Diversity of Yeasts Associated with Wood and the Gut of Wood-Feeding

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of Yeasts Associated with Wood and the Gut of Wood-Feeding Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2012 Diversity of yeasts associated with wood and the gut of wood-feeding insects Hector Raul Urbina Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Urbina, Hector Raul, "Diversity of yeasts associated with wood and the gut of wood-feeding insects" (2012). LSU Doctoral Dissertations. 1172. https://digitalcommons.lsu.edu/gradschool_dissertations/1172 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. DIVERSITY OF YEASTS ASSOCIATED WITH WOOD AND THE GUT OF WOOD- FEEDING INSECTS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Hector Raul Urbina M.S. Universidad Simón Bolívar, 2005 December 2012 To my lovely family: my mother Lilia, my father Raúl and my brother Federico ii ACKNOWLEDGMENTS I would like to truthfully express my gratitude for the energy, experience, and inspiration of my major professor, Meredith Blackwell. I could not have a better professor to guide me across the years in my development as a researcher. I would also like to thank the professors that composed my advisory committee, Cathie Aime, Prosanta Chakrabarty, James Cronin, Frederick Sheldon, and Ronald Thune for their helpful comments and support. In addition I thank Jeremy Brown for insightful discussions. Many thanks go to Maritza Abril and Stephanie Gross for all of their help with the laboratory routine. At the same time, I would like to thank the undergraduate students Callie Comstock, Elizabeth Cooper, Robert Donner, Robert Frank, Juan Herrera, Matthew Knight, and Simone Mack, for their help during the development of my research. Special thanks to my mates in the Department of Biological Sciences, Anthony Chow, Sandra Galeano, and Metha Klock for several good moments. I also owe a debt of gratitude to Sung-Oui Suh, Nhu Nguyen, and Joseph McHugh and his students at the University of Georgia, who did the early work on the passalid yeast system that served as the basis for my study. I would like to recognize to the National Sciences Foundation (NSF), Mycological Society of America (MSA), Louisiana Experimental Program to Stimulate Competitive Research (LINK-EPSCoR), Boyd Professor fund, the LSU Graduate School, and Biograds (the departmental graduate student organization), for funding my research. I iii would especially like to thank the Louisiana State University Department of Biological Sciences for it support and use of facilities. iv TABLE OF CONTENTS ACKNOWLEDGMENTS .................................................................................................. iii ABSTRACT ..................................................................................................................... vi CHAPTER 1: GENERAL INTRODUCTION ...................................................................... 1 CHAPTER 2: MULTILOCUS PHYLOGENETIC STUDY OF THE SCHEFFERSOMYCES YEAST CLADE AND CHARACTERIZATION OF THE N- TERMINAL REGION OF THE XYLOSE REDUCTASE GENE ........................................ 4 2.1. Introduction ........................................................................................................................ 4 2.2. Materials and methods ....................................................................................................... 6 2.3. Results ............................................................................................................................. 11 2.4. Discussion ........................................................................................................................ 23 CHAPTER 3: SCHEFFERSOMYCES CRYPTOPCERCUS: A NEW XYLOSE- FERMENTING YEAST ASSOCIATED WITH THE GUT OF WOOD ROACHES AND NEW COMBINATIONS IN THE SUGIYAMAELLA YEAST CLADE ...................... 32 3.1. Introduction ...................................................................................................................... 32 3.2. Materials and methods ..................................................................................................... 33 3.3. Results and discussion .................................................................................................... 38 CHAPTER 4: DIVERSITY OF YEASTS ASSOCIATED WITH GUATEMALAN PASSALID BEETLES ..................................................................................................... 48 4.1. Introduction ...................................................................................................................... 48 4.2. Materials and methods ..................................................................................................... 52 4.3. Results and discussion .................................................................................................... 58 4.4. Conclusions ..................................................................................................................... 75 CHAPTER 5: DIVERSITY OF YEASTS ASSOCIATED WITH THAI PASSALID BEETLES ....................................................................................................................... 77 5.1. Introduction ...................................................................................................................... 77 5.2. Materials and methods ..................................................................................................... 80 5.3. Results and discussion .................................................................................................... 81 CHAPTER 6: PURIFYING SELECTION MAINTAINS XYLOSE REDUCTASE ACTIVITY AMONG ASCOMYCETE YEASTS ............................................................... 89 6.1. Introduction ...................................................................................................................... 89 6.2. Materials and methods ..................................................................................................... 92 6.3. Results and discussion .................................................................................................... 95 CHAPTER 7. CONCLUSIONS ..................................................................................... 102 REFERENCES ............................................................................................................. 106 VITA .............................................................................................................................. 129 v ABSTRACT The gut of insects and plant tissues are productive sources for the isolation of undescribed species of yeasts. In particular, the gut of lignicolous insects is colonized by yeasts that can carry out the fermentation of several sugars. The consistent association between xylose-fermenting (X-F) yeasts and the gut of lignicolous insects has been used as evidence of a symbiotic relationship between them. In general passalid beetles (Passalidae) and wood-roaches (Cryptocercidae) feed on rotted wood where they spend most of their lives. Digestion of the substrate depends on the symbiotic microbiota, which include strict and facultative anaerobic microorganisms such as bacteria, parabasalids, and fungi. The objectives of this study were to describe the yeasts associated with hardwoods in Louisiana (Chapter 2), the gut of the wood roach Cryptocercus collected in the Appalachian Mountains (Chapter 3), passalids collected in Guatemala (Chapter 4) and in Thailand (Chapter 5), and to study selection acting on xylose reductase (XR) in yeasts (Chapter 6). This study confirmed the routine presence of ascomycete yeasts from the clades Scheffersomyces, Spathaspora, Lodderomyces, and Sugiyamaella in the guts of wood roaches and passalid beetles, as well as basidiomycete yeasts in the genera Cryptococcus and Trichosporon in passalids exclusively. In this investigation, four new X-F yeasts, Scheffersomyces illinoinensis, Sc. quercinus, Sc. virginianus, and Sc. cryptocercus, were proposed based on multilocus phylogenetic analyses, molecular, and biochemical characterization. The X-F yeasts in the Scheffersomyces clade were the most abundant species in the gut of both wood- roaches and Guatemalan passalids, results that support and expand the previously described relationship between X-F yeasts and lignicolous insects. This finding, vi however, was not observed in Thai passalids, where the most abundant yeasts were closely related to Candida insectamans (Spathaspora clade) that does not ferment xylose. In addition, this study determined that the gut of lignicolous insects is a niche rich in undescribed yeasts classified in several clades. The xylose reductase gene (XYL1) has been shown to be useful as a molecular marker for rapid identification of cryptic yeast species, and the xylose reductase enzyme (XR) has been exposed to purifying selection in ascomycete yeasts. vii CHAPTER 1: GENERAL INTRODUCTION The term “yeast” is used to describe a specific fungal growth form that is unicellular with multiplication by budding at some stage in the life cycle, although
Recommended publications
  • Variable Absorption of Mutational Trends by Prion-Forming Domains During Saccharomycetes Evolution
    Variable absorption of mutational trends by prion-forming domains during Saccharomycetes evolution Paul M. Harrison Department of Biology, McGill University, Monteal, Quebec, Canada ABSTRACT Prions are self-propagating alternative states of protein domains. They are linked to both diseases and functional protein roles in eukaryotes. Prion-forming domains in Saccharomyces cerevisiae are typically domains with high intrinsic protein disorder (i.e., that remain unfolded in the cell during at least some part of their functioning), that are converted to self-replicating amyloid forms. S. cerevisiae is a member of the fungal class Saccharomycetes, during the evolution of which a large population of prion-like domains has appeared. It is still unclear what principles might govern the molecular evolution of prion-forming domains, and intrinsically disordered domains generally. Here, it is discovered that in a set of such prion-forming domains some evolve in the fungal class Saccharomycetes in such a way as to absorb general mutation biases across millions of years, whereas others do not, indicating a spectrum of selection pressures on composition and sequence. Thus, if the bias-absorbing prion formers are conserving a prion-forming capability, then this capability is not interfered with by the absorption of bias changes over the duration of evolutionary epochs. Evidence is discovered for selective constraint against the occurrence of lysine residues (which likely disrupt prion formation) in S. cerevisiae prion-forming domains as they evolve across Saccharomycetes. These results provide a case study of the absorption of mutational trends by compositionally biased domains, and suggest methodology for assessing selection pressures on the composition of intrinsically disordered regions.
    [Show full text]
  • Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
    | YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs.
    [Show full text]
  • Expanding the Knowledge on the Skillful Yeast Cyberlindnera Jadinii
    Journal of Fungi Review Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii Maria Sousa-Silva 1,2 , Daniel Vieira 1,2, Pedro Soares 1,2, Margarida Casal 1,2 and Isabel Soares-Silva 1,2,* 1 Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (M.S.-S.); [email protected] (D.V.); [email protected] (P.S.); [email protected] (M.C.) 2 Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal * Correspondence: [email protected]; Tel.: +351-253601519 Abstract: Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation.
    [Show full text]
  • Coleoptera: Tenebrionidae) from Australia, Southeast Asia and the Pacific Region, with Comments on Phylogenetic Relationships and Antipredator Adaptations
    Systematic Entomology (2004) 29, 101–114 First descriptions of Coelometopini pupae (Coleoptera: Tenebrionidae) from Australia, Southeast Asia and the Pacific region, with comments on phylogenetic relationships and antipredator adaptations PATRICE BOUCHARD1,2 andWARREN E. STEINER Jr3 1Canadian Museum of Nature, Ottawa, Ontario, Canada, 2Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Que´bec, Canada and 3Department of Systematic Biology – Entomology, Smithsonian Institution, Washington, DC, U.S.A. Abstract. The pupal stage of ten Coelometopini species occurring in Australia, New Guinea, Southeast Asia and the Pacific region are described and a key for their identification is provided. The species are Chrysopeplus expolitus Broun, Derosphaerus hirtipes Kaszab, Hypaulax crenata (Boisduval), Leprocaulus borneensis Kaszab, Metisopus purpureipennis Bates, Promethis carteri Kaszab, P. nigra (Blessig), P. quadraticollis (Gebien), P. quadricollis Pascoe and P. sulcigera (Boisduval). The gin trap structures of D. hirtipes and P. quadraticollis are described in detail using scanning electron micrographs. A summary of anti- predator structures of all known Coelometopini pupae is given. The phylogenetic value of pupal characters is assessed at intra- and intergeneric levels within the tribe. Introduction tribe Coelometopini (Tenebrionidae: Coelometopinae) to address this question. The evolution of a pupal stage in the life history of holo- metabolous insects has been of great importance for the success of insects. This critical transformation stage has Antipredator adaptations in insect pupae enabled members of Holometabola to dissociate the larval and adult stages and, as a consequence, promoted the Hinton (1955) identified two main types of antipredator exploitation of a wide variety of environments. Although device in pupae of holometabolous insects: passive and most insect pupae are immotile, a small number of clades nonpassive.
    [Show full text]
  • Evaluation of the Chitin-Binding Dye Congo Red As a Selection Agent for the Isolation, Classification, and Enumeration of Ascomycete Yeasts
    Archives of Microbiology (2018) 200:671–675 https://doi.org/10.1007/s00203-018-1498-y SHORT COMMUNICATION Evaluation of the chitin-binding dye Congo red as a selection agent for the isolation, classification, and enumeration of ascomycete yeasts Tomas Linder1 Received: 3 February 2018 / Revised: 19 February 2018 / Accepted: 21 February 2018 / Published online: 23 February 2018 © The Author(s) 2018. This article is an open access publication Abstract Thirty-nine strains of ascomycete yeasts representing 35 species and 33 genera were tested for their ability to grow on solid agar medium containing increasing concentrations of the chitin-binding dye Congo red. Six strains were classified as hyper- sensitive (weak or no growth at 10 mg/l Congo red), five were moderately sensitive (weak or no growth at 50 mg/l), three were moderately tolerant (weak or no growth at 100 mg/l), while the remaining 25 strains were classified as resistant (robust growth at ≥ 100 mg/l) with 20 of these strains classified as hyper-resistant (robust growth at 200 mg/l). Congo red growth phenotypes were consistent within some families but not others. The frequency of Congo red resistance among ascomycete yeasts was deemed too high for the practical use of Congo red as a selection agent for targeted isolation, but can be useful for identification and enumeration of yeasts. Keywords Antifungal · Cell wall · Phenotype · Yeast Introduction groups of yeasts. For example, chemically defined growth medium containing methanol as the sole carbon source is The development of genome sequencing over the past four commonly used to isolate species of methylotrophic yeasts decades has revolutionized yeast taxonomy and now enables (van Dijken and Harder 1974).
    [Show full text]
  • And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
    A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-­CCo-Chairvhiadi rA.
    [Show full text]
  • Comparative Genomics of Biotechnologically Important Yeasts Supplementary Appendix
    Comparative genomics of biotechnologically important yeasts Supplementary Appendix Contents Note 1 – Summary of literature on ascomycete yeasts used in this study ............................... 3 CUG-Ser yeasts ................................................................................................................................................................ 3 Other Saccharomycotina ............................................................................................................................................. 5 Taphrinomycotina ....................................................................................................................................................... 10 Note 2 – Genomes overview .................................................................................................11 Yeast culturing, identification, DNA and total RNA extraction ................................................................. 12 Genome sequencing and assembly ....................................................................................................................... 12 Transcriptome sequencing and assembly ......................................................................................................... 13 Table S1. Genome statistics ..................................................................................................................................... 14 Table S2. Annotation statistics ..............................................................................................................................
    [Show full text]
  • Of Candida Bombicola
    Aerodynamically, the bumble bee shouldn't be able to fly, but the bumble bee doesn't know it so it goes on flying anyway. Mary Kay Ash Jury: Prof. Dr. ir. Norbert DE KIMPE Prof. Dr. ir. Nico BOON Lic. Dirk DEVELTER Prof. Dr. ir. Monica HÖFTE Prof. Dr. Andreas SCHMID Prof. Dr. Els VAN DAMME Prof. Dr. ir. Wim SOETAERT Prof. Dr. ir. Erick VANDAMME Promotors: Prof . Dr. ir. Erick VANDAMME Prof. Dr. ir. Wim SOETAERT Laboratory of Industrial Microbiology and Biocatalysis Department of Biochemical and Microbial Technology Ghent University Dean: Prof. Dr. ir. Herman VAN LANGENHOVE Rector: Prof. Dr. Paul VAN CAUWENBERGE Ir. Inge Van Bogaert was supported by Ecover Belgium NV (Malle, Belgium) and a fellowship of the Bijzonder Onderzoekfonds of Ghent University (BOF). The research was conducted at the Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University. ir. Inge Van Bogaert MICROBIAL SYNTHESIS OF SOPHOROLIPIDS BY THE YEAST CANDIDA BOMBICOLA Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Titel van het doctoraatsproefschrift in het Nederlands: Microbiële synthese van sopohorolipiden door de gist Candida bombicola Cover illustration: Cadzand on a stormy day by Inge Van Bogaert Refer to this thesis: Van Bogaert INA (2008) Microbial synthesis of sophorolipids by the yeast Candida bombicola. PhD-thesis, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 239 p. ISBN-number: ISBN 978-90-5989-243-9 The author and the promotor give the authorisation to consult and to copy parts of this work for personal use only.
    [Show full text]
  • Fungal Planet Description Sheets: 400–468
    Persoonia 36, 2016: 316– 458 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X692185 Fungal Planet description sheets: 400–468 P.W. Crous1,2, M.J. Wingfield3, D.M. Richardson4, J.J. Le Roux4, D. Strasberg5, J. Edwards6, F. Roets7, V. Hubka8, P.W.J. Taylor9, M. Heykoop10, M.P. Martín11, G. Moreno10, D.A. Sutton12, N.P. Wiederhold12, C.W. Barnes13, J.R. Carlavilla10, J. Gené14, A. Giraldo1,2, V. Guarnaccia1, J. Guarro14, M. Hernández-Restrepo1,2, M. Kolařík15, J.L. Manjón10, I.G. Pascoe6, E.S. Popov16, M. Sandoval-Denis14, J.H.C. Woudenberg1, K. Acharya17, A.V. Alexandrova18, P. Alvarado19, R.N. Barbosa20, I.G. Baseia21, R.A. Blanchette22, T. Boekhout3, T.I. Burgess23, J.F. Cano-Lira14, A. Čmoková8, R.A. Dimitrov24, M.Yu. Dyakov18, M. Dueñas11, A.K. Dutta17, F. Esteve- Raventós10, A.G. Fedosova16, J. Fournier25, P. Gamboa26, D.E. Gouliamova27, T. Grebenc28, M. Groenewald1, B. Hanse29, G.E.St.J. Hardy23, B.W. Held22, Ž. Jurjević30, T. Kaewgrajang31, K.P.D. Latha32, L. Lombard1, J.J. Luangsa-ard33, P. Lysková34, N. Mallátová35, P. Manimohan32, A.N. Miller36, M. Mirabolfathy37, O.V. Morozova16, M. Obodai38, N.T. Oliveira20, M.E. Ordóñez39, E.C. Otto22, S. Paloi17, S.W. Peterson40, C. Phosri41, J. Roux3, W.A. Salazar 39, A. Sánchez10, G.A. Sarria42, H.-D. Shin43, B.D.B. Silva21, G.A. Silva20, M.Th. Smith1, C.M. Souza-Motta44, A.M. Stchigel14, M.M. Stoilova-Disheva27, M.A. Sulzbacher 45, M.T. Telleria11, C. Toapanta46, J.M. Traba47, N.
    [Show full text]
  • Downloaded from by Lawrence Berkeley National Laboratory User on 13 May 2019
    Lawrence Berkeley National Laboratory Recent Work Title Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp. JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production. Permalink https://escholarship.org/uc/item/1r9258f1 Journal FEMS yeast research, 19(4) ISSN 1567-1356 Authors Trichez, Débora Steindorff, Andrei S Soares, Carlos EVF et al. Publication Date 2019-06-01 DOI 10.1093/femsyr/foz034 Peer reviewed eScholarship.org Powered by the California Digital Library University of California FEMS Yeast Research, 19, 2019, foz034 doi: 10.1093/femsyr/foz034 Advance Access Publication Date: 26 April 2019 Research Article Downloaded from https://academic.oup.com/femsyr/article-abstract/19/4/foz034/5480466 by Lawrence Berkeley National Laboratory user on 13 May 2019 RESEARCH ARTICLE Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp. JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production Debora´ Trichez1,AndreiS.Steindorff1,†,CarlosE.V.F.Soares1,2, Eduardo F. Formighieri 1 and Joao˜ R. M. Almeida1,2,* 1Embrapa Agroenergia. Parque Estac¸ao˜ Biologica,´ PqEB – W3 Norte Final, Postal code 70.770–901, Bras´ılia-DF, Brazil and 2Graduate Program in Chemical and Biological Technologies, Institute of Chemistry, University of Bras´ılia, Campus Darcy Ribeiro, Postal code 70.910-900, Bras´ılia-DF, Brazil ∗Corresponding author: Embrapa Agroenergia, Parque Estac¸ao˜ Biologica,´ PqEB – W3 Norte Final - s/n◦, 70.770-901 - Bras´ılia, DF – Brasil. Tel: +55 61 3448-2337; E-mail: [email protected] †Present address: U.S. Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, US.
    [Show full text]
  • Taxonomy and Physiological Characterisation of Scheffersomyces Titanus Sp
    www.nature.com/scientificreports OPEN Taxonomy and physiological characterisation of Scheffersomyces titanus sp. nov., a new D-xylose- Received: 28 January 2016 Accepted: 03 August 2016 fermenting yeast species from Published: 25 August 2016 China Xiao-Jing Liu1, Wan-Nan Cao1, Yong-Cheng Ren1, Long-Long Xu1, Ze-Hao Yi1, Zheng Liu1 & Feng-Li Hui1,2 Three strains of a d-xylose-fermenting yeast species were isolated from the host beetle Dorcus titanus collected from two different localities in Henan Province, Central China. These strains formed two hat-shaped ascospores in conjugated and deliquescent asci. Multilocus phylogenetic analysis that included the nearly complete small subunit (SSU), the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) rDNAs, as well as RNA polymerase II largest subunit (RPB1) gene demonstrated that these strains represent a novel yeast species belonging to the genus Scheffersomyces. The phylogenetic analysis based on the nucleotide sequences of the xylose reductase (XYL1) gene supported the view that the new strains could be grouped as a unique species. Although this new species is highly similar to Scheffersomyces stipitis-like yeasts in terms of nrDNA sequences and morphological and physiological characteristics, the species can be clearly differentiated from its close relatives on the basis of the sequences of XYL1 and RPB1. Therefore, a novel yeast species, Scheffersomyces titanus sp. nov., is proposed to accommodate these strains. The type strain is NYNU 14712T ( CICC 33061T = CBS 13926T). The genus Scheffersomyces was first proposed by Kurtzman and Suzuki (2010) with the description of Scheffersomyces stipitis, S.
    [Show full text]
  • Phylogenetic Circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes)
    Persoonia 32, 2014: 102–114 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X680207 Phylogenetic circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes) A. Giraldo1, J. Gené1, D.A. Sutton2, H. Madrid3, J. Cano1, P.W. Crous3, J. Guarro1 Key words Abstract Numerous members of Ascomycota and Basidiomycota produce only poorly differentiated arthroconidial asexual morphs in culture. These arthroconidial fungi are grouped in genera where the asexual-sexual connec- arthroconidial fungi tions and their taxonomic circumscription are poorly known. In the present study we explored the phylogenetic Arthrographis relationships of two of these ascomycetous genera, Arthrographis and Arthropsis. Analysis of D1/D2 sequences Arthropsis of all species of both genera revealed that both are polyphyletic, with species being accommodated in different Eremomyces orders and classes. Because genetic variability was detected among reference strains and fresh isolates resem- phylogeny bling the genus Arthrographis, we carried out a detailed phenotypic and phylogenetic analysis based on sequence taxonomy data of the ITS region, actin and chitin synthase genes. Based on these results, four new species are recognised, namely Arthrographis chlamydospora, A. curvata, A. globosa and A. longispora. Arthrographis chlamydospora is distinguished by its cerebriform colonies, branched conidiophores, cuboid arthroconidia and terminal or intercalary globose to subglobose chlamydospores. Arthrographis curvata produced both sexual and asexual morphs, and is characterised by navicular ascospores and dimorphic conidia, namely cylindrical arthroconidia and curved, cashew-nut-shaped conidia formed laterally on vegetative hyphae. Arthrographis globosa produced membranous colonies, but is mainly characterised by doliiform to globose arthroconidia. Arthrographis longispora also produces membranous colonies, but has poorly differentiated conidiophores and long arthroconidia.
    [Show full text]