Agilent Test & Measurement Discontinued Products

Total Page:16

File Type:pdf, Size:1020Kb

Agilent Test & Measurement Discontinued Products Agilent Test & Measurement Discontinued Products Technical Support Status (last updated May 1, 2004) The following list contains Agilent Technologies products that are no longer sold and do not have specific information on the Agilent web site. The list provides the following information: • Model number • Brief Product description • Replacement information. If replacement information is available,it's listed here. You will typically find information on replacement products by searching for the listed model number on the Agilent Test & Measurements website at www.agilent.com/find/t&m. Some replacement listings on this page are jumpstations that will take you directly to the replacement family. • Technical support status as of May 1, 2004. "Currently supported" means that, if your instrument is under warranty, or if you have a valid support contract with Agilent, you can receive technical product support and service through the Agilent support network. "No longer supported" means that that the Agilent website is the sole source of application support for this product. For many older products, "no longer supported" may mean no further information is available. You can find information on many recently discontinued products on the Agilent website at www.agilent.com/find/discontinued. Product Description Support Status Replacement Information as of 1 May 83A PERSONAL COMPUTE No2004 longer supported no replacement 83F HP83+GPIB IO SYS No longer supported no replacement 85A BASIC PROGRAMMAB No longer supported no replacement 85B PERS COMPUTER No longer supported no replacement 86A 86A PERS COMPUTR No longer supported no replacement 86B PERS COMPUTER No longer supported no replacement 87A PERSONAL COMPUTE No longer supported no replacement 87XM 87XM PERS COMPTR No longer supported no replacement 105A CRYSTAL OSC No longer supported no replacement 105B Crystal Oscillator product family sold http://www.agilent.com/find/symmetricom 107A QUARTZ OSCILLATO No longer supported no replacement 107B QUARTZ OSCILLATO No longer supported no replacement 117A VLF COMPARATOR No longer supported no replacement 120B OSCILLOSCOPE No longer supported 123A RTD TEST No longer supported no replacement 124A OSCIL. CAMERA No longer supported no replacement 130C OSCILLOSCOPE No longer supported 140A OSCILLOSCOPE No longer supported 140B OSCILLOSCOPE No longer supported 140T SPEC AN -MAINFRM No longer supported 141T 141B OSCILLOSCOPE No longer supported 141T SPEC AN -MAINFRM No longer supported 143A OSCILLOSCOPE No longer supported no replacement 143S SPEC AN -MAINFRM No longer supported 180A OSCILLOSCOPE No longer supported 180AR NOT FOR SALE PRODUCT No longer supported no replacement 180C SCOPE MAINFRAME No longer supported no replacement 180D SCOPE MAINFRAME No longer supported no replacement 180ER SCOPE MAINFRAME No longer supported 180F RUGGEDIZED SCOPE No longer supported 180TR MAIN FRAME No longer supported 181A SCOPE MAINFRAME No longer supported 181AR SCOPE MAINFRAME No longer supported no replacement 181T MAIN FRAME No longer supported 853A, 182T 181TR MAIN FRAME No longer supported 853A, 182T 182A OSCILLOSCOPE No longer supported 182C SCOPE MAINFRAME No longer supported 182T MAIN FRAME No longer supported 183A OSCILLOSCOPE No longer supported 183B OSCILLOSCOPE No longer supported 183C OSCILLOSCOPE No longer supported 183D OSCILLOSCOPE No longer supported 184A SCOPE MAINFRAME No longer supported 184B OSCILLOSCOPE No longer supported 191A OSCILLOSCOPE No longer supported 193A OSCILLOSCOPE No longer supported 195A OSCILLOSCOPE CAM No longer supported no replacement 197A OSCILLOSCOPE CAM No longer supported no replacement 197B CAMERA FOR CATHODE RAY TUBE No longer supported no replacement RECORDING 198A CAMERA No longer supported no replacement 200CD OSCILLATOR No longer supported http://www.agilent.com/find/esg 202H SIGNAL GENERATOR No longer supported http://www.agilent.com/find/signal_sources 202J SIGNAL GENERATOR No longer supported http://www.agilent.com/find/signal_sources 203A FUNCTION GENERAT No longer supported 211B GENERATOR No longer supported 81101A 214A PULSE GENERATOR No longer supported 8114A 214B 100 V, 10MHz PULSE GENERATOR No longer supported 8114A 221A GENERATOR No longer supported 81101A 222A GENERATOR No longer supported 81101A 226A TIME MARK GEN No longer supported Product Description Support Status Replacement Information as of 1 May 232A OBSOLETE SIG GEN No2004 longer supported http://www.agilent.com/find/signal_sources 239A OSC LOW DISTORT No longer supported no replacement 250B RX METER No longer supported 297A SWEEP DRIVE No longer supported no replacement 302A WAVE ANALYZER No longer supported 310A WAVE ANALYZER No longer supported 312A WAVE ANALYZER No longer supported 312B SELECTIVE VOLT No longer supported 312C SELECT LEVEL MET No longer supported 312D SELECT LEVEL MET No longer supported 313A OSCILLATOR No longer supported 331A DISTORTION ANALY No longer supported 332A DISTORTION ANALY No longer supported 333A DISTORTION ANALY No longer supported 334A Distortion Analyzer No longer supported 339A Distortion Measurement Set No longer supported 340B NOISE FIGURE MET No longer supported Noise Figure Analyzers 340BR NOISE FIGURE MET No longer supported Noise Figure Analyzers 342A NOISE FIGURE MTR No longer supported Noise Figure Analyzers 342AR NOISE FIGURE MTR No longer supported Noise Figure Analyzers 343A VHF NOISE SOURCE No longer supported http://www.agilent.com/find/noise-source 345B IF NOISE SOURCE No longer supported http://www.agilent.com/find/noise-source 349A NOISE SOURCE No longer supported http://www.agilent.com/find/noise-source 350D ATTENUATOR No longer supported 4437A 353A PATCH PANEL No longer supported no replacement 354A ATTENUATOR No longer supported no replacement 355CR VHF coaxial step attenuator, 0 to 12 dB No longer supported 355DR VHF coaxial step attenuator, 0-120 dB Currently supported 355ER Programmable VHF attenuator Currently supported 360A Low Pass Filter No longer supported no replacement 360B Low Pass Filter No longer supported no replacement 360C Low Pass Filter No longer supported no replacement 360D Low Pass Filter No longer supported no replacement 393A VAR COAX ATTN No longer supported no replacement 394A VAR COAX ATTN No longer supported no replacement 400D VOLTMETER No longer supported 3458A 400DR VOLTMETER No longer supported 3458A 400E AC VOLTMETER No longer supported 3458A 400EL AC VOLTMETER No longer supported 3458A 400F AC VOLTMETER No longer supported 3458A 400FL AC VOLTMETER No longer supported 3458A 400GL AC VOLTMETER No longer supported 3458A 400H VOLTMETER No longer supported 3458A 400LR VOLTMETER No longer supported 3458A 403A AC VOLTMETER No longer supported 3458A 403B AC VOLTMETER No longer supported 3458A 410C MULTI FUNC METER No longer supported 34401A 411A RF MILLIVOLTMETE No longer supported no replacement 411AR RF MILLIVOLTMETE No longer supported no replacement 412A DC VOLTMETER No longer supported 34401A 412AR DC VOLTMETER No longer supported 34401A 415B Description Not Available (Corp) No longer supported 415BR WAVE INDICATOR No longer supported 415E SWR Meter No longer supported 416B RATIO METER No longer supported 416BR RATIO METER No longer supported 419A DC NULL VOLTMETE No longer supported 34420A 420A CRYSTAL DETECTOR No longer supported no replacement 420B CRYSTAL MOUNT No longer supported no replacement 420C Coaxial Crystal Detector No longer supported no replacement 423A Coaxial crystal detector No longer supported no replacement Product Description Support Status Replacement Information as of 1 May 427A MULTI-FUNC METER No2004 longer supported 34401A, 3458A 428B MILLIAMMETER No longer supported 34134A 428BR MILLIAMMETER No longer supported no replacement 430C Description Not Available (Corp) No longer supported no replacement 430CR POWER METER No longer supported no replacement 431C POWER METER No longer supported 432AR Thermistor power meter Currently supported 432B Digital Thermistor Power Meter No longer supported 432A 432C PROG DIG PUR MTR No longer supported no replacement 434A Description Not Available (Corp) No longer supported no replacement 434AR POWER METER No longer supported no replacement 435A POWER METER No longer supported no replacement 436AR Digital Power Meter Currently supported 440A DETECTOR MOUNT No longer supported no replacement 442B Slotted Line RF Probe No longer supported no replacement 446B UNTUNED PROBE No longer supported no replacement 448A SWEEP ADAPTER No longer supported no replacement 448B SLOTTED LINE SWE No longer supported no replacement 456A CURRENT PROBE No longer supported 34134A 461A AMPLIFIER No longer supported 462A AMPLIFIER No longer supported 465A AMPLIFIER No longer supported 467A POWER AMP No longer supported 477B THERMISTOR MOUNT No longer supported no replacement 478AR Coaxial thermistor mount Currently supported 489A TWT AMPLIFIER No longer supported no replacement 491C TWT AMPLIFIER No longer supported no replacement 493A TWT AMPLIFIER No longer supported no replacement 495A TWT AMPLIFIER No longer supported no replacement 508A TACHOMETER GENER No longer supported no replacement 508B TACHOMETER GENER No longer supported no replacement 508C TACHOMETER GENER No longer supported no replacement 508D TACHOMETER GENER No longer supported no replacement 513A POWER SUPPLY No longer supported 536A Frequency Meter No longer supported no replacement 580A CONVERTER No longer supported no replacement 581A CONVERTER No longer supported no replacement 606A SIGNAL GENERATOR No longer supported http://www.agilent.com/find/signal_sources
Recommended publications
  • 12 Questions To... Natami Team - Part 1
    12 questions to... Natami Team - part 1 Banter (c) Polski Portal Amigowy (www.ppa.pl) Today I will tell you about something unique. I will present you the latest 68k CPU! You may wonder... What actually is N68050? The N68050 (N050) is a new 68k family processor developed by the Natami Team. It runs inside the FPGA together with the Natami chipset. The 050 is the first revision of our 68k CPU architecture. Further on, we will extend the architecture to the N68050E and later the N68070 specification. The N68050 softcore will be the default CPU of the Natami system. But if the user wants to, he could also get a separate CPU card with a physical 68060 for his Natami system, connected to the mainboard over the SyncZorro bus. The development history of the N68050 core. One could say it started in 1998, when Gunnar tried to write his first 68k softcore. But FPGAs were unfortunately too small to accomplish this task back then. The actual development of the Natami softcore started two years ago, after we dismissed Coldfire as a possible CPU for the Natami. Coldfire was interesting, but our testing and estimates showed us that solving it with our own softcore is even better. The first "N68070" softcore design idea was similar to a crossbreed of 68000 and Coldfire. Our first concept was to use a pipeline similar to the Coldfire V3 pipeline. To improve performance we changed this and reworked the pipeline to be longer. Our goal for the softcore was to reach a higher clockrate and to be in all regards better than the original Motorola 68060 clocked at the same speed.
    [Show full text]
  • Lecture 1: Course Introduction G Course Organization G Historical Overview G Computer Organization G Why the MC68000? G Why Assembly Language?
    Lecture 1: Course introduction g Course organization g Historical overview g Computer organization g Why the MC68000? g Why assembly language? Microprocessor-based System Design 1 Ricardo Gutierrez-Osuna Wright State University Course organization g Grading Instructor n Exams Ricardo Gutierrez-Osuna g 1 midterm and 1 final Office: 401 Russ n Homework Tel:775-5120 g 4 problem sets (not graded) [email protected] n Quizzes http://www.cs.wright.edu/~rgutier g Biweekly Office hours: TBA n Laboratories g 5 Labs Teaching Assistant g Grading scheme Mohammed Tabrez Office: 339 Russ [email protected] Weight (%) Office hours: TBA Quizes 20 Laboratory 40 Midterm 20 Final Exam 20 Microprocessor-based System Design 2 Ricardo Gutierrez-Osuna Wright State University Course outline g Module I: Programming (8 lectures) g MC68000 architecture (2) g Assembly language (5) n Instruction and addressing modes (2) n Program control (1) n Subroutines (2) g C language (1) g Module II: Peripherals (9) g Exception processing (1) g Devices (6) n PI/T timer (2) n PI/T parallel port (2) n DUART serial port (1) g Memory and I/O interface (1) g Address decoding (2) Microprocessor-based System Design 3 Ricardo Gutierrez-Osuna Wright State University Brief history of computers GENERATION FEATURES MILESTONES YEAR NOTES Asia Minor, Abacus 3000BC Only replaced by paper and pencil Mech., Blaise Pascal, Pascaline 1642 Decimal addition (8 decimal figs) Early machines Electro- Charles Babbage Differential Engine 1823 Steam powered (3000BC-1945) mech. Herman Hollerith,
    [Show full text]
  • Computer Architectures
    Computer Architectures Motorola 68000, 683xx a ColdFire – CISC CPU Principles Demonstrated Czech Technical University in Prague, Faculty of Electrical Engineering AE0B36APO Computer Architectures Ver.1.10 1 Original Desktop/Workstation 680X0 Feature 68000 'EC000 68010 68020 68030 68040 68060 Data bus 16 8/16 16 8/16/32 8/16/32 32 32 Addr bus 23 23 23 32 32 32 32 Misaligned Addr - - - Yes Yes Yes Yes Virtual memory - - Yes Yes Yes Yes Yes Instruct Cache - - 3 256 256 4096 8192 Data Cache - - - - 256 4096 8192 Memory manager 68451 or 68851 68851 Yes Yes Yes ATC entries - - - - 22 64/64 64/64 FPU interface - - - 68881 or 68882 Internal FPU built-in FPU - - - - - Yes Yes Burst Memory - - - - Yes Yes Yes Bus Cycle type asynchronous both synchronous Data Bus Sizing - - - Yes Yes use 68150 Power (watts) 1.2 0.13-0.26 0.13 1.75 2.6 4-6 3.9-4.9 at frequency of 8.0 8-16 8 16-25 16-50 25-40 50-66 MIPS/kDhryst. 1.2/2.1 2.5/4.3 6.5/11 14/23 35/60 100/300 Transistors 68k 84k 190k 273k 1,170k 2,500k Introduction 1979 1982 1984 1987 1991 1994 AE0B36APO Computer Architectures 2 M68xxx/CPU32/ColdFire – Basic Registers Set 31 16 15 8 7 0 User programming D0 D1 model registers D2 D3 DATA REGISTERS D4 D5 D6 D7 16 15 0 A0 A1 A2 A3 ADDRESS REGISTERS A4 A5 A6 16 15 0 A7 (USP) USER STACK POINTER 0 PC PROGRAM COUNTER 15 8 7 0 0 CCR CONDITION CODE REGISTER 31 16 15 0 A7# (SSP) SUPERVISOR STACK Supervisor/system POINTER 15 8 7 0 programing model (CCR) SR STATUS REGISTER 31 0 basic registers VBR VECTOR BASE REGISTER 31 3 2 0 SFC ALTERNATE FUNCTION DFC CODE REGISTERS AE0B36APO Computer Architectures 3 Status Register – Conditional Code Part USER BYTE SYSTEM BYTE (CONDITION CODE REGISTER) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 T1 T0 S 0 0 I2 I1 I0 0 0 0 X N Z V C TRACE INTERRUPT EXTEND ENABLE PRIORITY MASK NEGATIVE SUPERVISOR/USER ZERO STATE OVERFLOW CARRY ● N – negative ..
    [Show full text]
  • RTEMS CPU Supplement Documentation Release 4.11.3 ©Copyright 2016, RTEMS Project (Built 15Th February 2018)
    RTEMS CPU Supplement Documentation Release 4.11.3 ©Copyright 2016, RTEMS Project (built 15th February 2018) CONTENTS I RTEMS CPU Architecture Supplement1 1 Preface 5 2 Port Specific Information7 2.1 CPU Model Dependent Features...........................8 2.1.1 CPU Model Name...............................8 2.1.2 Floating Point Unit..............................8 2.2 Multilibs........................................9 2.3 Calling Conventions.................................. 10 2.3.1 Calling Mechanism.............................. 10 2.3.2 Register Usage................................. 10 2.3.3 Parameter Passing............................... 10 2.3.4 User-Provided Routines............................ 10 2.4 Memory Model..................................... 11 2.4.1 Flat Memory Model.............................. 11 2.5 Interrupt Processing.................................. 12 2.5.1 Vectoring of an Interrupt Handler...................... 12 2.5.2 Interrupt Levels................................ 12 2.5.3 Disabling of Interrupts by RTEMS...................... 12 2.6 Default Fatal Error Processing............................. 14 2.7 Symmetric Multiprocessing.............................. 15 2.8 Thread-Local Storage................................. 16 2.9 CPU counter...................................... 17 2.10 Interrupt Profiling................................... 18 2.11 Board Support Packages................................ 19 2.11.1 System Reset................................. 19 3 ARM Specific Information 21 3.1 CPU Model Dependent Features..........................
    [Show full text]
  • A Modular Soft Processor Core in VHDL
    A Modular Soft Processor Core in VHDL Jack Whitham 2002-2003 This is a Third Year project submitted for the degree of MEng in the Department of Computer Science at the University of York. The project will attempt to demonstrate that a modular soft processor core can be designed and implemented on an FPGA, and that the core can be optimised to run a particular embedded application using a minimal amount of FPGA space. The word count of this project (as counted by the Unix wc command after detex was run on the LaTeX source) is 33647 words. This includes all text in the main report and Appendices A, B and C. Excluding source code, the project is 70 pages in length. i Contents I. Introduction 1 1. Background and Literature 1 1.1. Soft Processor Cores . 1 1.2. A Field Programmable Gate Array . 1 1.3. VHSIC Hardware Definition Language (VHDL) . 2 1.4. The Motorola 68020 . 2 II. High-level Project Decisions 3 2. Should the design be based on an existing one? 3 3. Which processor should the soft core be based upon? 3 4. Which processor should be chosen? 3 5. Restating the aims of the project in terms of the chosen processor 4 III. Modular Processor Design Decisions 4 6. Processor Design 4 6.1. Alternatives to a complete processor implementation . 4 6.2. A real processor . 5 6.3. Instruction Decoder and Control Logic . 5 6.4. Arithmetic and Logic Unit (ALU) . 7 6.5. Register File . 7 6.6. Links between Components .
    [Show full text]
  • Introduction of Microprocessor
    Introduction of Microprocessor A Microprocessor is an important part of a computer architecture without which you will not be able to perform anything on your computer. It is a programmable device that takes in input, performs some arithmetic and logical operations over it and produces desired output. In simple words, a Microprocessor is a digital device on a chip which can fetch instruction from memory, decode and execute them and give results. Basics of Microprocessor – A Microprocessor takes a bunch of instructions in machine language and executes them, telling the processor what it has to do. Microprocessor performs three basic things while executing the instruction: 1. It performs some basic operations like addition, subtraction, multiplication, division and some logical operations using its Arithmetic and Logical Unit (ALU). New Microprocessors also perform operations on floating point numbers also. 2. Data in a Microprocessor can move from one location to another. 3. It has a Program Counter (PC) register that stores the address of the next instruction based on the value of PC, Microprocessor jumps from one location to another and takes decision. A typical Microprocessor structure looks like this. Clock Speed of different Microprocessor: 16-bit Microprocessor – 8086: 4.7MHz, 8MHz, 10MHz 8088: more than 5MHz 80186/80188: 6MHz 80286: 8MHz 32-bit Microprocessor – INTEL 80386: 16MHz to 33MHz INTEL 80486: 16MHz to 100MHz PENTIUM: 66MHz 64-bit Microprocessor – INTEL CORE-2: 1.2GHz to 3GHz INTEL i7: 66GHz to 3.33GHz INTEL i5: 2.4GHz to 3.6GHz INTEL i3: 2.93GHz to 3.33GHz We do not have any 128-bit Microprocessor in work at present one among the reasons for this is that we are a long way from exhausting the 64 bit address space itself, we use it a constant rate of roughly 2 bits every 3 years.
    [Show full text]
  • A Manual for the Assemblerߤ Rob Pike Lucent Technologies, Bell Labs
    A Manual for the Assembler Rob Pike Lucent Technologies, Bell Labs Machines There is an assembler for each of the MIPS, SPARC, Intel 386, ARM, PowerPC, Motorola 68010, and Motorola 68020. The 68020 assembler, 2a, is the oldest and in many ways the prototype. The assemblers are really just variations of a single program: they share many properties such as left-to-right assignment order for instruction operands and the synthesis of macro instructions such as MOVE to hide the peculiarities of the load and store structure of the machines. To keep things concrete, the first part of this manual is specifically about the 68020. At the end is a description of the differences among the other assemblers. Registers All pre-defined symbols in the assembler are upper-case. Data registers are R0 through R7; address registers are A0 through A7; floating-point registers are F0 through F7. A pointer in A6 is used by the C compiler to point to data, enabling short addresses to be used more often. The value of A6 is constant and must be set during C program initialization to the address of the externally-defined symbol a6base. The following hardware registers are defined in the assembler; their meaning should be obvious given a 68020 manual: CAAR, CACR, CCR, DFC, ISP, MSP, SFC, SR, USP, and VBR. The assembler also defines several pseudo-registers that manipulate the stack: FP, SP, and TOS. FP is the frame pointer, so 0(FP) is the first argument, 4(FP) is the second, and so on. SP is the local stack pointer, where automatic variables are held (SP is a pseudo-register only on the 68020); 0(SP) is the first automatic, and so on as with FP.
    [Show full text]
  • Linux User Group HOWTO Linux User Group HOWTO Table of Contents Linux User Group HOWTO
    Linux User Group HOWTO Linux User Group HOWTO Table of Contents Linux User Group HOWTO..............................................................................................................................1 Rick Moen...............................................................................................................................................1 1. Introduction..........................................................................................................................................1 2. What is a GNU/Linux user group?......................................................................................................1 3. What LUGs exist?................................................................................................................................1 4. What does a LUG do?..........................................................................................................................1 5. LUG activities......................................................................................................................................1 6. Practical suggestions............................................................................................................................1 7. Legal and political issues.....................................................................................................................2 8. About this document............................................................................................................................2 1. Introduction..........................................................................................................................................2
    [Show full text]
  • Procesory Ve Směrovačích Firmy Cisco Motorola MPC857DSL
    Procesory ve směrovačích firmy Cisco Pokročilé architektury počítačů Marek Malysz, mal341 Obsah Motorola MPC857DSL.............................................................................................................................1 Motorola 68360.........................................................................................................................................2 Motorola 68030.........................................................................................................................................3 Motorola MPC860 PowerQUICC............................................................................................................3 PMC-Sierra RM7061A.............................................................................................................................4 Broadcom BCM1250................................................................................................................................5 R4600.........................................................................................................................................................5 R5000.........................................................................................................................................................6 R7000.........................................................................................................................................................6 QuantumFlow Processor...........................................................................................................................6
    [Show full text]
  • Instruction Manual TMS 202 68020 & 68EC020 Microprocessor Support
    Instruction Manual TMS 202 68020 & 68EC020 Microprocessor Support 070-9820-00 There are no current European directives that apply to this product. This product provides cable and test lead connections to a test object of electronic measuring and test equipment. Warning The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service. Copyright E Tektronix, Inc. All rights reserved. Licensed software products are owned by Tektronix or its suppliers and are protected by United States copyright laws and international treaty provisions. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, or subparagraphs (c)(1) and (2) of the Commercial Computer Software – Restricted Rights clause at FAR 52.227-19, as applicable. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved. Printed in the U.S.A. Tektronix, Inc., P.O. Box 1000, Wilsonville, OR 97070–1000 TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. SOFTWARE WARRANTY Tektronix warrants that the media on which this software product is furnished and the encoding of the programs on the media will be free from defects in materials and workmanship for a period of three (3) months from the date of shipment. If a medium or encoding proves defective during the warranty period, Tektronix will provide a replacement in exchange for the defective medium.
    [Show full text]
  • 1. Types of Computers Contents
    1. Types of Computers Contents 1 Classes of computers 1 1.1 Classes by size ............................................. 1 1.1.1 Microcomputers (personal computers) ............................ 1 1.1.2 Minicomputers (midrange computers) ............................ 1 1.1.3 Mainframe computers ..................................... 1 1.1.4 Supercomputers ........................................ 1 1.2 Classes by function .......................................... 2 1.2.1 Servers ............................................ 2 1.2.2 Workstations ......................................... 2 1.2.3 Information appliances .................................... 2 1.2.4 Embedded computers ..................................... 2 1.3 See also ................................................ 2 1.4 References .............................................. 2 1.5 External links ............................................. 2 2 List of computer size categories 3 2.1 Supercomputers ............................................ 3 2.2 Mainframe computers ........................................ 3 2.3 Minicomputers ............................................ 3 2.4 Microcomputers ........................................... 3 2.5 Mobile computers ........................................... 3 2.6 Others ................................................. 4 2.7 Distinctive marks ........................................... 4 2.8 Categories ............................................... 4 2.9 See also ................................................ 4 2.10 References
    [Show full text]
  • Upgrade of Linac Control System with New Vme Controllers at Spring-8
    8th International Conference on Accelerator & Large Experimental Physics Control Systems, 2001, San Jose, California WEAT005 physics/0111131 UPGRADE OF LINAC CONTROL SYSTEM WITH NEW VME CONTROLLERS AT SPRING-8 T. Masuda, T. Ohata, T. Asaka, H. Dewa, T. Fukui, H. Hanaki, N. Hosoda, T. Kobayashi, M. Kodera, A. Mizuno, S. Nakajima, S. Suzuki, M. Takao, R. Tanaka, T. Taniuchi, Y. Taniuchi, H. Tomizawa, A. Yamashita, K. Yanagida SPring-8, Hyogo 679-5198, Japan Abstract In September 1999, we started to upgrade the present linac system to the new one by replacing a part of We integrated an injector linac control system to the hardware and introducing a standard software scheme as SPring-8 standard system in September 2000. As a result described in below. At this time, we also introduced the of this integration, the SPring-8 accelerator complex was standard database system for the linac control [3,4]. controlled by one unified system. Because the linac was Because the linac played a role as an injector to the continuously running as the electron beam injector not booster synchrotron and the NewSUBARU storage ring, it only for the SPring-8 storage ring but also for was necessary to avoid downtime due to the integration NewSUBARU, we had to minimize the hardware procedures. We separated the hardware upgrade work into modification to reduce the time for the development and two phases, that is, we replaced the system with minimum testing of the new control system. The integration method modification at the first phase and postponed an overall was almost the same as that of the integration of the replacement to the near future.
    [Show full text]