Density of States Information from Low Temperature Specific Heat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unusual Quantum Criticality in Metals and Insulators T. Senthil (MIT)
Unusual quantum criticality in metals and insulators T. Senthil (MIT) T. Senthil, ``Critical fermi surfaces and non-fermi liquid metals”, PR B, June 08 T. Senthil, ``Theory of a continuous Mott transition in two dimensions”, PR B, July 08 D. Podolsky, A. Paramekanti, Y.B. Kim, and T. Senthil, ``Mott transition between a spin liquid insulator and a metal in three dimensions”, PRL, May 09 T. Senthil and P. A. Lee, ``Coherence and pairing in a doped Mott insulator: Application to the cuprates”, PRL, Aug 09 Precursors: T. Senthil, Annals of Physics, ’06, T. Senthil. M. Vojta, S. Sachdev, PR B, ‘04 Saturday, October 22, 2011 High Tc cuprates: doped Mott insulators Many interesting phenomena on doping the Mott insulator: Loss of antiferromagnetism High Tc superconductivity Pseudogaps, non-fermi liquid regimes , etc. Stripes, nematics, and other broken symmetries This talk: focus on one (among many) fundamental question. How does a Fermi surface emerge when a Mott insulator changes into a metal? Saturday, October 22, 2011 High Tc cuprates: how does a Fermi surface emerge from a doped Mott insulator? Evolution from Mott insulator to overdoped metal : emergence of large Fermi surface with area set by usual Luttinger count. Mott insulator: No Fermi surface Overdoped metal: Large Fermi surface ADMR, quantum oscillations (Hussey), ARPES (Damascelli,….) Saturday, October 22, 2011 High Tc cuprates: how does a Fermi surface emerge from a doped Mott insulator? Large gapless Fermi surface present even in optimal doped strange metal albeit without Landau quasiparticles . Mott insulator: No Fermi surface Saturday, October 22, 2011 High Tc cuprates: how does a Fermi surface emerge from a doped Mott insulator? Large gapless Fermi surface present also in optimal doped strange metal albeit without Landau quasiparticles . -
Chapter 6 Antiferromagnetism and Other Magnetic Ordeer
Chapter 6 Antiferromagnetism and Other Magnetic Ordeer 6.1 Mean Field Theory of Antiferromagnetism 6.2 Ferrimagnets 6.3 Frustration 6.4 Amorphous Magnets 6.5 Spin Glasses 6.6 Magnetic Model Compounds TCD February 2007 1 1 Molecular Field Theory of Antiferromagnetism 2 equal and oppositely-directed magnetic sublattices 2 Weiss coefficients to represent inter- and intra-sublattice interactions. HAi = n’WMA + nWMB +H HBi = nWMA + n’WMB +H Magnetization of each sublattice is represented by a Brillouin function, and each falls to zero at the critical temperature TN (Néel temperature) Sublattice magnetisation Sublattice magnetisation for antiferromagnet TCD February 2007 2 Above TN The condition for the appearance of spontaneous sublattice magnetization is that these equations have a nonzero solution in zero applied field Curie Weiss ! C = 2C’, P = C’(n’W + nW) TCD February 2007 3 The antiferromagnetic axis along which the sublattice magnetizations lie is determined by magnetocrystalline anisotropy Response below TN depends on the direction of H relative to this axis. No shape anisotropy (no demagnetizing field) TCD February 2007 4 Spin Flop Occurs at Hsf when energies of paralell and perpendicular configurations are equal: HK is the effective anisotropy field i 1/2 This reduces to Hsf = 2(HKH ) for T << TN Spin Waves General: " n h q ~ q ! M and specific heat ~ Tq/n Antiferromagnet: " h q ~ q ! M and specific heat ~ Tq TCD February 2007 5 2 Ferrimagnetism Antiferromagnet with 2 unequal sublattices ! YIG (Y3Fe5O12) Iron occupies 2 crystallographic sites one octahedral (16a) & one tetrahedral (24d) with O ! Magnetite(Fe3O4) Iron again occupies 2 crystallographic sites one tetrahedral (8a – A site) & one octahedral (16d – B site) 3 Weiss Coefficients to account for inter- and intra-sublattice interaction TCD February 2007 6 Below TN, magnetisation of each sublattice is zero. -
Arxiv:2010.01933V2 [Cond-Mat.Quant-Gas] 18 Feb 2021 Tigated in Refs
Finite temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture Arko Roy,1, ∗ Miki Ota,1, ∗ Alessio Recati,1, 2 and Franco Dalfovo1 1INO-CNR BEC Center and Universit`adi Trento, via Sommarive 14, I-38123 Trento, Italy 2Trento Institute for Fundamental Physics and Applications, INFN, 38123 Povo, Italy We examine the role of thermal fluctuations in uniform two-dimensional binary Bose mixtures of dilute ultracold atomic gases. We use a mean-field Hartree-Fock theory to derive analytical predictions for the miscible-immiscible transition. A nontrivial result of this theory is that a fully miscible phase at T = 0 may become unstable at T 6= 0, as a consequence of a divergent behaviour in the spin susceptibility. We test this prediction by performing numerical simulations with the Stochastic (Projected) Gross-Pitaevskii equation, which includes beyond mean-field effects. We calculate the equilibrium configurations at different temperatures and interaction strengths and we simulate spin oscillations produced by a weak external perturbation. Despite some qualitative agreement, the comparison between the two theories shows that the mean-field approximation is not able to properly describe the behavior of the two-dimensional mixture near the miscible-immiscible transition, as thermal fluctuations smoothen all sharp features both in the phase diagram and in spin dynamics, except for temperature well below the critical temperature for superfluidity. I. INTRODUCTION ing the Popov theory. It is then natural to ask whether such a phase-transition also exists in 2D. The study of phase-separation in two-component clas- It is worth stressing that, in 2D Bose gases, thermal sical fluids is of paramount importance and the role of fluctuations are much more important than in 3D, as they temperature can be rather nontrivial. -
Semimetallic Antiferromagnetism in the Half-Heusler Compound Cumnsb
PHYSICAL REVIEW B 71, 184103 ͑2005͒ Semimetallic antiferromagnetism in the half-Heusler compound CuMnSb T. Jeong,1 Ruben Weht,2 and W. E. Pickett1 1Department of Physics, University of California, Davis, California 95616, USA 2Departamento de Física, CNEA, Avda. General Paz y Constituyentes, 1650-San Martín, Argentina ͑Received 17 September 2004; revised manuscript received 5 January 2005; published 20 May 2005͒ The half-Heusler compound CuMnSb, the first antiferromagnet ͑AFM͒ in the Mn-based class of Heuslers and half-Heuslers that contains several conventional and half metallic ferromagnets, shows a peculiar stability of its magnetic order in high magnetic fields. Density functional based studies reveal an unusual nature of its unstable ͑and therefore unseen͒ paramagnetic state, which for one electron less ͑CuMnSn, for example͒ would be a zero gap semiconductor ͑accidentally so͒ between two sets of very narrow, topologically separate bands of Mn 3d character. The extremely flat Mn 3d bands result from the environment: Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below the Fermi level, and the other four tetrahedrally coordi- nated sites are empty, leaving chemically isolated Mn 3d states. The AFM phase can be pictured heuristically as a self-doped Cu1+Mn2+Sb3− compensated semimetal with heavy mass electrons and light mass holes, with magnetic coupling proceeding through Kondo and/or anti-Kondo coupling separately through the two carrier types. The ratio of the linear specific heat coefficient and the calculated Fermi level density of states indicates a large mass enhancement m* /mϳ5, or larger if a correlated band structure is taken as the reference. -
Discovery of the Classical Bose–Einstein Condensation of Magnons in Solid Antiferromagnets Yu
ISSN 00213640, JETP Letters, 2011, Vol. 94, No. 1, pp. 68–72. © Pleiades Publishing, Inc., 2011. Original Russian Text © Yu.M. Bunkov, E.M. Alakshin, R.R. Gazizulin, A.V. Klochkov, V.V. Kuzmin, T.R. Safin, M.S. Tagirov, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 1, pp. 68–72. Discovery of the Classical Bose–Einstein Condensation of Magnons in Solid Antiferromagnets Yu. M. Bunkova, E. M. Alakshinb, R. R. Gazizulinb, A. V. Klochkovb, V. V. Kuzminb, T. R. Safinb, and M. S. Tagirovb a Institut Néel, CNRS, 25 rue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France b Kazan (Volga region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia Received May 19, 2011 Results of experiments in which the Bose–Einstein condensate of magnons is created in the CsMnF3 easy plane antiferromagnet in a system with coupled nuclear–electron precession with dynamical frequency shift are presented. This condensate is similar to the Bose–Einstein condensate of magnons in superfluid 3HeA in aerogel. DOI: 10.1134/S0021364011130066 Bose–Einstein condensation (BEC) is one of the important difference. In case of the classical BEC pre most striking macroscopic quantum phenomena. A dicted by Einstein, the quantum distribution of parti macroscopic number of particles form a coherent cles changes rather than the vacuum in which they quantum state, which is described by a common wave exist, whereas a phase transition is accompanied by a function. The formation of such a state under certain change in the ground state of the system (vacuum). -
Condensed Matter Option MAGNETISM Handout 1
Condensed Matter Option MAGNETISM Handout 1 Hilary 2014 Radu Coldea http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option Syllabus The lecture course on Magnetism in Condensed Matter Physics will be given in 7 lectures broken up into three parts as follows: 1. Isolated Ions Magnetic properties become particularly simple if we are able to ignore the interactions between ions. In this case we are able to treat the ions as effectively \isolated" and can discuss diamagnetism and paramagnetism. For the latter phenomenon we revise the derivation of the Brillouin function outlined in the third-year course. Ions in a solid interact with the crystal field and this strongly affects their properties, which can be probed experimentally using magnetic resonance (in particular ESR and NMR). 2. Interactions Now we turn on the interactions! I will discuss what sort of magnetic interactions there might be, including dipolar interactions and the different types of exchange interaction. The interactions lead to various types of ordered magnetic structures which can be measured using neutron diffraction. I will then discuss the mean-field Weiss model of ferromagnetism, antiferromagnetism and ferrimagnetism and also consider the magnetism of metals. 3. Symmetry breaking The concept of broken symmetry is at the heart of condensed matter physics. These lectures aim to explain how the existence of the crystalline order in solids, ferromagnetism and ferroelectricity, are all the result of symmetry breaking. The consequences of breaking symmetry are that systems show some kind of rigidity (in the case of ferromagnetism this is permanent magnetism), low temperature elementary excitations (in the case of ferromagnetism these are spin waves, also known as magnons), and defects (in the case of ferromagnetism these are domain walls). -
Mixed Valence Driven Heavy-Fermion Behavior and Superconductivity in Kni2se2
Mixed Valence Driven Heavy-Fermion Behavior and Superconductivity in KNi2Se2 James R. Neilson,1,2† Anna Llobet,3 Andreas V. Stier,2 Liang Wu,2 Jiajia Wen,2 Jing Tao,4 Yimei Zhu,4 Zlatko B. Tesanovic,2 N. P. Armitage,2 and Tyrel M. McQueen1,2* 1 Department of Chemistry, Johns Hopkins University, Baltimore MD. 2 Institute for Quantum Matter, and Department of Physics and Astronomy, Johns Hopkins University, Baltimore MD. 3 Lujan Neutron Scattering Center, Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM. 4 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY. †[email protected] *[email protected] Based on specific heat and magnetoresistance measurements, we report that a “heavy” electronic state exists below T ≈ 20 K in KNi2Se2, with an increased carrier mobility and enhanced effective electronic band mass, m* = 6mb to 18mb. This “heavy” state evolves into superconductivity at Tc = 0.80(1) K. These properties resemble that of a many-body heavy-fermion state, which derives from the hybridization between localized magnetic states and conduction electrons. Yet, no evidence for localized magnetism or magnetic order is found in KNi2Se2 from magnetization measurements or neutron diffraction. Instead, neutron pair-distribution-function analysis reveals the presence of local charge-density-wave distortions that disappear on cooling, an effect opposite to what is typically observed, suggesting that the low-temperature electronic state of KNi2Se2 arises from cooperative Coulomb interactions and proximity to, but avoidance of, charge order. Introduction Methods KNi Se was synthesized from the elements as a Many-body states, in which complex phenomena 2 2 polycrystalline, lustrous, purple-red powder, as previously arise from simple interactions, often exhibit rich phase described12; the same batch of sample was used for all diagrams and lack formal predictive theories. -
Spin-Glass and Non–Spin-Glass Features of a Geometrically Frustrated Magnet
EUROPHYSICS LETTERS 10 July 1996 Europhys. Lett., 35 (2), pp. 127-132 (1996) Spin-glass and non–spin-glass features of a geometrically frustrated magnet S.-H. Lee1,C.Broholm1,2, G. Aeppli3, A. P. Ramirez4, T. G. Perring5 C. J. Carlile5,M.Adams5,T.J.L.Jones5 and B. Hessen6 1 Department of Physics and Astronomy, The Johns Hopkins University Baltimore, MD 21218, USA 2 National Institute of Standards and Technology - Gaithersburg, MD 20899, USA 3 NEC - 4 Independence Way, Princeton, NJ 08540, USA 4 AT&AT Bell Laboratories - 600 Mountain Ave., Murray Hill, NJ 07974, USA 5 ISIS Facility, Rutherford Appleton Laboratory Chilton, Didcot, Oxon, OX11 0QX, UK 6 Royal Dutch Shell Laboratories P.O. Box 3003, 1003 AA Amsterdam, The Netherlands (received 9 February 1996; accepted in nal form 24 May 1996) PACS. 75.40Gb – Dynamic properties (dynamic susceptibility, spin waves, spin diusion, dynamic scaling, etc.). PACS. 75.25+z – Spin arrangements in magnetically ordered materials (including neutron and spin-polarized electron studies, synchrotron-source X-ray scattering, etc.). PACS. 75.50Lk – Spin glasses and other random magnets. Abstract. – We use neutron scattering to show that the low-temperature, short-range ordered spin conguration in the geometrically frustrated magnet SrCr9pGa12 9p O19 (p =0.92(5)) is composed of small groups of spins whose dipole moments cancel. The local magnetic uctuation spectrum, 00(ω), vanishes approximately in proportion to ω forhω < 0.5 meV, distinguishing this magnet from conventional spin glasses which display a featureless continuum of excited states. We argue that this behavior results from the absence of local, low-energy excitations in the zero-spin clusters from which the frozen spin conguration is composed. -
Phonons – Thermal Properties
Phonons – Thermal properties Till now everything was classical – no quantization, no uncertainty.... WHY DO WE NEED QUANTUM THEORY OF LATTICE VIBRATIONS? Classical – Dulong Petit law All energy values are allowed – classical equipartition theorem – energy per degree of freedom is 1/2kBT. Total energy independent of temperature! Detailed calculation gives C = 3NkB In reality C ~ aT +bT3 Figure 1: Heat capacity of gold Need quantum theory! Quantum theory of lattice vibrations: Hamiltonian for 1D linear chain Interaction energy is simple harmonic type ~ ½ kx2 Solve it for N coupled harmonic oscillators – 3N normal modes – each with a characteristic frequency where p is the polarization/branch. Energy of any given mode is is the zero-point energy th is called ‘excitation number’ of the particular mode of p branch with wavevector k PH-208 Phonons – Thermal properties Page 1 Phonons are quanta of ionic displacement field that describes classical sound wave. Analogy th with black body radiation - ni is the number of photons of the i mode of oscillations of the EM wave. Total energy of the system E = is the ‘Planck distribution’ of the occupation number. Planck distribution: Consider an ensemble of identical oscillators at temperature T in thermal equilibrium. Ratio of number of oscillators in (n+1)th state to the number of them in nth state is So, the average occupation number <n> is: Special case of Bose-Einstein distribution with =0, chemical potential is zero since we do not directly control the total number of phonons (unlike the number of helium atoms is a bath – BE distribution or electrons in a solid –FE distribution), it is determined by the temperature. -
Observation of Superficial Antiferromagnetism in Co3o4
Materials Research Express PAPER Related content - Antiferromagnetism induced by oxygen Observation of superficial antiferromagnetism in vacancies in V2O5 polycrystals synthesized by the Pechini method D Dreifus, M P F Godoy, A C Rabelo et al. Co3O4 polycrystals - Effects of Cu doping on the electronic structure and magnetic properties of To cite this article: Driele von Dreifus et al 2015 Mater. Res. Express 2 116102 MnCo2O4 nanostructures Prativa Pramanik, Subhash Thota, Sobhit Singh et al. - Origin of intrinsic ferromagnetism in undoped antiferromagnetic NiO thin films View the article online for updates and enhancements. Vikram Verma and Monica Katiyar Recent citations - Theoretical approach for determining the relation between the morphology and surface magnetism of Co 3 O 4 R.A.P. Ribeiro et al - Probing core and shell contributions to exchange bias in Co/Co3O4 nanoparticles of controlled size D. De et al This content was downloaded from IP address 200.136.226.167 on 20/03/2019 at 18:09 Mater. Res. Express 2 (2015) 116102 doi:10.1088/2053-1591/2/11/116102 PAPER Observation of superficial antiferromagnetism in Co3O4 polycrystals RECEIVED 25 August 2015 Driele von Dreifus1,2, Ernesto Chaves Pereira1 and Adilson Jesus Aparecido de Oliveira2 REVISED 6 October 2015 1 Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, São Paulo, Brazil 2 ACCEPTED FOR PUBLICATION Departamento de Física, Universidade Federal de São Carlos, CP 676, São Carlos, São Paulo, Brazil 12 October 2015 E-mail: [email protected] PUBLISHED 3 November 2015 Keywords: antiferromagnetic phase transition, spinel, magnetization process Abstract We report on a systematic study about the magnetic properties of Co3O4 polycrystals with large size distribution (100–1200 nm) and the crystallite size of 68(4) nm on average. -
Thermodynamics of the Magnetic-Field-Induced "Normal
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Thermodynamics of the Magnetic-Field- Induced "Normal" State in an Underdoped High T[subscript c] Superconductor Scott Chandler Riggs Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES THERMODYNAMICS OF THE MAGNETIC-FIELD-INDUCED “NORMAL” STATE IN AN UNDERDOPED HIGH TC SUPERCONDUCTOR By SCOTT CHANDLER RIGGS A Dissertation submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2010 The members of the committee approve the dissertation of Scott Chandler Riggs defended on March 27, 2010. Gregory Scott Boebinger Professor Directing Thesis David C. Larbalestier University Representative Jorge Piekarewicz Committee Member Nicholas Bonesteel Committee Member Luis Balicas Committee Member Approved: Mark Riley, Chair, Department of Physics Joseph Travis, Dean, College of Arts and Sciences The Graduate School has verified and approved the above-named committee members. ii ACKNOWLEDGMENTS I never thought this would be the most difficult section to write. From Tally, I’d have to start off by thanking Tim Murphy for letting me steal...er...borrow way too much from the instrumentation shop during the initial set-up of Greg’s lab. I still remember that night on the hybrid working with system ”D”. After that night it became clear that ”D” stands for Dumb. To Eric Palm, thank you for granting more power during our specific heat experiments. We still hold the record for most power consumed in a week! To Rob Smith, we should make a Portland experience every March. -
Incommensurate Antiferromagnetism in a Pure Spin System Via Cooperative Organization of Local and Itinerant Moments
Incommensurate antiferromagnetism in a pure spin system via cooperative organization of local and itinerant moments Yejun Fenga,b,1, Jiyang Wangb, D. M. Silevitchb, B. Mihailac, J. W. Kima, J.-Q. Yand,e, R. K. Schulzec, Nayoon Woob, A. Palmerb, Y. Rena, Jasper van Wezelf,2, P. B. Littlewoodb,g, and T. F. Rosenbaumb,1 aThe Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439; bThe James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637; cMaterials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545; dDepartment of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996; eMaterials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; fMaterials Science Division, Argonne National Laboratory, Argonne, IL 60439; and gPhysical Sciences and Engineering, Argonne National Laboratory, Argonne, IL 60439 Edited by Susan N. Coppersmith, University of Wisconsin, Madison, WI, and approved January 17, 2013 (received for review October 4, 2012) Materials with strong correlations are prone to spin and charge materials one must always have a finite coupling strength be- instabilities, driven by Coulomb, magnetic, and lattice interactions. cause perfect nesting never occurs in more than one dimension. In materials that have significant localized and itinerant spins, it In the case of CDWs, this coupling is normally provided by is not obvious which will induce order. We combine electrical phonons, because electrons can transition between nested transport, X-ray magnetic diffraction, and photoemission studies states by scattering off lattice distortions. For SDWs in the with band structure calculations to characterize successive anti- presence of nearly perfect nesting conditions, such as in ele- ferromagnetic transitions in GdSi.