associate Professor of Biochemistry Department of Chemistry and Biochemistry The Chemical Constraints on Creation: Natural Theology and Narrative Resonance Seattle Pacific University Weter Award Lecture February 2, 2010 Benjamin J. McFarland, Ph.D. Associate Professor of Biochemistry Department of Chemistry and Biochemistry O Sapientia, quae ex ore Altissimi prodiisti, attingens a fine usque ad finem, fortiter suaviterque disponens omnia: veni ad docendum nos viam prudentiae.1 1 English translation: “O Wisdom, coming forth from the mouth of the Most High, reaching from one end to the other, mightily and sweetly ordering all things: Come and teach us the way of prudence.” From traditional “O Antiphons” service. 1 Dedication To Laurie Lynn Haugo McFarland (for showing me how to listen and tune) and To George Scott Becker (for showing me how to read the story) Thanks To Rick Steele and Cara Wall‐Scheffler (for critical readings and invaluable advice) and To Anna Miller and Tracy Norlen (for organizing and getting the word out) And To Bruce Congdon (for encouraging the trip to the conference that led to this lecture) and To my colleagues at SPU, in chemistry, in biology, and in all other disciplines (for living as a truly ecumenical community of scholars) 2 Order of Program Introduction: Tuning to the Universe The New Natural Theology Song One: From Nothing to Stars starring “Math” Song Two: From Stars to Heavy Atoms starring “Entropy” Song Three: From Heavy Atoms to Earth starring “Gravity” Song Four: From Rock to Sea and Sky starring “Water” Song Five: From Sea and Sky to Sulfur starring “Bubbles” Song Six: From Sulfur to Oxygen starring “Photosynthesis” Song Seven: From Oxygen to Humans starring “The Brain” What the Chemical Songs Mean Tuning Two Stories Conclusion: Reading the Music 3 Introduction: Tuning to the Universe In the beginning, there was music.
    [Show full text]
  • Adaptationism Fails to Resolve Fermi's Paradox
    Serb. Astron. J. } 170 (2005), 89 - 100 UDC 52{37 Original scientific paper ADAPTATIONISM FAILS TO RESOLVE FERMI'S PARADOX M. M. Cirk´ ovi´c1, I. Dragi´cevi´c2 and T. Beri´c-Bjedov2 1Astronomical Observatory, Volgina 7, 11160 Belgrade 74, Serbia and Montenegro 2Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia and Montenegro (Received: March 21, 2005; Accepted: April 12, 2005) SUMMARY: One of the most interesting problems in the nascent discipline of astrobiology is more than half-century old Fermi's paradox: why, considering extraordinary young age of Earth and the Solar System in the Galactic context, don't we perceive much older intelligent communities or signposts of their activity? In spite of a vigorous research activity in recent years, especially bolstered by successes of astrobiology in finding extrasolar planets and extremophiles, this problem (also known as the "Great Silence" or "astrosociological" paradox) remains as open as ever. In a previous paper, we have discussed a particular evolutionary solution suggested by Karl Schroeder based on the currently dominant evolutionary doctrine of adaptationism. Here, we extend that discussion with emphasis on the problems such a solution is bound to face, and conclude that it is ultimately quite unlikely. Key words. Astrobiology { Extraterrestrial inteligence 1. INTRODUCTION: FERMI'S PARADOX AND ASTROBIOLOGY When the stars were right, They could plunge from world to world through the In a previous paper (Cirk´ ovi´c 2005), we have sky; but when stars were wrong, They described an interesting solution of Fermi's para- could not live. dox1, proposed in a qualitative form by the Canadian novelist Karl Schroeder in his recent novel Perma- Howard P.
    [Show full text]
  • The Emergence of Complexity
    The Emergence of Complexity Jochen Fromm Bibliografische Information Der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar ISBN 3-89958-069-9 © 2004, kassel university press GmbH, Kassel www.upress.uni-kassel.de Umschlaggestaltung: Bettina Brand Grafikdesign, München Druck und Verarbeitung: Unidruckerei der Universität Kassel Printed in Germany Preface The main topic of this book is the emergence of complexity - how complexity suddenly appears and emerges in complex systems: from ancient cultures to modern states, from the earliest primitive eukaryotic organisms to conscious human beings, and from natural ecosystems to cultural organizations. Because life is the major source of complexity on Earth, and the develop- ment of life is described by the theory of evolution, every convincing theory about the origin of complexity must be compatible to Darwin’s theory of evolution. Evolution by natural selection is without a doubt one of the most fundamental and important scientific principles. It can only be extended. Not yet well explained are for example sudden revolutions, sometimes the process of evolution is interspersed with short revolutions. This book tries to examine the origin of these sudden (r)evolutions. Evolution is not constrained to biology. It is the basic principle behind the emergence of nearly all complex systems, including science itself. Whereas the elementary actors and fundamental agents are different in each system, the emerging properties and phenomena are often similar. Thus in an in- terdisciplinary text like this it is inevitable and indispensable to cover a wide range of subjects, from psychology to sociology, physics to geology, and molecular biology to paleontology.
    [Show full text]
  • Canada Archives Canada Published Heritage Direction Du Branch Patrimoine De I'edition
    THE BURGESS SHALE: A CAMBRIAN MIRROR FOR MODERN EVOLUTIONARY BIOLOGY by Keynyn Alexandra Ripley Brysse A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute for the History and Philosophy of Science and Technology University of Toronto © Copyright by Keynyn Alexandra Ripley Brysse (2008) Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-44745-1 Our file Notre reference ISBN: 978-0-494-44745-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Présentation Des Leçons
    Présentation des leçons Michael Ruse (Department of Philosophy, Florida State University, Florida) Philosophical Stakes of Darwinism Mardi 11 mars 2008 de 16 h 30 à 18 h 30 au SOCR-242 Public Lecture: Charles Darwin: The Man, The Book, The Legacy Charles Robert Darwin (1809-1882), the English naturalist, is rightly known as the father of evolutionary theory. His On the Origin of Species, published in 1859, is the classic statement of evolutionary ideas and moreover the place where he introduced his mechanism of natural selection. This lecture looks at Charles Darwin as a person, at the Origin of Species, and at the legacy of Darwin, both as he was regarded in his own day and as we think of him today. Jeudi 13 mars 2008 de 10 h 45 à 12 h 45 au SOCR-240 Special Lecture One: The theory of evolution through natural selection – the structure and the evidence This lecture looks at evolutionary theory today, paying special attention to the mechanism of natural selection and the evidence for it. Also to be considered are the areas of paleontology, biogeography, and embryology. Rival theories like Stephen Jay Gould’s punctuated equilibrium will also be discussed. Jeudi 13 mars 2008 de 16 h 15 à 18 h 15 au SOCR43 Special Lecture Two: The theory of evolution through natural selection – the metaphors The extent to which evolutionary theory is permeated by metaphorical thinking will be discussed and the implications drawn for the nature of the theory. Special attention will be paid to the notion of progress, and the thinking today of such diverse biologists as Richard Dawkins, Simon Conway Morris, and Edward O.
    [Show full text]
  • Journal-Winter18-Spreads.Pdf
    The magazine of George Fox University | Winter 2018 journal HEART OF A LION Faced with a new culture and the memories of a harrowing past, Jonah Wafula refuses to quit Plus: Yune Tran: Why I teach page 10 | alumni making a difference page 18 EDITOR Jeremy Lloyd ART DIRECTOR Darryl Brown George Fox Journal Winter 2018 From the president ASSISTANT EDITOR Sean Patterson PHOTOGRAPHER Sarah Small Heart of a Lion 12 4 Bruin Notes ‘Lord, what fools these mortals be!’ CONTRIBUTORS Faced with a new culture and the memories of a harrowing 10 Why I Teach In this scene from the university Brittany Baker theatre department’s fall 2017 Reflecting on Willie’s Last Game Melissa Binder past, Jonah Wafula refuses to quit 28 Annual Report to Donors Kimberly Felton production of A Midsummer Night’s Barry Hubbell 38 Alumni Connections Dream, Bottom the Weaver attempts Every so often I’m reminded of just how precious life is and how important community Brett Tallman Reflections of a Blue-Collar Quarterback 16 is to each of us. This fall, on a rainy Oregon weekend, those two truths hit home for me Yune Tran 54 What’s Bruin to impress his fellow laborers with his Four-year starter Grant Schroeder looks back on his eventful with the loss of Willie Stoffer, a former George Fox student and a diehard fan of our George Fox Journal is published over-the-top acting skills. Students twice a year by George Fox George Fox football career pictured from left to right: Brooke Bruin football team.
    [Show full text]