Diamagnetism: Materials Such As Quartz, Water, Acetone, Copper, Lead and Carbon Dioxide Are Diamagnetic

Total Page:16

File Type:pdf, Size:1020Kb

Diamagnetism: Materials Such As Quartz, Water, Acetone, Copper, Lead and Carbon Dioxide Are Diamagnetic Diamagnetism: Materials such as quartz, water, acetone, copper, lead and carbon dioxide are diamagnetic. These materials are very weakly affected by magnetic fields. To the extent that they are affected, they become magnetically polarized in the opposite direction from the magnetic field. If the magnetic field is not uniform, they feel a force away from the higher field region. Diamagnetism results from the effects of magnetic fields on all of the electrons in the material. Thus, all materials are diamagnetic. However, the other forms of magnetism are stronger than diamagnetism, so the diamagnetism can usually be ignored unless it is the only magnetism present. Paramagnetism: Materials such as sodium (Na), oxygen (O), iron oxide (FeO or Fe2O3), and platinum (Pt) are paramagnetic. They are affected somewhat more strongly than diamagnetic materials; they become polarized parallel to a magnetic field. Thus, in a non-uniform magnetic field, they feel a force towards the higher field region. Paramagnetism results from the magnetic forces on unpaired electrons. Electrons move around atoms in orbitals and maximum of two electrons can go into each orbital. Electrons that are alone in an orbital are said to be unpaired. Ferromagnetism: Materials such as iron (Fe), nickel (Ni), gadolinium (Gd), iron oxide (Fe3O4), Manganese Bismuth (Mn-Bi), and Cobalt Ferrite (CoFe2O4) are ferromagnetic. These materials are very strongly affected by magnetic fields. They become strongly polarized in the direction of the magnetic field, thus, they are strongly attracted to the high field region when the field isn't uniform. Furthermore, they retain their polarization after the magnetic field is removed. Once polarized ferromagnetic materials produces magnetic fields of their own. Since these fields are usually not uniform (particularly near the ends of the piece) 9 ferromagnetic materials are capable of attracting each other. All of the materials that we are used to calling "magnets" are ferromagnetic materials. Ferromagnetism results from the interactions among the electrons in the material. This is why a ferromagnet can remain magnetically polarized even if there is no magnetic field applied to it from the outside. It should be no surprise that most applications of magnetic materials call for ferromagnetic materials. These are the ones that interact most strongly with magnetic fields. Within this category there are several important subcategories. These have to do with how easily the magnetic polarization (magnetization) of the material can be changed. Ferrimagnetism: Ferrimagnetism, type of permanent magnetism that occurs in solids in which the magnetic fields associated with individual atoms spontaneously align themselves, some parallel, or in the same direction (as in ferromagnetism), and others generally antiparallel, or paired off in opposite directions (as in antiferromagnetism). The magnetic behaviour of single crystals of ferrimagnetic materials may be attributed to the parallel alignment; the diluting effect of those atoms in the antiparallel arrangement keeps the magnetic strength of these materials generally less than that of purely ferromagnetic solids such as metallic iron. Ferrimagnetism occurs chiefly in magnetic oxides known as ferrites. In magnetite crystals, chemically formulated as Fe3O4, for every four oxygen ions, there are two 10 iron (III) ions and one iron (II) ion. The iron (III) ions are paired off in opposite directions, producing no external magnetic field, but the iron (II) ions are all aligned in the same direction, accounting for the external magnetism. The spontaneous alignment that produces ferrimagnetism is entirely disrupted above a temperature called the Curie point, characteristic of each ferrimagnetic material. When the temperature of the material is brought below the Curie point, ferrimagnetism revives . Fig 1.3: Types of magnetism: (A) Paramagnetism (B) Ferromagnetism (C) Antiferromagnetism (D) Ferrimagnetism 11 Table 1: Magnetic behavior versus values of magnetic susceptibility Magnetic Behavior Value of χ Example Diamagnetic small and negative Au Cu Paramagnetic small and positive Mn Pt Ferromagnetic large and positive Fe Antiferromagnetic small and positive Cr Ferrimagnetic large and positive, function of applied field, microstructure dependent Ba-ferrite 1.4 Magnetic Materials: There are two basic types of magnetic materials: Metallic and Metallic Oxide or ceramics, etc. The most common metallic material is the familiar laminated steel that we see in mains power transformers. This material works well at mains frequencies, but rapidly becomes ineffective at frequencies above, say, the audio spectrum. The other type of metallic magnetic material can basically be described as iron powder. The iron dust is acid treated to produce an oxide layer on the outer surface. This oxide layer effectively insulates each iron particle from the next. The powder is mixed with a (non-magnetic) bonding material and pressed or formed into useful shapes, the most common being the toroid or ring core. The use of 12 individual particles of iron each insulated from each other gives many of the benefits of steel (e.g. good low frequency performance) but without the disadvantages (e.g. high eddy-current losses). Metallic Oxide materials are called ferrites. Ferrites are essentially ceramics; the ingredients are mixed, pre-fired, crushed, dried, shaped and finally pressed or extruded and fired into their final hard, brittle state. Newer ferrite materials are called rare earth types. They are primarily used as permanent magnets. Like all ceramics they are very stable, with the excellent characteristic of fairly high resistivity [9]. Magnetic materials are grouped into two types, soft and hard, depending on the nature of magnetic behavior. The classification is based on their ability to be magnetized and demagnetized, not their ability to withstand penetration and abrasion. Soft magnetic materials are easy to magnetize and demagnetize. They have low coercive fields. Hard magnetic materials retain their magnetization once they are magnetized and possess large coercive fields. The characterization of soft and hard ferrites is based upon some important parameters like: 1) The residual magnetism (remanence (Mr)), that though materials retains when the external field is removed. 2) The saturation flux or maximum magnetic field that can be induced in the material that is saturation magnetization (Ms). 3) The demagnetization field or the value of the external field applied in the negative direction that residual magnetic field i.e. coercive force / coercivity (Hc). Both ferromagnetic and ferromagnetic materials are classified as either soft or hard on the basis of their hysteresis characteristic. 13 Soft Magnetic MaterialsSoft ferrites are class of magnetic material which easily magnetize and demagnetize, they possess low coercive field. The low coercivity means the material's magnetization can easily reverse direction without dissipating much energy (hysteresis losses), while the material's with high resistivity prevents eddy currents in the core, another source of energy loss. In addition to low coercivity, the permeability and saturation magnetization are low for soft ferrites. The electric and magnetic field of soft ferrite is arises from the interactions between ions situated at different sites relative to the oxygen ions in the spinel crystalline structure. Soft ferrites have certain advantages over other electromagnetic materials includes their inherent high electrical resistivity which result in low eddy current losses over wide frequency range. Because of their comparatively low losses at high frequencies, they are extensively used in the cores of RF transformers and inductors in applications such as switched-mode power supplies (SMPS). The most common soft ferrites are manganese-zinc (Mn-Zn, with the formula MnxZn(1- x)Fe2O4) and nickel-zinc (Ni-Zn, with the formula NixZn(1-x)Fe2O4). Ni-Zn ferrites exhibit higher resistivity than Mn-Zn and are therefore more suitable for frequencies above 1 MHz. Mn-Zn have in comparison higher permeability and saturation induction. Ferrites that are used in transformer or electromagnetic cores contain nickel, zinc, and / or manganese . A material possessing these properties may reach its saturation magnetization with a relatively low applied magnetic field and has low hysteresis energy losses. Using an appropriate heat treatment, a square hysteresis loop may be produced, which is desirable in some magnetic amplifier and pulse transformer application. In addition soft magnetic materials are used in generator, motors dynamos and switching circuits. - Easy to magnetize and demagnetize. - Remanence is minimum. - Low coercivity Applications: Electromagnet, motors, transformers, relays and switching circuits etc. Hard magnetic materialsMagnetic hardness is due to fine particles having shape and crystalline anisotropy. A large crystalline anisotropy is characteristics of hard ferrites. Hence a large coercivity is almost an inherent property of hard ferrite. Barium and strontium ferrites are widely studied hard ferrites. The coercivity of these materials is more than 3000 Oe which is far in excess compared to other materials. The hard ferrites 15 (Hexagonal ferrite) are used for constructing permanent magnet. These materials are ferrimagnetic and considering the proportion of iron within the material have quite a low remanence (∼ 400 mT). The low remanence means that the maximum energy product is only
Recommended publications
  • Arxiv:Cond-Mat/0106646 29 Jun 2001 Landau Diamagnetism Revisited
    Landau Diamagnetism Revisited Sushanta Dattagupta†,**, Arun M. Jayannavar‡ and Narendra Kumar# †S.N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India ‡Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005, India #Raman Research Institute, Bangalore 560 080, India The problem of diamagnetism, solved by Landau, continues to pose fascinating issues which have relevance even today. These issues relate to inherent quantum nature of the problem, the role of boundary and dissipation, the meaning of thermodynamic limits, and above all, the quantum–classical crossover occasioned by environment- induced decoherence. The Landau diamagnetism provides a unique paradigm for discussing these issues, the significance of which is far-reaching. Our central result connects the mean orbital magnetic moment, a thermodynamic property, with the electrical resistivity, which characterizes transport properties of material. In this communication, we wish to draw the attention of Peierls to term diamagnetism as one of the surprises in the reader to certain enigmatic issues concerning dia- theoretical physics4. Landau’s pathbreaking result also magnetism. Indeed, diamagnetism can be used as a demonstrated that the calculation of diamagnetic suscep- prototype phenomenon to illustrate the essential role of tibility did indeed require an explicit quantum treatment. quantum mechanics, surface–boundary, dissipation and Turning to the classical domain, two of the present nonequilibrium statistical mechanics itself. authors had worried, some years ago, about the issue: Diamagnetism is a material property that characterizes does the BV theorem survive dissipation5? This is a natu- the response of an ensemble of charged particles (more ral question to ask as dissipation is a ubiquitous property specifically, electrons) to an applied magnetic field.
    [Show full text]
  • Density of States Information from Low Temperature Specific Heat
    JOURNAL OF RESE ARC H of th e National Bureau of Standards - A. Physics and Chemistry Val. 74A, No.3, May-June 1970 Density of States I nformation from Low Temperature Specific Heat Measurements* Paul A. Beck and Helmut Claus University of Illinois, Urbana (October 10, 1969) The c a lcul ati on of one -electron d ensit y of s tate va lues from the coeffi cient y of the te rm of the low te mperature specifi c heat lin ear in te mperature is compli cated by many- body effects. In parti c ul ar, the electron-p honon inte raction may enhance the measured y as muc h as tw ofo ld. The e nha nce me nt fa ctor can be eva luat ed in the case of supe rconducting metals and a ll oys. In the presence of magneti c mo­ ments, add it ional complicati ons arise. A magneti c contribution to the measured y was ide ntifi e d in the case of dilute all oys and a lso of concentrated a lJ oys wh e re parasiti c antife rromagnetis m is s upe rim­ posed on a n over-a ll fe rromagneti c orde r. No me thod has as ye t bee n de vised to e valu ate this magne ti c part of y. T he separati on of the te mpera ture- li near term of the s pec ifi c heat may itself be co mpli cated by the a ppearance of a s pecific heat a no ma ly due to magneti c cluste rs in s upe rpa ramagneti c or we ak ly ferromagneti c a ll oys.
    [Show full text]
  • Unusual Quantum Criticality in Metals and Insulators T. Senthil (MIT)
    Unusual quantum criticality in metals and insulators T. Senthil (MIT) T. Senthil, ``Critical fermi surfaces and non-fermi liquid metals”, PR B, June 08 T. Senthil, ``Theory of a continuous Mott transition in two dimensions”, PR B, July 08 D. Podolsky, A. Paramekanti, Y.B. Kim, and T. Senthil, ``Mott transition between a spin liquid insulator and a metal in three dimensions”, PRL, May 09 T. Senthil and P. A. Lee, ``Coherence and pairing in a doped Mott insulator: Application to the cuprates”, PRL, Aug 09 Precursors: T. Senthil, Annals of Physics, ’06, T. Senthil. M. Vojta, S. Sachdev, PR B, ‘04 Saturday, October 22, 2011 High Tc cuprates: doped Mott insulators Many interesting phenomena on doping the Mott insulator: Loss of antiferromagnetism High Tc superconductivity Pseudogaps, non-fermi liquid regimes , etc. Stripes, nematics, and other broken symmetries This talk: focus on one (among many) fundamental question. How does a Fermi surface emerge when a Mott insulator changes into a metal? Saturday, October 22, 2011 High Tc cuprates: how does a Fermi surface emerge from a doped Mott insulator? Evolution from Mott insulator to overdoped metal : emergence of large Fermi surface with area set by usual Luttinger count. Mott insulator: No Fermi surface Overdoped metal: Large Fermi surface ADMR, quantum oscillations (Hussey), ARPES (Damascelli,….) Saturday, October 22, 2011 High Tc cuprates: how does a Fermi surface emerge from a doped Mott insulator? Large gapless Fermi surface present even in optimal doped strange metal albeit without Landau quasiparticles . Mott insulator: No Fermi surface Saturday, October 22, 2011 High Tc cuprates: how does a Fermi surface emerge from a doped Mott insulator? Large gapless Fermi surface present also in optimal doped strange metal albeit without Landau quasiparticles .
    [Show full text]
  • Chapter 6 Antiferromagnetism and Other Magnetic Ordeer
    Chapter 6 Antiferromagnetism and Other Magnetic Ordeer 6.1 Mean Field Theory of Antiferromagnetism 6.2 Ferrimagnets 6.3 Frustration 6.4 Amorphous Magnets 6.5 Spin Glasses 6.6 Magnetic Model Compounds TCD February 2007 1 1 Molecular Field Theory of Antiferromagnetism 2 equal and oppositely-directed magnetic sublattices 2 Weiss coefficients to represent inter- and intra-sublattice interactions. HAi = n’WMA + nWMB +H HBi = nWMA + n’WMB +H Magnetization of each sublattice is represented by a Brillouin function, and each falls to zero at the critical temperature TN (Néel temperature) Sublattice magnetisation Sublattice magnetisation for antiferromagnet TCD February 2007 2 Above TN The condition for the appearance of spontaneous sublattice magnetization is that these equations have a nonzero solution in zero applied field Curie Weiss ! C = 2C’, P = C’(n’W + nW) TCD February 2007 3 The antiferromagnetic axis along which the sublattice magnetizations lie is determined by magnetocrystalline anisotropy Response below TN depends on the direction of H relative to this axis. No shape anisotropy (no demagnetizing field) TCD February 2007 4 Spin Flop Occurs at Hsf when energies of paralell and perpendicular configurations are equal: HK is the effective anisotropy field i 1/2 This reduces to Hsf = 2(HKH ) for T << TN Spin Waves General: " n h q ~ q ! M and specific heat ~ Tq/n Antiferromagnet: " h q ~ q ! M and specific heat ~ Tq TCD February 2007 5 2 Ferrimagnetism Antiferromagnet with 2 unequal sublattices ! YIG (Y3Fe5O12) Iron occupies 2 crystallographic sites one octahedral (16a) & one tetrahedral (24d) with O ! Magnetite(Fe3O4) Iron again occupies 2 crystallographic sites one tetrahedral (8a – A site) & one octahedral (16d – B site) 3 Weiss Coefficients to account for inter- and intra-sublattice interaction TCD February 2007 6 Below TN, magnetisation of each sublattice is zero.
    [Show full text]
  • Coexistence of Superparamagnetism and Ferromagnetism in Co-Doped
    Available online at www.sciencedirect.com ScienceDirect Scripta Materialia 69 (2013) 694–697 www.elsevier.com/locate/scriptamat Coexistence of superparamagnetism and ferromagnetism in Co-doped ZnO nanocrystalline films Qiang Li,a Yuyin Wang,b Lele Fan,b Jiandang Liu,a Wei Konga and Bangjiao Yea,⇑ aState Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, People’s Republic of China bNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People’s Republic of China Received 8 April 2013; revised 5 August 2013; accepted 6 August 2013 Available online 13 August 2013 Pure ZnO and Zn0.95Co0.05O films were deposited on sapphire substrates by pulsed-laser deposition. We confirm that the magnetic behavior is intrinsic property of Co-doped ZnO nanocrystalline films. Oxygen vacancies play an important mediation role in Co–Co ferromagnetic coupling. The thermal irreversibility of field-cooling and zero field-cooling magnetizations reveals the presence of superparamagnetic behavior in our films, while no evidence of metallic Co clusters was detected. The origin of the observed superparamagnetism is discussed. Ó 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Dilute magnetic semiconductors; Superparamagnetism; Ferromagnetism; Co-doped ZnO Dilute magnetic semiconductors (DMSs) have magnetic properties in this system. In this work, the cor- attracted increasing attention in the past decade due to relation between the structural features and magnetic their promising technological applications in the field properties of Co-doped ZnO films was clearly of spintronic devices [1]. Transition metal (TM)-doped demonstrated. ZnO is one of the most attractive DMS candidates The Zn0.95Co0.05O films were deposited on sapphire because of its outstanding properties, including room- (0001) substrates by pulsed-laser deposition using a temperature ferromagnetism.
    [Show full text]
  • Solid State Physics 2 Lecture 5: Electron Liquid
    Physics 7450: Solid State Physics 2 Lecture 5: Electron liquid Leo Radzihovsky (Dated: 10 March, 2015) Abstract In these lectures, we will study itinerate electron liquid, namely metals. We will begin by re- viewing properties of noninteracting electron gas, developing its Greens functions, analyzing its thermodynamics, Pauli paramagnetism and Landau diamagnetism. We will recall how its thermo- dynamics is qualitatively distinct from that of a Boltzmann and Bose gases. As emphasized by Sommerfeld (1928), these qualitative di↵erence are due to the Pauli principle of electons’ fermionic statistics. We will then include e↵ects of Coulomb interaction, treating it in Hartree and Hartree- Fock approximation, computing the ground state energy and screening. We will then study itinerate Stoner ferromagnetism as well as various response functions, such as compressibility and conduc- tivity, and screening (Thomas-Fermi, Debye). We will then discuss Landau Fermi-liquid theory, which will allow us understand why despite strong electron-electron interactions, nevertheless much of the phenomenology of a Fermi gas extends to a Fermi liquid. We will conclude with discussion of electrons on the lattice, treated within the Hubbard and t-J models and will study transition to a Mott insulator and magnetism 1 I. INTRODUCTION A. Outline electron gas ground state and excitations • thermodynamics • Pauli paramagnetism • Landau diamagnetism • Hartree-Fock theory of interactions: ground state energy • Stoner ferromagnetic instability • response functions • Landau Fermi-liquid theory • electrons on the lattice: Hubbard and t-J models • Mott insulators and magnetism • B. Background In these lectures, we will study itinerate electron liquid, namely metals. In principle a fully quantum mechanical, strongly Coulomb-interacting description is required.
    [Show full text]
  • Study of Spin Glass and Cluster Ferromagnetism in Rusr2eu1.4Ce0.6Cu2o10-Δ Magneto Superconductor Anuj Kumar, R
    Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10-δ magneto superconductor Anuj Kumar, R. P. Tandon, and V. P. S. Awana Citation: J. Appl. Phys. 110, 043926 (2011); doi: 10.1063/1.3626824 View online: http://dx.doi.org/10.1063/1.3626824 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v110/i4 Published by the American Institute of Physics. Related Articles Annealing effect on the excess conductivity of Cu0.5Tl0.25M0.25Ba2Ca2Cu3O10−δ (M=K, Na, Li, Tl) superconductors J. Appl. Phys. 111, 053914 (2012) Effect of columnar grain boundaries on flux pinning in MgB2 films J. Appl. Phys. 111, 053906 (2012) The scaling analysis on effective activation energy in HgBa2Ca2Cu3O8+δ J. Appl. Phys. 111, 07D709 (2012) Magnetism and superconductivity in the Heusler alloy Pd2YbPb J. Appl. Phys. 111, 07E111 (2012) Micromagnetic analysis of the magnetization dynamics driven by the Oersted field in permalloy nanorings J. Appl. Phys. 111, 07D103 (2012) Additional information on J. Appl. Phys. Journal Homepage: http://jap.aip.org/ Journal Information: http://jap.aip.org/about/about_the_journal Top downloads: http://jap.aip.org/features/most_downloaded Information for Authors: http://jap.aip.org/authors Downloaded 12 Mar 2012 to 14.139.60.97. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions JOURNAL OF APPLIED PHYSICS 110, 043926 (2011) Study of spin glass and cluster ferromagnetism in RuSr2Eu1.4Ce0.6Cu2O10-d magneto superconductor Anuj Kumar,1,2 R. P. Tandon,2 and V. P. S. Awana1,a) 1Quantum Phenomena and Application Division, National Physical Laboratory (CSIR), Dr.
    [Show full text]
  • Arxiv:2010.01933V2 [Cond-Mat.Quant-Gas] 18 Feb 2021 Tigated in Refs
    Finite temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture Arko Roy,1, ∗ Miki Ota,1, ∗ Alessio Recati,1, 2 and Franco Dalfovo1 1INO-CNR BEC Center and Universit`adi Trento, via Sommarive 14, I-38123 Trento, Italy 2Trento Institute for Fundamental Physics and Applications, INFN, 38123 Povo, Italy We examine the role of thermal fluctuations in uniform two-dimensional binary Bose mixtures of dilute ultracold atomic gases. We use a mean-field Hartree-Fock theory to derive analytical predictions for the miscible-immiscible transition. A nontrivial result of this theory is that a fully miscible phase at T = 0 may become unstable at T 6= 0, as a consequence of a divergent behaviour in the spin susceptibility. We test this prediction by performing numerical simulations with the Stochastic (Projected) Gross-Pitaevskii equation, which includes beyond mean-field effects. We calculate the equilibrium configurations at different temperatures and interaction strengths and we simulate spin oscillations produced by a weak external perturbation. Despite some qualitative agreement, the comparison between the two theories shows that the mean-field approximation is not able to properly describe the behavior of the two-dimensional mixture near the miscible-immiscible transition, as thermal fluctuations smoothen all sharp features both in the phase diagram and in spin dynamics, except for temperature well below the critical temperature for superfluidity. I. INTRODUCTION ing the Popov theory. It is then natural to ask whether such a phase-transition also exists in 2D. The study of phase-separation in two-component clas- It is worth stressing that, in 2D Bose gases, thermal sical fluids is of paramount importance and the role of fluctuations are much more important than in 3D, as they temperature can be rather nontrivial.
    [Show full text]
  • Ferromagnetic State and Phase Transitions
    Ferromagnetic state and phase transitions Yuri Mnyukh 76 Peggy Lane, Farmington, CT, USA, e-mail: [email protected] (Dated: June 20, 2011) Evidence is summarized attesting that the standard exchange field theory of ferromagnetism by Heisenberg has not been successful. It is replaced by the crystal field and a simple assumption that spin orientation is inexorably associated with the orientation of its carrier. It follows at once that both ferromagnetic phase transitions and magnetization must involve a structural rearrangement. The mechanism of structural rearrangements in solids is nucleation and interface propagation. The new approach accounts coherently for ferromagnetic state and its manifestations. 1. Weiss' molecular and Heisenberg's electron Its positive sign led to a collinear ferromagnetism, and exchange fields negative to a collinear antiferromagnetism. Since then it has become accepted that Heisenberg gave a quantum- Generally, ferromagnetics are spin-containing materials mechanical explanation for Weiss' "molecular field": that are (or can be) magnetized and remain magnetized "Only quantum mechanics has brought about in the absence of magnetic field. This definition also explanation of the true nature of ferromagnetism" includes ferrimagnetics, antiferromagnetics, and (Tamm [2]). "Heisenberg has shown that the Weiss' practically unlimited variety of magnetic structures. theory of molecular field can get a simple and The classical Weiss / Heisenberg theory of straightforward explanation in terms of quantum ferromagnetism, taught in the universities and presented mechanics" (Seitz [1]). in many textbooks (e. g., [1-4]), deals basically with the special case of a collinear (parallel and antiparallel) spin arrangement. 2. Inconsistence with the reality The logic behind the theory in question is as follows.
    [Show full text]
  • Semimetallic Antiferromagnetism in the Half-Heusler Compound Cumnsb
    PHYSICAL REVIEW B 71, 184103 ͑2005͒ Semimetallic antiferromagnetism in the half-Heusler compound CuMnSb T. Jeong,1 Ruben Weht,2 and W. E. Pickett1 1Department of Physics, University of California, Davis, California 95616, USA 2Departamento de Física, CNEA, Avda. General Paz y Constituyentes, 1650-San Martín, Argentina ͑Received 17 September 2004; revised manuscript received 5 January 2005; published 20 May 2005͒ The half-Heusler compound CuMnSb, the first antiferromagnet ͑AFM͒ in the Mn-based class of Heuslers and half-Heuslers that contains several conventional and half metallic ferromagnets, shows a peculiar stability of its magnetic order in high magnetic fields. Density functional based studies reveal an unusual nature of its unstable ͑and therefore unseen͒ paramagnetic state, which for one electron less ͑CuMnSn, for example͒ would be a zero gap semiconductor ͑accidentally so͒ between two sets of very narrow, topologically separate bands of Mn 3d character. The extremely flat Mn 3d bands result from the environment: Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below the Fermi level, and the other four tetrahedrally coordi- nated sites are empty, leaving chemically isolated Mn 3d states. The AFM phase can be pictured heuristically as a self-doped Cu1+Mn2+Sb3− compensated semimetal with heavy mass electrons and light mass holes, with magnetic coupling proceeding through Kondo and/or anti-Kondo coupling separately through the two carrier types. The ratio of the linear specific heat coefficient and the calculated Fermi level density of states indicates a large mass enhancement m* /mϳ5, or larger if a correlated band structure is taken as the reference.
    [Show full text]
  • Discovery of the Classical Bose–Einstein Condensation of Magnons in Solid Antiferromagnets Yu
    ISSN 00213640, JETP Letters, 2011, Vol. 94, No. 1, pp. 68–72. © Pleiades Publishing, Inc., 2011. Original Russian Text © Yu.M. Bunkov, E.M. Alakshin, R.R. Gazizulin, A.V. Klochkov, V.V. Kuzmin, T.R. Safin, M.S. Tagirov, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 1, pp. 68–72. Discovery of the Classical Bose–Einstein Condensation of Magnons in Solid Antiferromagnets Yu. M. Bunkova, E. M. Alakshinb, R. R. Gazizulinb, A. V. Klochkovb, V. V. Kuzminb, T. R. Safinb, and M. S. Tagirovb a Institut Néel, CNRS, 25 rue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France b Kazan (Volga region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia Received May 19, 2011 Results of experiments in which the Bose–Einstein condensate of magnons is created in the CsMnF3 easy plane antiferromagnet in a system with coupled nuclear–electron precession with dynamical frequency shift are presented. This condensate is similar to the Bose–Einstein condensate of magnons in superfluid 3HeA in aerogel. DOI: 10.1134/S0021364011130066 Bose–Einstein condensation (BEC) is one of the important difference. In case of the classical BEC pre most striking macroscopic quantum phenomena. A dicted by Einstein, the quantum distribution of parti macroscopic number of particles form a coherent cles changes rather than the vacuum in which they quantum state, which is described by a common wave exist, whereas a phase transition is accompanied by a function. The formation of such a state under certain change in the ground state of the system (vacuum).
    [Show full text]
  • Band Ferromagnetism in Systems of Variable Dimensionality
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 10, No. 11, November 2008, p.3058 - 3068 Band ferromagnetism in systems of variable dimensionality C. M. TEODORESCU*, G. A. LUNGU National Institute of Materials Physics, Atomistilor 105b, P.O. Box MG-7, RO-77125 Magurele-Ilfov, Romania The Stoner instability of the paramagnetic state, yielding to the occurence of ferromagnetism, is reviewed for electron density of states reflecting changes in the dimensionality of the system. The situations treated are one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) cases and also a special case where the density of states has a parabolic shape near the Fermi level, and is half-filled at equilibrium. We recover the basic results obtained in the original work of E.C. Stoner [Proc. Roy. Soc. London A 165, 372 (1938)]; also we demonstrate that in 1D and 2D case, whenever the Stoner criterion is satisfied, the system evolves spontaneously towards maximum polarization allowed by Hund's rules. For the 3D case, the situation is that: (i) when the Stoner criterion is satisfied, but the ratio between the Hubbard repulsion energy and the Fermi energy is between 4/3 and 3/2, the system evolves towards a ferromagnetic state with incomplete polarization (the polarization parameter is between 0 and 1); (ii) when , the system evolves towards maximum polarization. This situation was also recognized in the original paper of Stoner, but with no further analysis of the obtained polarizations nor comparison with experimental results. We apply the result of calculation in order to predict the Hubbard interaction energy.
    [Show full text]