Received: 7 October 2019 | Accepted: 8 April 2020 DOI: 10.1111/1365-2745.13408 RESEARCH ARTICLE Species-specific variation in germination rates contributes to spatial coexistence more than adult plant water use in four closely related annual flowering plants Aubrie R. M. James1,2 | Timothy E. Burnette3,4 | Jasmine Mack1 | David E. James5 | Vincent M. Eckhart3 | Monica A. Geber1 1Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA Abstract 2School of Biological Sciences, University of 1. Spatial partitioning is a classic hypothesis to explain plant species coexistence, but Queensland, Brisbane, Qld, Australia evidence linking local environmental variation to spatial sorting, demography and 3Department of Biology, Grinnell College, Grinnell, IA, USA species' traits is sparse. If co-occurring species' performance is optimized differ- 4Department of Ecology and Evolutionary ently along environmental gradients because of trait variation, then spatial varia- Biology, University of Kansas, Lawrence, tion might facilitate coexistence. KS, USA 2. We used a system of four naturally co-occurring species of Clarkia (Onagraceae) to 5National Lab for Agriculture and the Environment, USDA/ARS, Ames, IA, USA ask whether distribution patchiness corresponds to variation in two environmen- tal variables that contribute to hydrological variation. We then reciprocally sowed Correspondence Aubrie R. M. James Clarkia into each patch type and measured demographic rates in the absence of Email:
[email protected] congeneric competition. Species sorted in patches along one or both gradients, Funding information and in three of the four species, germination rate in the ‘home’ patch was higher National Science Foundation, Grant/Award than all other patches.